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Abstract 
Explanation-Based Generalization (EBG) has been 
recently a much-explored method of generalization. 
By utilizing domain knowledge, and knowledge of the 
concept being learned, EBG produced a valid gen- 
eralization from a single example. Most EBG sys- 
tems are currently provided with the concept being 
learned - or targef concept - as a fixed input. A more 
robust generalization mechanism needs the ability 
to automatically formulate appropriate target con- 
cepts based on the purpose of the learning, since con- 
cepts learned for one purpose may not be appropriate 
for another. This paper introduced a technique and 
an implemented system that automatically formulate 
target concepts and their specialized definitions. In 
particular, the technique derives definitions of every- 
day artifacts (e.g. CUP), from information about the 
purpose for which agents intend to use them (e.g. to 
satisfy their thirst). Given two different purposes for 
which an agent might use a cup (e.g. as an ornament, 
versus to satisfy thirst), two different definitions can 
be derived. 

Explanation-Based Generalization (EBG) has been re- 
cently a much-explored method of generalization (e.g. 
[Mitchell et al, 19861, [DeJong and Mooney, 1986]). By 
utilizing domain knowledge, and knowledge of the concept 
being learned, this method produces a valid generalization 
from a single example. The key power of EBG derives from 
its ability to extract just those features relevant to concept 
membership based on an explanation of how the example 
is a member of the concept being learned. 

Most EBG systems are currently provided with the 
concept being learned - or target concept - as a fixed in- 
put. A more robust generalization mechanism needs the 
ability to automatically formulate appropriate target con- 
cepts based on the purpose of the learning, since concepts 
learned for one purpose may not be appropriate for an- 
other. 

This paper introduces a technique, purposive concept 
formulation, and an implemented system, PurForm, that 
address the above limitation by using a specialized notion 

of purpose to automatically formulate target concepts and 
their definitions. In particular, the technique derives defi- 
nitions of artifacts (e.g. CUP) from information about the 
purpose for which agents intend to use them (e.g. to sat- 
isfy their thirst). Given two different purposes for which 
an agent might use a cup (e.g. as an ornament, versus to 
satisfy thirst), two different definitions can be derived. 

Consider the CUP scenario from [Mitchell et al., 19861, 
based on [Winston et al., 19831: A structural definition of 
CUP is extracted by explaining how an example of CUP 
satisfies some pre-defined functional definition. Given the 
functional definition of CUP as a stable, liftable, open ves- 
sel, and given one example (say a green mug), the resulting 
structural definition states that CUPS are any light, flat- 
bottomed object with an upward-pointing concavity and 
a handle. Suppose instead that an agent wants to use the 
cup for the purpose of drinking hot liquids, or to use it as an 
ornament. Given explicit knowledge of purpose, the purpo- 
sive concept formulation technique can automatically de- 
rive a definition appropriate for that purpose, rather than 
have it as a fixed input as in Winston’s system. A cup for 
the purpose of drinking hot liquids, then, need not only 
be liftable, stable, and an open vessel, but also needs to 

insulate heat. 
In the balance of the paper, we discuss the tech- 

nique and the implemented system. Section II. presents an 
overview of the technique. Section III. describes the sys- 
tem, PurForm, in terms of inputs, outputs, and processes 
of each of the modules. Section IV. discusses related work. 
We conclude in section V. with limitations and some future 
research issues. 

A. hat is 6 
Concepts often arise because of a need. An agent wants 
to achieve a goal, and needs to identify objects that would 
facilitate that goal. A description of an object whose prop- 
erties enable an agent’s goal becomes a useful concept to 
acquire. As a step toward automatically formulating target 
concepts, we examine a specialized class of concepts, those 
that describe everyday artifacts. Artifacts can be viewed 
as objects designed to enable agents’ goals (chairs are to 
be seated on, pens are to write with, and so on). More 
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precisely, using conventional AI planning terminology, the 
specialized notion of purpose of an artifact is to enable a 
plan of actions to achieve an agent’s goal. The artifact will 
enable such a plan if it satisfies those preconditions of the 
plan in which it is involved. The purposive concept for- 
mulation technique uses standard algorithms of planning 
and goal regression to compute the weakest preconditions 
of a plan. The target concept is then formulated by isolat- 
ing those preconditions of the plan that describe properties 
inherent to the artifact that make it useable in the plan. 
Given a different goal or plan, a different target concept 
would be formulated. 

2. Formulate purposive functional definition of target 

concept 

3. Cperationalize the definition of target concept 

The purposive concept formulation technique consists 

of three steps. It first isolates a useful target concept to 
acquire. For example, if the agent’s goal is to find some- 
thing from which to drink hot tea, then an artifact that 
can be used to drink from becomes the target concept to 
acquire. 

Next, given the target concept, its purpose (to enable 
the agent’s goal) and a plan to achieve the goal, the purpo- 
sive functional definition is formulated by collecting those 
properties inherent to the target concept that make it use- 
able in the plan. For example, the plan for drinking hot tea 
might be to POUR the hot tea into a container, GRASP it 
with the hot tea in order to PICKUP, and finally DRINK 
the tea from it. The class of artifacts useable in the plan 
(HOT-CUPS) are those open containers that can contain 
hot liquid, and at the same time can be grasped and picked 
up by the agent, and can be emptied of the hot liquid. 

IS. Statement of the Problem 
In order to more precisely define the purposive concept 
formulation problem, we introduce some terminology. A 
state description associates a state of the world with a list 
of facts, represented by ground atomic predicates. A goal 
formula is represented by a conjunction of atomic predi- 

cates that are desired to hold in some distinguished final 
state. An operator describes an action, and is represented 
in a STRIPS-like formalism with conjunctive formulae for 
precondition, add and delete lists. A plan is defined as a 
sequence of operators that transform an initial state into 

a state matching the goal formula. A domain theory is a 
set of rules, ground atomic predicates, and operators, that 
represent the general axioms, facts, and actions of the do- 
main, respectively. A concept is represented as a predi- 
cate over some universe of objects, and characterizes some 
subset of these objects. Each object is described by a col- 
lection of ground atomic predicates. A concept definition 
describes sufficient conditions for concept membership. An 
object that satisfies the concept definition is called an ez- 
ample of that concept. A generalization of an example is a 
concept definition that describes a set containing that ex- 
ample. A concept definition is functional when it refers to 
the requirements on the action for which examples of the 
concept are used. A concept definition is structural when 
it refers to physical properties that satisfy the functional 
requirements. 

The purposive concept formulation problem, and the 
technique for solving it, are defined as follows: 

Purposive Concept Formulation 
Given: 

e Goal 

e Plan to achieve goal 

e Domain theory 

Determine: 

o Target concept 

8 Purposive functional definition of target concept 

e Operational definition of target concept 

Technique: 

In the third and final step, the purposive functional 
definition is reformulated, or operats’onalized [Mostow, 
19831 [Keller, 1987a] into a more useable form, with the 
aid of an example of a HOT-CUP. The definition will be 
more operational if the system can use it to more efficiently 
recognize members of the target concept. Using a blue ce- 
ramic mug as an example of a IIQT-CUP, the resulting 
operational definition states that HOT-CUPS are artifacts 
that are light weight, have an open concavity that is cylin- 
drical, non-porous, and made of ceramic material, and have 
a flat bottom and a handle. 

PurForm is the prototype system that implements the 
technique. In this section we describe the details of the 
system, including representation, inputs and outputs, and 
the process of each step. We illustrate each step with our 
case study of formulating the definition of HOT-CUP. Pur- 
Form was implemented in PROEOG. 

PurForm is invoked after a problem solver has cre- 
ated a plan to achieve a given goal. The problem solver is 
a backward chaining planner (from [Nilsson, 19801 [Kowal- 
ski, 19791). G iven the goal formula 

ingested(robbie,hot_tea,X) 

and an initial state description in which robbie the 
robot is in the kitchen; mugs, bowls, glasses, et cetera, are 
on shelves in the kitchen; and a tea urn in the kitchen is 
filled with hot tea; the planner finds a plan in which mug1 
is used to drink: 

1. Isolate the target concept 
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[pour(Pobbie,hot_tea,Lea_urni,mnugf), 
grasp(robbie,mugl), 
pickup(robbie,mugi), 
ingest(robbia,hot-tea,mugl)l 

PurlForm is given the goal, and a plan that achieves 
the goal, as input (along with a domain theory). It per- 
forms purposive concept formulation by isolating a target 
concept to acquire, formulating a purposive functional def- 
inition for it, and operations&zing the definition. 

Step 1: Isolating the Trarget concept. PurForm 
first isolates a useful target concept to acquire. Any of 
the arguments in the goal or plan are candidate target 
concepts. We have simplified this step by choosing a target 
concept that is initially unknown (i.e. a variable argument 
in the goal), yet is useful in enabling the goal. Given the 
goal formula: 

ingssted(robbie,hot-tsa,X) 

X is the unknown argument, and becomes the target 
concept to acquire. 

Step 2: Formulating the Purposive Ccmeept 
Definition. Given the target concept, its purpose (to en- 
able the agent’s goal), and the plan, this step formulates 
the purposive functional definition by reasoning about the 
role of the target concept in enabling the plan to achieve 
the goal. In order to satisfy the plan, the artifact must 
satisfy the conjuncts in the preconditions of those plan ac- 
tions in which it is involved. These conjuncts are collected 
together by regreming the goal through the plan, and then 
analyzing the role of the artifact in the regressed expres- 
sion. 

Given a goal formula and a plan as input, the goal re- 
gression algorithm [Nilsson, 19801 produces a description 
of all initial states such that applying the plan to any of 
these states produces a final state matching the goal for- 
mula. The resulting regressed expression consists of all 
those goal conjunets and preconditions that the operators 
did not achieve, and therefore must be true even before the 
operator sequence is applied, that is, in the initial state, 

Given the goal, with generalized arguments 

ingested(Grasper-Robot,Mot-Drink,X) 

and the generalized plan (with constant arguments 
replaced by variables), the regressed expression is: 

open(From-Container), 
can(pour(6rasper-Robot,Hot-Drinks 

From-Container,X)), 

can(contain(From-Container,Hot-Drink))B 

empty(X), 
open(X) B 
can(contain(X,Hot-Drink))B 
grasper-empty(Grasper-Robot), 
can(grasp(Graspsr-Robot,X)), 
ungrasped(X9, 
can(pickup(Grasper-Robot,X)), 
on(X, Surface) I 

same-loc(Grasper-Robot,X,location), 
can(ingsat(Grasper-Robot,Hot-Drinks x9>. 

Analyze-Role is at the heart of the purposive concept 
formulation technique. It formulates the purposive func- 
tional definition of the artifact by analyzing what role the 
artifact plays in the regressed expression. Two heuristics 
are used to choose the conjuncts from the regressed expres- 
sion to formulate the definition. We want to formulate the 
definition of the artifact using only those conjuncts of the 
regressed expression that describe properties relevant to 
the artifact (and not the agent, say), and that are the in- 
trinsic properties of that artifact. A property is relevant to 
the artifact if it mentions the artifact. A property is intrin- 
sic to an artifact if actions that manipulate that artifact 
do not easily create or destroy these properties. Intrinsic 
properties, then, are those properties that do not appear 
on the add or delete lists of any manipulation operatorg. 
For example, being graspable is considered intrinsic to the 
artifact since no manipulation operator in our database 
can transform an ungraspable artifact into a graspable one 
(e.g. build a handle). On the other hand, being at the 
same location as an agent is not intrinsic to an artifact 
since a ‘MOVE-TO’ manipulation operator can move the 
agent and artifact to the same location if they are not 
there already. This is similar to the notion of ‘criticality’ 
in ABSTRIPS [Sacerdoti, 19741. 

Given the above regressed expression, the following 
conjuncts are not relevant to the artifact since they do not 
mention X as one of their arguments: 

open(From-Container), 
can(eontain(From-Container,Hot-Drink)), 
grasper-empty (Grazper-Robot ) . 

The following conjuncts are not 5ntrinaic since they 
appear on the add or delete list of some manipulation op- 

erator in the database: 

empty(X) is on the add list of ‘POUR’, 
ungrasped(X) is OR the add list of ‘PUTDOWM9, 
on(X,Surface) is on the add list of "PUTDOWN9, 
same-loc(Grasper-Robot,X,location) is on the 

add list of “HOTJE-TO9 

The remaining conjuncts form the purposive func- 
tional definition of HOT-CUP (with a new gensym’d con- 
cept name) : 

concept22(X) e= 
can(pour(Grasper-Robot,Hot-Dr.$nk# 

From-Container,X)), 

opdx9 9 
can(contain(X,Hot-Drink)), 
can(grasp (Grasper-Robot,X)), 
can(pickup(Grasper-Robot,X)), 
can(ingest(Grasper-RobotSHot-Drink,X)). 
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Step 3: Operationalizing the Definition. The 
purposive functional definition for the artifact has been 
formulated, yet it is not in a form that enables the sys- 
tem to efficiently recognize a particular example of such an 
artifact (it is non-operational). In our case study, recog- 
nition is assumed to be efficient if the concept definition 
is in observable, structural terms; inefficient - if it is in 
functional terms. ([Keller, 1987a] presents a more general 
operationality criterion.) 

Given the purposive functional definition and domain 
theory as input, this final step operationalizes the defini- 
tion of the target concept. The EBG algorithm performs 
this step [Mitchell et al., 19861. EBG explains (proves) how 
a particular example is a member of the target concept, 
and generalizes to form an operational definition. The 
implementation of EBG, PROLOG-EBG, [Kedar-Cabelli 
and McCarty, 19871 produces an explanation and general- 
ization in one pass, by storing both a specific and general 
trace of the PROLOG theorem prover as it proves that 
the purposive functional definition is satisfied by an exam- 
ple. The proof is generalized by retaining constraints only 
among the proof rules. The leaves of the generalized proof 
tree become the operational definition, and characterizes 
all those examples that have a proof of concept member- 
ship of the same structure (the same proof rules, applied 
in the same order). 

Given the target concept and its purposive functional 
definition as above, and given an example, mugl, repre- 
sented by the following attributes: 

manufacturer(mugl,abc-co). 
serialnumber(mugi,72ll8). 
color(mugl,blue). 
material(mugl,ceramic). 
weight(mugf,b,oz). 
has-part (mugi,cylinderl). 
has-part(mugl,bottoml). 
has-part (mugi, handlsf) . 
. . . 

mug1 is shown to be an example of the HOT-CUP 
(concept22) by proving that it satisfies the purposive func- 
tional definition by certain structural characteristics (sat- 
isfied, in turn, by specific attributes). The domain the- 
ory contains axioms used to link attributes to functional 
requirements they satisfy (e.g. ‘graspable(X) e has- 
handle(X)‘). The essence of the proof is as follows: Since 
the shape of mug1 is an open cylinder, it has an open 
concavity, that allows hot tea to be poured into it. The 
ceramic material of mug1 provides a non-porous material 
that also insulates the heat, and the flat shape of its bot- 
tom makes it stable - all of which enable mug1 to contain 
the hot tea. Its handle and insulating material make it 
graspable. Its weight (6 oz.) makes it light, that enables 
it to be picked up by the agent. Finally, having an open 
Toncavity enables the ceramic mug to be emptied of the 
hot tea (i.e. enables the agent to drink the hot tea from 
the mug). 

tree 
The proof is generalized, and the leaves of the 
become the structural (operational) definition: 

proof 

concept22 (X) + 

type(B,flat-bottom),type(Brsealed-bottom), 
has-part(X,B), 
type(H,handle),has-part(X,H) S 
weight(X,W,oz),less(W,l6). 

The proof relies on certain attributes being true of 
Grasper-Robot and Hot-Drink as well. The definition only 
holds if these additional assumptions ark satisfied. These 
are conjoined together and associated with the definition: 

assumptions(concept22(X), 

type(M,mouth),has-part(Grasper-Robot,W), 
type(A,arm),has-part(Grasper-RobotSA), 
type(Wot-Drink,liquid), 
temperature(IIot-Drinh,hot)). 

A. iseussio 
To summarize, the novel contribution of PurFormlies in its 
use of standard algorithms of planning and goal regression 
to automatically formulate a target concept sensitive to 
a given plan and goal. Most EBG systems, on the other 
hand, are supplied with the target concept as a fixed input 
independent of the purpose for which it is to be used. 

Several design decisions in the representation and im- 
plementation have been made to facilitate target concept 
formulation. We chose to represent some of the con- 
juncts on the precondition/add/delete lists of the oper- 
ators as functional preconditions of the form ‘can(P)’ (e.g. 
‘can(grasp( J)‘). Tm 1 ‘s eve1 of abstraction is a deliberate 
design choice to enable the definition to be formulated in 
functional terms. The resulting purposive functional def- 
inition covers a broader class of objects since it can be 
represented by alternative structural definitions. 

Another design decision was to generalize the con- 
stants to variables in the goal and the plan, using type 
hierarchy information. This is justified since the rules that 
apply to the specific constant also apply to all constants of 
a specific type. This design choice was made so that the 
resulting regressed expression would be more general. As 
a result, the definition derived from it is also more general. 
For example, since any rules that apply to ‘robbie’ also ap- 
ply to any robot with a grasper, ‘robbie’ was generalized 
to ‘grasper robot’. 

e 

Only a few other research efforts have focused on automati- 
cally formulating target concepts. A parallel research effort 
has been [Keller, 1987bl. Keller presents a scenario for au- 
tomatically formulating the target concept USEFUL-OP 
(operators that are useful in leading to a solution), a &red 
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input in LEX2, a system that learns heuristics for sym- 

bolic integration. Keller’s derivation of USEFUL-OP can 

be viewed as analogous to purposive concept formulation. 
Given a problem-solver (SOLVER) that initidly performs 
exhaustive forward search, the need to improve SOLVER’s 
efficiency corresponds to our goaZ input. The pdan corre- 
sponds to SOLVER’s actions, that are described by a flow 
graph of program components. A desirable target concept 
is first isolated. It is a new filter component in SOLVER 
that would reduce the number of nodes expanded during 
search. A description of the filter is formulated by reason- 
ing about its role in improving SOLVER’s efficiency (by a 
process similar to goal regression and analyze-role). The 
filter should recognize operators that are useful in leading 
to a solution (USEFUL-OPs). Filtering just those opera- 
tors would lead to a solution more often, and thus improve 
efficiency. To become an efficient recognizer, the filter de- 
scription is operutionalized into easily recognizable descrip- 
tions of classes of such useful operators. 

Purposive concept formulation contrasts sharply with 
another system that formulates target concepts. SOAR 
[Laird et al., 19863 f ormulates concepts as a by-product of 
problem-solving, while our technique formulates concepts 
following problem-solving as an intentional activity to im- 
prove problem-solving performance. Each time SOAR en- 
counters and solves a subgoal, it formulates an implicit 
target concept: the general conditions under which it can 
reuse the solution to this subgoal. SOAR formulates and 
operationalizes target concepts at every impasse, without 
an explicit analysis of how they might be useful in improv- 
ing performance. 

Purposive concept formulation is related to EBG in 
that both are analytic techniques that reformulate knowl- 
edge from one level of description to another. Purposive 
concept formulation reformulates a purposive description, 
while EBG reformulates a functional description. Purpo- 
sive concept formulation uses goal regression over a plan to 
produce a purposive functional definition. EBG uses gen- 
eralization over a proof to produce a structural definition. 

The purposive concept formulation technique requires ad- 
ditional research to become robust. For one, we need to 
experiment with case studies of learning concepts for alter- 
native purposes (e.g. cup to be used as an ornament). In 
addition, future work includes extensions to handle other 
notions of purpose (such as purpose of the agent, purpose 
of the learner); augmentations to formulate other useful 

target concepts that appear in the plan (e.g. the class of 
agents, the class of liquids); and techniques to formulate 
the fixed inputs to EBG other than the target concept. 
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