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straea 
provides a set of techniques 

for structuring and encoding expert knowledge, 
comparable with knowledge engineering 
techniques for rule-based expert systems. In 
order to compare the expert systems and decision 
analysis approach, each was applied to the same 
task, namely the diagnosis and treatment of root 
disorders in apple trees. This experiment 
illustrates a variety of theoretical and practical 
differences between them, including the semantics 
of the network representations (inference net vs. 
influence diagram or Bayes’ belief net), 
approaches to modelling uncertainty and 
preferences, the relative effort required, and their 
attitudes to human reasoning under uncertainty, 
as the ideal to be emulated or as unreliable and to 
be improved upon? 

As schemes for representing uncertainty in Al 
proliferate and the debate about their various merits 
intensifies, [Kanal & Lemmer, 1986; Gale, 19861, it is 
becoming increasingly important to understand their 
relative advantages and drawbacks. One major axis of 
contention has been between proponents of various 
heuristic, qualitative, and fuzzy logic schemes, who argue 
that these are more compatible with human mental 
representations and consequently more practical to build 
and explain [Buchanan & Shortliffe, 1984; Cohen, 1985; 
Zadeh, 49861, and advocates of probabilistic schemes, 
who emphasize the virtues of being based on a 
normative theory of decision making under uncertainty 
[Pearl, 1985; Cheeseman, 1985; Spiegelhalter, 19861. 

The latter have argued the advantages of approaches 
that are coherent, i.e. strictly consistent with the axioms 
of probability, over the earlier approximate Bayesian 
schemes developed for Mycin and Prospector [Duda et 
a/., 19761. So far, comparisons have focused primarily 
on differences in theoretical assumptions [Bonissone, 
1986; Horvitz, Heckerman & Langlotz, 1986; Henrion, 
1987a], although there have been a few experimental 
studies which compare the performance of different 
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uncertain inference schemes given knowledge formalized 
as a small rule-set [Tong & Shapiro, 1985; Wise & 
Henrion, 1986; Vadrick et al, 1986; Wise, 19861. 

The informal experience of knowledge engineers and 
decision analysts alike suggests that choices about the 
structuring and encoding process that formalizes expert 
knowledge may have more impact on the final results 
than the numerical details of the uncertainty calculus 
employed. In the past, coherent probabilistic schemes 
have been criticized as intractable for significant practical 
applications, but recent developments have appear to 
have improved their practicality for construction and 
computation. These include influence diagrams [Howard 
& Matheson, 19841 and Bayesian belief nets [Pearl, 
19861. These are graphical tools which facilitate the 
qualitative structuring of uncertain knowledge and 
provide a framework for the numerical encoding of 
probabilistic relations in a form guaranteed to be 
coherent. The term knowledge engineering seems as 
appropriate for describing the activity of the decision 
analyst in building a probabilistic decision model to 
represent uncertain beliefs and preferences as it is for 
the construction of an expert system. 

The purpose of this paper is twofold: First to 
illustrate the knowledge engineering process employing 
such a decision analytic approach, and second, to 
compare it with a rule-based expert system approach 
applied to the same problem. Since most readers will be 
more familiar with the latter approach, we shall provide 
greater detail on the former. 

The task selected involved the diagnosis and 
treatment of root disorders of apple trees. We 
considered several causes of root damage, including 
water stress from waterlogged soil, cold stress from a 
severe winter, and the fungus, phytophthora. These 
problems are of major commercial significance to 
orchardists, and often lead to damage and destruction of 
apple trees. Moderate cases of phytophthora can be 
controlled by applying a fungicide. Other treatments 
include tiling and draining the area to control water 
damage, and bridge-grafting. If the damage has 
progressed too far, reducing apple production 
permanently by more than about 25%, the most efficient 
solution may be to destroy the trees and replant. The 
consultant plant pathologist uses a wide variety of 
evidence about the tree, environmental conditions, 
observable symptoms, and laboratory tests to diagnose 
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the cause of root damage, and so recommend 
treatments. Figure 1 lists some of the elements of the 
problem. 

iagnoses: Phytophthora, cold stress, water stress. 
reatments: Fungicide, tiling and drainage, uproot and 

replant, wait and see. 
Exaiqdes of evidential wariables (with values): 

Winter cold episodes without snow cover 
(yes, no) 

e Soil texture (light, moderate, heavy) 
8 Wetland vegetation (yes, no) 
0 Phytophthera resistant root stock (yes, no) 
0 Delineated root cankers (yes, no) 
8 Root tissue damage (None, little, moderate, 

severe) 

Figure 1: Selected elements of the apple root problem 

Two decision support systems were constructed to 
diagnose root disorders in apple trees and recommend 
treatment. One, which we will term the “ES model”, was 
built by an knowledge engineer experienced in building 
knowledge-based expert systems. The other, which we 
will term the “DA model”, was built by an experienced 
decision analyst. Both were developed on the basis of 
extensive interviews with a plant pathologist (D.R.C.), 
who has ten years experience as a specialist in this area. 
The initial structuring, encoding and implementation 
phases of the knowledge engineering process were 
carried out over an intensive four-day period, during 
which the two knowledge engineers alternated in working 
with the expert. The full implementation, testing, and 
refinement of the systems were completed over a longer 
time frame. 

The ES model was implemented in KEE (Intellicorp) 
as a standard inference network with data-directed 
control. Diagnostic relationships are represented as 
rules giving the degree of belief in intermediate 
hypotheses and disorders based on Boolean 
combinations of data (evidential variables). Additional 
rules provide support for various treatments based on the 
diagnoses and other evidence. 

The DA model employs an influence diagram to 
represent the expert’s beliefs about how possible root 
disorders and treatments might affect the tree 
productivity and costs. It incorporates a Bayesian belief 
net to diagnose the disorders based on the available 
evidence. During the initial interview period, part of the 
influence diagram was used to construct a decision tree, 
which was implemented in Arborist (Texas Instruments) 
for preliminary analysis. Subsequently, the entire 
influence diagram including the diagnostic belief net was 
implemented using a combination of algorithms for 
propagating evidence through Bayes’ nets [Pearl, 1986; 
Henrion, 1987b]. 

The initial phase for both approaches was to identify 
the objects in the domain, that is, the root disorders, 
treatments, and evidential variables. Both knowledge 
engineers worked with the expert to draw directed graphs 
which represent qualitative evidential links between these 
elements. The first to be acquired was the influence 
diagram for the DA model. From this, and further 
discussion with the expert, an inference net was derived. 
These networks allow the decomposition of the expert’s 
domain knowledge into separable local relationships. 
The initial influence diagram had 30 nodes, and the 
inference net had 25, of which 20 were common to both. 
Figure 2 shows a fragment of both networks 
superimposed for comparison. 

Although they are topologically similar, there is a 
fundamental difference in the interpretation of the links. 
In the inference net, the direction of the links corresponds 
to the anticipated direction of inference, from evidence to 
disorders to treatments. In the influence diagram the 
direction of the links generally represents the believed 
direction of causal influence, for example abiotic stress 
increases susceptibility to phytophthora, and either of 
these can cause root tissue damage. Note that the 
influence diagram does not need to represent causal 
influences in full scientific detail (e.g. the physiology of 
how phytophthora produces root tissue damage) even 
when this is known, unless it seems likely to significantly 
improve the inference results. The influence diagram is 
also a way to express qualitative judgments about 
probabilistic independence: Two unlinked variables with a 
common cause (e.g. the phytopthora lab test and root 
tissue damage) are conditionally independent of each 
other and also of indirect antecedents (e.g. resistant root 
stock) given their immediate cause (e.g. phytophthora 

Figure 2: Fragment of influence diagram (solid arrows) 
with corresponding inference network (hatched arrows) 

infection). 
As Figure 2 shows, the links in the two 

representations may go in the same direction, such as 
where resistant root stock decreases susceptiblity to 
phytophthora infection and (therefore) provides evidence 
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against phytophthora. More often they go in opposite 
directions, such as where observable symptoms are 
caused by a disease and therefore they are used as 
evidence for it. For example, phytophthora can cause 
delineated cankers, and so cankers are evidence for 
phytophthora. 

For both approaches, the directed links help in the 
subsequent encoding of the relationships. For the ES 
approach, arrows converging on a node indicate a 
potential diagnostic rule with the antecedent nodes to 
appear in the condition and the destination node to 
appear in the action. For the DA approach, uncertain 
influences are encoded as conditional distributions with 
the antecedent nodes as the conditioning variables. 
Psychological research suggests it is generally easier to 
assess the probabilities of effects conditional on their 
causes (e.g. symptoms given diseases) than vice versa 
[Kahneman, Slavic & Tversky, 19821, 

This ES model, like almost all rule-based expert 
systems, can only propagate evidence in the direction in 
which it is encoded, (no matter whether the inference is 
controlled by forward or backward chaining.) In contrast, 
in the DA model the influence diagram does not 
determine the direction of inference. By taking 
expectations over the conditions, this may be in the 
causal direction, or, by application of Bayes’ rule, it may 
be the opposite, diagnostic direction, according to 
requirements of the application. For example, it is 
possible to determine the current probability of an 
unexamined symptom, based on observations of other 
symptoms, before deciding whether it is likely to be 
worthwhile to examine it. 

the orchardist was assumed to be risk neutral. The DA 
model computes the expected net cost of each treatment 
and recommends the treatment which minimizes it. 

The ES model relies on heuristic rules for making 
inferences about what treatments to recommend based 
on the degrees of belief in the diagnoses without explicit 
consideration of costs. This approach seemed more 
natural for the expert, and was certainly much easier. 
Since the costs of treatment, tree replacement, and lost 
production for a given outcome do not vary greatly from 
one orchard to another, one can argue that such general 
rules may be widely applicable, somewhat analogous to 
the way it has been suggested that Mycin rules might be 
justified by decision analysis [Langlotz, Shortliffe, & 
Fagan, 19861. However, as we shall see, at least in this 
case, formal analysis raises doubts about the adequacy 
of such informal analysis. 

s 
In the ES model, the relationships in the inference 

network were encoded as sets of rules. The “degree of 
belief” in a hypothesis is one from the following ordered 
set of seven values: {confirmed, strongly-supported, 
supported, neutral, detracted, strongly-detracted, 
disconfirmed}. Each rule specifies the degree of belief in 
a conclusion based on combinations of its antecedents. 
For example, the rules in Figure 4 specify the degree of 
belief in phytophthora damage based on the values of six 
possible sources of evidence. These rules encode only 
those combinations of evidence thought by the expert to 
be important. 

Figure : Influence diagram showing relation between 
root problems, treatment and outcome costs. The 

decision is enclosed in a rectangle, and the 
criterion variable is enclosed in a diamond. 

ellin sts at-i references 
The DA approach developed an explicit quantitative 

model to estimate the costs and values of each 
combination of outcomes and treatments (Figure 3). 
Costs over multiple years were combined to obtain a 
discounted present value (a replacement tree takes 5 
years to achieve full production). For the initial model, 

if phyto-resistance is low then supported 
if reduced-fine-root-hairs is yes then supported 
if reduced-fine-root-hairs is no then detracted 
if cold-stress is at least supported or 

water-stress is at least supported then supported 
if tissue-discoloration-below-soil is delineated-canker or 

tissue-discoloration-above-soil is delineated-canker 
then strongly-supported 

Figure 4: Example diagnostic rules from the ES 
model for level of belief in phytophthora infection 

Each uncertain influence is encoded as a probability 
distribution for the consequent, conditional on all its 
antecedents. To quantify each distribution, the expert 
was first asked for a verbal expression to get a rough 
idea, and then for explicit numbers. For example, 
evidence PI, wetland vegetation, was judged to be 
causally influenced by hypothe ’ 
judged it “quite probable” that 

wet site. The expert 
nd vegetation would 

be observed at a wet site, “impossible” if it was not a wet 
site. These judgments w re then quantified as the two 
conditional probabilities, 04 w = 0.7, p(wI-w) = 0. 
Sensitivity analysis was used to examine the importance 
of accuracy in such assessments. In the vast majority of 
cases, a very rough assessment is perfectly adequate. 
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explicitly, and so requires more extensive testing and 
refinement. 

Fungicide Abiotic Phytoph. Damage Conditional 
treatment stress infection to tree probability 

None None 

None 

1 

0.2 
None 

I 

Temporary 0.5 
Permanent 0.3 

Non- 
recov 

Replace 1 

I None 0.25 

Treat 

I 

Temporary 0.35 
Permanent 0.35 
Reolace 0.2 

Figure 5: Partial decision tree for treatment decision 

The number of parameters of the conditional 
distribution increases exponentially with the number of 
conditioning variables, but qualitative knowledge can 
usually reduce the assessment effort drastically. For 
example, the damage to the tree has 4 levels, 
conditioned on the severity of the phytophthora infection 
and abiotic stress, each at 3 levels, and the fungicide 
treatment decision (yes or no), giving a potential of 4 x 3 
x3x2 = 72 parameters to be judged. However, ,many 
Iare impossible, certain, or otherwise constrained by 
qualitative considerations, and there are actually only 12 
different numbers requiring assessment. Figure 5 shows 
half of the decision tree whose terminal branches 
represent this conditional distribution. 

VU. Testing and Refinement 
In both approaches, initial implementations were 

tested to see if their conclusions were reasonable in the 
judgment of the expert, and the models were elaborated 
and tuned in the light of these tests. During the 
construction of the DA model, the use of conditional 
distributions to encode influences requires the expert to 
consider the impact of all possible combinations of 
evidence and decisions for each influence. The 
approach to encoding diagnostic rules for the ES model 
was much less demanding in its initial requirements of 
the expert. But it is consequently more likely to encounter 
combinations of events that had not been considered 

The two approaches differ fundamentally in their 
response to unexpected results. For the ES model, rules 
were modified or added to obtain results that agreed 
more closely with the original expectations of the expert, 
since the primary goal was to emulate his judgment. In 
the DA approach, after initial rechecking of the relevant 
model structure and assessed probabilities, the 
probabilistic reasoning leading to the surprising 
conclusions was explained to the expert. If this lead him 
to accept them, the system was left unmodified. This 
was clearly illustrated by the following example. 

Preliminary sensitivity analysis of the decision tree in 
Figure 5 showed that treating with fungicide had positive 
expected value, since the treatment is cheap (about 
$0.58 per tree) relative to the cost of replacing a tree 
(about $85). But the actual increment in expected value 
turned out to be very small, so small that it might often be 
outweighed by considerations not explicit in the model, 
such as environmental side-effects of the fungicide. This 
result was initially surprising to the expert, but 
examination of the model provided an explanation: The 
fungicide’s effectiveness in controlling phytophthora was 
judged to be modest, and the probability that a tree is 
curable, i.e. that an infection is both present and not 
already beyond recovery is quite low. On reflection, he 
found this explanation convincing, and the result likely to 
be of considerable practical interest. 

No single knowledge engineer or decision analyst 
can claim that their approach is completely 
representative of all practitioners of their respective 
crafts. Certain aspects of both the approaches used here 
are somewhat atypical. The qualitative representation of 
uncertainty used in the ES model is less common than 
heuristic numerical schemes, such as Certainty Factors. 
The particular techniques applied here for evaluating 
influence diagrams are recent and not yet in general use. 
The size of both models and the effort devoted to their 
construction were quite modest. Nevertheless, several 
important points of comparison which are of general 
applicability to the two approaches, are clearly illustrated 
by this experiment. 

In the initial structuring phase there are significant 
similarities between the approaches in the identification 
of the key elements, and the use of graphs to represent 
their interrelationships, but it is important to understand 
the fundamental differences in meaning between the 
inference network and influence diagram. Of course, 
research in expert systems has developed a rich array of 
techniques for knowledge represention and categorical 
reasoning that have not been a formal concern of 
decision analysis. It is specifically in the approaches to 
inference under uncertainty and decision making that the 
comparison is interesting. Here the main advantage of 
the ES approach is in the greater ease in initially 
encoding uncertain dependencies. This arises from the 
informal, heuristic nature of the language whether 
qualitative (as in this experiment) or quantitative, and the 
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willingness to accept partial specifications, with inference 
rules conditioned on only the most salient combinations 
of evidence rather than the exhaustive combinations 
required for the DA model. The greater ease of encoding 
means that, for a given expenditure of effort, it is possible 
to build a system that deals with a larger number of 
sources of evidence, diagnoses and treatments than with 
the more rigorous DA approach. 

The downside of this more relaxed approach is that 
the ES model is likely to require more extensive testing, 
debugging, and tuning to ensure that it performs 
adequately, and can handle common and impoflant 
situations. Whether this additional effort will, in general, 
entirely cancel out its initial advantage is unclear from a 
single experiment and will depend on the criterion for 
adequacy. 

Many in the Al community have believed coherent 
probabilistic approaches to be essentially intractable for 
problems involving the explicit representation of large 
bodies of expert knowledge. Part of this belief may stem 
from the traditional decision tree representation used by 
decision analysts, which grows exponentially with the 
number of uncertain events and decision variables. 
However, as illustrated, the influence diagram and Bayes’ 
belief net provide tools for structuring and probabilistic 
inference which, if used judiciously, may have only linear 
complexity, albeit with a higher constant than the ES 
approach. A second common misgiving about the DA 
approach is the quantity of numerical judgments needed 
for assessing the probabilities. As we have seen, this 
may be greatly reduced by careful structuring and use of 
qualitative knowledge. Moreover, the vast majority of the 
numbers have small impact on the results, and so rough 
judgments will be adequate. Sensitivity analysis can help 
identify those few where significant assessment effort 
may be worthwhile. 

Many of the advantages of the DA approach arise 
from its clearer separation of domain knowledge, 
obtained from the expert, and its general methods for 
inference under uncertainty based on 5ayesian decision 
theory. The modelling of causal influences instead of 
inference rules provides an isotropic representation of 
domain knowledge with no preferred direction of 
inference [Henrion, 1987a]. Where the ES rules support 
inference only in the direction encoded, coherent 
Bayesian inference can perform causal, or diagnostic 
inference, as the occasion demands, operating on the 
same representation. The fact that causal models turn 
out to have advantages in representing uncertainty 
suggests an interesting relationship with other work on 
causal modelling for explanation and categorical 
diagnosis, for example in medical Al [Patil & Szolovits, 
19811. 

The treatment of discrepancies between the 
conclusions of the model and the expert illustrates a 
basic difference in philosophy. In the ES approach the 
performance of the expert is considered the ‘“gold 
standard” which we seek to emulate. Discrepancies are 
therefore taken as a sign of a deficiency, and must be 
remedied by modifying or adding inference rules. The 
decision analyst also relies on the judgment of the expert, 
at least in those areas for which the expert has direct 

experience or knowledge. However, the decision analyst 
tends to be more impressed by the psychological findings 
on the limitations of human reasoning under uncertainty 
[Kahneman, Slavic & Tversky, 19821, and so is more 

skeptical about the expert’s inferences beyond his 
immediate experience. If they disagree with the 
inferences made by the model, then the decision analyst 
may well prefer the results of the model. Indeed the 
possibility that the formal model may improve on the 
intuitive inferences of the expert is a major motivation for 
constructing it. 

This was dramatically illustrated in the experiment by 
the low expected value of the fungicide treatment which 
the expert initially found counter-intuitive. After 
rechecking the assumptions and understanding the 
reasoning, he accepted its validity and modified his 
intuition. He found this an important insight likely to be of 
general value to other specialists in the area. The 
possibility of obtaining new results which go beyond 
current expert opinion requires a basis in some normative 
theory of decision making. Since the expert’s original 
belief about the worth of the fungicide treatment was 
consistent with current opinion, and not liable to obvious 
empirical contradiction, such an insight would be hard to 
obtain by informal means. 

R RUSi 

We have argued that the knowledge engineering 
effort required for a decision analytic approach is less 
than widely believed, and have demonstrated its 
feasibility for a significant application. However, although 
the influence diagram developed here is perhaps the 
largest yet reported, it remains two orders of magnitude 
smaller in scope than the largest expert systems reported 
(e.g. InternistXaduceus), and it would be premature to 
make general claims about its capacity for major scale- 
UP. Although decision analysis has been practiced 
successfully for over fifteen years, software to support 
influence diagram structuring and evaluation is still its 
infancy, though developing rapidly [Wiecha, 1986; 
Holtzman, 1985; Shachter, 1986; Henrion, 1987b]. The 
knowledge engineering effort for the decision analytic 
approach, will no doubt be significantly reduced, although 
is likely to remain somewhat greater than for rule-based 
expert systems. 

However, there are considerable advantages to 
methods based on normative theory. It facilitates a 
consistent integration of causal and diagnostic inference. 
Uncertain beliefs and preferences are clearly 
differentiated. It provides a cleaner separation between 
domain knowledge and inference methods, and so may 
improve on the fallible reasoning of the expert. Whether 
these advantages outweigh the extra effort involved 
depends on the problem domain and task, and will 
remain partly a matter of taste. In the future, the dilemma 
may be resolved by systems that integrate ideas and 
techniques from both approaches to provide a richer 
range of options combining the advantages of each. 
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