
perationality for Ex

Richard M. Keller

,Rutgers University Department of Computer Science
New Brunswick, New Jersey 08903

Internet: Keller@Rutgers.Edu

Abstrdct
Operationality is the key property that distinguishes
the final description lecarned in an explanation-based
system from the initial concept description input to
the system. Yet most existing systems fail to define
operationality with necessary precision. In particular,
attempts to define operationality in terms of “efficient
instance recognition” tacitly incorporate several un-
realistic, simplifying assumptions about the learner’s
performance task and the type of performance im-
provement desired. Over time, these assumptions are
likely to be violated, and the learning system’s effec-
tiveness will deteriorate. We survey how operational-
ity is defined and assessed in several explanation-
based systems, and then present a more comprehen-
sive definition of operationality. We also describe an
implemented system that incorporates our new defini-
tion and overcomes some of the limitations exhibited
by current operationality assessment schemes.

In recent years, the field of machine learning has experi-
enced a surge of interest in a class of analytic concept learn-
ing methods called explanation-based methods [Mitchell
et al., 19861. In contrast to empirical learning meth-
ods, which perform a simple syntactic analysis of similar-
ities and differences among large numbers of training in-
stances, explanation-based methods perform an in-depth,
knowledge-intensive analysis of a single training example
- typically a positive instance. That analysis involves first
explaining why the positive training instance is an exam-
ple of the concept to be learned (the target concept), and
then generalizing the explanation in a principled manner

so it is valid for a larger class of instances than the orig-
inal instance. Finally, a description of that larger class
of instances is extracted from the generalized explanation
structure. The description constitutes a generalization of
the original instance.

A seeming paradox of the explanation-based paradigm
is that in order to produce its final description of the tar-
get concept, the learning system must possess an initial
description of that same concept. In fact, without “know-
ing” an initial description of the target concept, it would be
impossible for the system to explain why the given train-
ing instance is an example of the target concept. So if

an initial target concept description is a prerequisite1 for
explanation-based methods, then why is learning necessary
in the first place ? What is wrong with the initial descrip-
tion? What is there to be learned? These questions are at
the very heart of the “explanation-based paradox”.

The way to untangle the paradox is to acknowledge
that learning can involve knowledge transformation, as well
as knowledge acquisition. Explanation-based methods do
not acquire “new” knowledge, per se, but rather transform
existing knowledge that is unusable or impracticable into
a form that is usable [Keller, 1983, Dietterich, 19861. Pn
particular, although the initial target concept description
given to an explanation-based system generally is correct
(i.e., it covers the correct set of instances), the descrip-
tion is in non-operational form. Informally, this means
the description cannot be used effectively by the learner
to improve task performance. There is a significant differ-
ence between having a concept description and being able
to use it; the task of an explanation-based system is to
narrow that gap by transforming, or operationalizing, the
initial description.

As a concrete example for illustration, consider Win-
ston et al’s analogy system, which uses explanation-based
methods to learn a description for CUP [Winston et al.,
19831. In this case, an initial CUP description is given
to the system, expressed in functional terms: “a CUP is
an open, stable, liftable vessel.” This description is non-
operational because it does not contain the necessary infor-
mation to enable a vision system (the performance system)
to improve its performance in recognizing CUPS. In order
for the description to be useful in improving performance,
the learning system must transform the functional descrip-
tion into a structural description, composed of primitives
the vision system is designed to recognize: “a CUP is a
light object with a handle, a flat bottom, and an upward-
pointing concavity.”

Although operationality is the key property that dis-
tinguishes the final description learned in an explanation-
based system from the initial target concept description.
most existing systems fail to define operationality with nec-
essary precision. Current attempts to define operationality

‘The initial target concept description may be represented in the
learning system explicitly (’ IX., in terms of declarative structures) or
implicitly (i.e., within the system’s procedures) [Keller, 1987b].

482 Machine Learning & Knowledge Acquisition

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

tacitly incorporate several unrealistic, simplifying assump-
tions that may not hold throughout the course of learning.
In particular, many explanation-based systems treat oper-
ationality as an independent, static, binary-valued prop-
erty of concept descriptions. Actually, operationality is a
dynamic, continuous-valued property of descriptions, de-
pendent on the learner’s performance task and the type
of performance improvement desired. A more thorough
understanding of operationality is necessary to construct
sophisticated explanation-based systems that can function
properly in dynamic, real-world environments.

In what follows, we define operationality more pre-
cisely and analyze how operationality is assessed in sev-
eral explanation-based systems. Then we describe how the
MetaLEX system [Keller, 1987b, Keller, 1987a] overcomes
some of the limitations exhibited by current operationality
assessment schemes, by incorporating our new definition of
operation&y.

This section introduces some terminology aud establishes
a common framework to serve as a basis for our discussion
of operationality.

We begin by distinguishing between a concept and
its description. A concept represents a subset of instances
drawn from some universe. A concept is denoted inten-
sionally by a concept description, which is a predicate over
the universe of instances. Two concept descriptions are
considered synonymous if they denote the same concept.
Figure 1 illustrates these relationships. In the center, the
figure depicts the space of all possible concepts that can
be described by a given learning program. Each point in
concept space represents a unique set of instances drawn
from instance space, shown at right. At left, the figure de-
picts the space of all possible descriptions of the concepts
in concept space. The description space is partitioned into
operational and non-operational regions. Note that there
is a one-to-many correspondence between a point in con-
cept space and the points in concept description space. As
illustrated, D1 and D2 are two synonymous descriptions,
both describing concept C, which covers instances I1,12,
and 13. However D2 is considered operational, whereas
D1 is not. So when.there exist different ways to describe
the same concept, operationality defines the criterion for
preferring one description over another.

Figure 1: csncepe

The role of operationality with respect to explanation-
based learning is clarified by viewing explanation-based
learning as a search through the concept description space.
Suppose D1 in Figure 1 is the initial, non-operational de-
scription provided to an explanation-based system, and D2

is the final, operational description learned. Then we can
as the starting node in a search, D2 as a solution

node, explanation as the means for traversing the space,
and operationality as the search termination criterion. We
call the process of transforming Dl into D2 “concept op-
erationalization” [Keller, 1987b, Keller, 19831.

Mitchell first described learning as a search process
[Mitchell, 19821. A crucial distinction between his formu-
lation of the problem and ours is that Mitchell effectively
equates a concept with its description, thereby masking the .
issue of operationality. Thus he effectively characterizes
learning as a search through a concept space, not a concept
deac&ption space. This characterization is insufficient for
describing explanation-based learning. Explanation-based
learning involves no searching through the concept space
because the initial description (Dl) and the final descrip-
tion (D2) denote the same concept (6).

a ity

The definition of operationality most commonly cited in
describing explanation-based systems is the following:

Caakrena% Opera%iondi%y efaa.: A concept de-
scription is operational if it can be used efficiently
to recognize instances of the concept it denotes.

Below we review how this definition is instantiated in
several systems that use explanation-based methods. Note
that operationality has not been defined explicitly in sev-
eral of these systems, so the following definitions are based
on our retrospective analysis and reconstruction.

ins&cm et de95 nc%icm-S%ruc%use system
s system, the target concept

is the set of drinking CUPS and the initial description is a
functional description: “a CUP is any open, stable, liftable
vessel.” Instances, however, consist of physical descrip-
tions of CUBS from the real world, expressed in terms of
s tructud properties, such as “flat”) “handle”, “concave”,
etc. Therefore, an operational CUP description is defined
in this system as a description stated solely in structural
terms, so it can be easily matched against instances.

2 [Mitchell et ad., 19861: In LEXB, the target
concept is the set of USEFUL problem solving moves to
apply during search. The initial description of USEFUL
given to LEX2 states that “USEFUL moves lead imme-
diately or eventually to a solution.” Instances consist of
calculus problem solving moves generated while solving ac-
tual. problems. TQ facilitate matching against instances, an
operational description of USEFUL is defined in LEXB as a
description expressed in terms of the calculus features used
to describe instances (e.g., “sin”, “3”, ‘“product”, etc.), or
in terms of features easily derivable from them (e.g., “trig-
function”, “integer99 9 6‘po1ynomia199 9 etc.) S

Keller 483

o PRODIGY [Minton, 19861: This system learns the “efficient instance recognition” definition tacitly incor-
a variety of target concepts related to problem solving, porates several restrictive assumptions about how the final
including the USEFUL concept learned by LEXB. One concept description will be used to improve performance.
of PRODIGY’s problem solving domains is a machine- First, the definition assumes that the concept descrip-
shop scheduling domain, in which raw materials are trans- tion will be used to “recognize instances”. Although in-
formed into finished goods using operators like LATHE, stance recognition represents one typical use of a concept
CLAMP, POLISH, etc. PRODIGY, for example, can learn description, there are other uses, including instance gen-
conditions under which applying these operators is UN- e&ion. For example, in the CUP domain, we might be
SUCCESSFUL. Instances correspond to different states of interested either in recognizing cups (e.g., if we want to
the machine-shop environment in which the operators are drink a beverage) or in generating cups (e.g., if we are de-
applied. An operational description must be phrased in signing new types of cups). An operational description for
terms of directly observable features of the raw materi- the purposes of generation is functional, rather than struc-
als and the machine-shop equipment in the environment, tural, because a larger number of novel cup designs can be
such as “shape”, “temperature”, “idle”, “busy”. The di- generated from the abstract functional description.
rect observability requirement assures that UNSUCCESS- Second, the “efficient instance recognition” definition
FUL conditions can be recognized quickly and operator
application can be avoided in a real-time environment.

e GENESIS [Mooney and DeJong, 19851: In one of
GENESIS’s application domains, the target concept cor-
responds to WEALTH-ACQUISITION-SCENARIO, and
an initial (although not explicitly stated) description of
the target concept is that “a WEALTH-ACQUISITION-
SCENARIO consists of any sequence of actions that culmi-
nate in an agent’s acquisition of wealth.” Instances consist
of natural language text describing stories involving acqui-
sition of wealth, such as stories involving inheritance, kid-
napping, arson, etc. Unlike in the three systems described
above, an operational description for GENESIS is not
stated in terms of the low-level features present in the in-
stances, but rather in terms of abstract schemata possessed
by the system. A high-level description of WEALTH-
ACQUISITION-SCENARIO facilitates “efficient instance
recognition” because the story understanding component
in GENESIS parses stories (i.e., instances) efficiently in
top-down fashion.

e SOAR [Rosenbloom and Laird, 19861: In SOAR, a
form of explanation-based learning is an integral part of its
chunking mechanism. Each time SOAR completes problem
solving activity for a specific subgoal, the system attempts
to construct a generalized production to achieve “similar”
subgoals without resorting to problem solving. For our
purposes, we can consider a specific subgoal (along with
the current processing state) as a training instance, the
class of “similar” subgoals as SOAR’s target concept, and
the generalized production’s conditions as its operational
description. An operational description of the target con-
cept is one that can be used to efficiently recognize whether
a “similar” subgoal is true in a given processing state. In
other words, in SOAR an operational production consists
solely of conditions that can be easily evaluated without
problem solving, including conditions initially present in
SOAR’s working memory, and conditions that are evalu-

used by most systems assumes that execution time is the
proper measure of performance to use in evaluating oper-
ationality. However, there are other types of ‘6efficiency9’
that may be just as appropriate or more appropriate for
evaluating performance, including space efficiency. A de-
scription that is operational with respect to time efficiency
may not be operational with respect to space efficiency.
Furthermore, aside from efficiency, there are arbitrarily
large numbers of other criteria that might be relevant to
performance, including cost, elegance, simplicity, etc.

The way to eliminate these restrictive assumptions
from the definition of operationality is to redefine it in
terms of the performance system that uses the learned con-
cept description, and in terms of the criteria for evaluating
that system’s performance. Table 1 gives our revised def-
inition of operationality. There are two requirements on
operationality in the revised definition: usability and utd-
dty. The usability requirement ensures that the description
can be used by the performance system. This means that
the description must be expressed in terms of capabili-
ties possessed by the system, and in terms of data known
or computable by the system. (The usability requirement
corresponds to the original notion of operationality intro-
duced in [Mostow, 19811.) The utility requirement takes
usability one step further: the description must not only

Table 1: Revisedl Operationallity Definition
Given:

QB A concept description

CB A performance ayatem that makes use of the descrip-
tion to improve performance

l Performance objectives specifying the type and extent
of system improvement desired

Tiren: the concept description is considered operational
if it satisfies the following two requirements:

ated using chunks acquired during problem solving.
-

1. usability: the description must be usable by the per-

The notion of “efficient instance recognition” em-
ployed in these systems is a suitable starting point for
defining operationality, but is in several ways inadequate
as a general-purpose definition. A basic problem is that

formance system

2. utility: when the description is used by the perfor-
mance system, the system’s performance must im-
prove in accordance with the specified objectives.

484 Machine learning & Knowledge Acquisition

be usable, but also worth using. In particular, using the
description must improve the behavior of the performance
system, as defined by its performance objectives.

As an example of how this revised operationality defi-
nition might be instantiated for existing explanation-based
systems, consider once again Winston et al’s CUP domain.
In this domain, the performance system might consist of
a mobile robot searching for cups in a room. The perfor-
mance objectives for the robot might be to improve the
speed with which it can recognize and retrieve cups. For
a CUP description to be “usable” by the robot, it must
be expressed in terms of object properties that can be de.
tected by the robot’s sensory systems. Those properties
correspond to structural properties. For a CUP descrip-
tion to be “utile”, as well as “usable”, the robot must be
able to easily evaluate the properties used in the descrip-
tion. Therefore, a structural property such as “specific-
gravity”, for instance, would not be permitted as part of
an operational description.

With the revised definition, the notion of operational-
ity adjusts to fit the learning situation. Continuing with
the above example, suppose instead we are learning about
cups in a design context. In this case, the performance
system might consist of a design system containing a li-
brary of functional design primitives. The performance
objective might be to increase the number of cup designs
the system can generate. Now the revised operationality
definition correctly pinpoints an operational description as
one expressed in terms of the functional design primitives
known by the system, instead of structural primitives.

In this section, we discuss how operationality is assessed
in explanation-based systems. Thus we draw a distinction
between how operationality is defined and how it is eval-
uated in practice. Conceptually, each explanation-based
system contains an operationality aa.9essment procedure,
which evaluates a concept description and produces a mea-
sure of its operationality as output. Below, we describe
three dimensions - variability, granularity, and certainty -
which characterize the operationality measurements pro-
duced by an assessment procedure. A comparison of vari-
ous systems’ assessment procedures along these dimensions
is given in Table 2. (The table includes the systems de-
scribed in the previous section, as well as the MetaLEX
system, which is described in the next section.)

eVn&bility: A dimension characterizing whether
operationahty assessment varies with time. Values: datdc
or dynamic.

As learning progresses, a description that is initially
non-operational may become operational, and vice versa,
due to changes in the performance environment. An ac-
curate assessment of operationality depends on when the
assessment is made. For example, consider a performance

system consisting of a mobile robot equipped with a black
and white camera. For this system, any object descrip-
tions which specify color attributes should be considered
non-operational for recognition. However, if the camera
were replaced with a color camera, these same descriptions
should be considered operational for the updated system.

Some of the systems surveyed in the previous section
perform a dynamic assessment of operationality, whereas
others do not. Assessment in GENESIS and SOAR is dy-
namic because operation&y is defined in terms of the
ezistdng set of schemata or chunks, respectively. As these b
systems acquire additional schemata or chunks, the set of
descriptions considered operational is enlarged. Similarly,
the set of operational descriptions in LEX2 is augmented
when the STABB subsystem [Utgoff9 19861 adds a new
term to the system’s generalization language. Note, how-
ever, that the set of operational descriptions in Winston et
al’s system and in PRODIGY remains static throughout
the course of learning, so these systems cannot automati-
cally adjust to changes in the performance environment.

e Granularity: A dimension characterizing the as-
sessment measure produced. Values: binary or continuous.

Most of the systems surveyed produce a binary as-
sessment of operationality: either “operational99 or “non-
operational”. Rowever, continuous-valued assessment has
distinct advantages over binary assessment because it al-
lows the learning system to assess degrees of operational-
ity. In situations where there exist several synonymous,
operational descriptions of the target concept, a metric
on operationality enables the system to learn the “best”
(i.e., most effective) description. Additionally, continuous-
valued assessment facilitates attempts to guide the search
through concept description space by providing a measure
of progress through the space.

PRODIGY is one system that features continuous-
valued assessment. In other words, PRODIGY can as-
sess how efficient a given description is for the purposes
of recognition. The system bases this assessment on an
a priori estimate of the matching costs associated with
each “observable” feature in the machine;shop environ-
ment. Given two synonymous, operational descriptions of
the target concept, PRODIGY evaluates which is more op-
erational using the matching cost estimates.

Certrainty: A dimension characterizing confidence
in the measurement produced by the operationality assess-
ment procedure. Values: unguaranteed or gumznleed.

None of the systems surveyed can guarantee the accu-
racjr of their assessment measurements, because none of the
systems directly assess operationality. In other words, the

Keller 485

systems do not actually test whether a given description
is “efficient to use for recognizing instances’9. Instead, the
systems base their assessments on whether the description
being assessed is contained within a pre-defined language
of operational descriptions, which is specified by the learn-
ing system’s human designer. This language includes only
terms that the designer decides can be evaluated efficiently
by the performance system in order to accomplish instance
recognition. In a sense, the language is a “compiled” form
of the designer’s knowledge about the performance system
[Keller, 1987b]. For LEX2, that language includes descrip-
tions expressed in terms of a variety of “syntactic” features
of calculus problem solving states. For GENESIS, the lan-
guage includes any description composed of schemata pos-
sessed by the system.

The problem with using a “compiled” language to as-
sess operationality, is that the original performance as-
sumptions upon which the designer based the language
may become invalid. In fact 9 this is inevitable as the perfor-
mance system’s capabilities change over time. The result
is that the original language definition no longer correctly
identifies operational descriptions.

Consider an example from SOAR for clarification. As
discussed in the previous section, SOAR’s operational lan-
guage consists of descriptions involving production condi-
tions that have already been chunked, and thus are pre-
sumed efficient to use in recognition. However, SOAR’s
problem solving behavior will likely deteriorate over time

as more chunks are learned and matching costs increase.
(This type of difficulty has been documented - with plans,
rather than chunks - for STRIPS-type problem solvers
[Minton, 19851.) E ventually, descriptions involving any ar-
bitrary chunked condition will no longer be efficient to use.
At this point, it may be necessary to redefine operational-
ity so that only the “most efficient” chunks are permit-
ted within operational descriptions. But SOAR lacks the
proper perspective over its own problem solving/learning
behavior to identify that the operational language defini-
tion has become invalid over time. Moreover, SOAR can-
not automatically “recompile” a’new language definition,
so changing the definition requires human intervention.

As is evident from Table 2, the MetaLEX program is
in a different equivalence class with respect to these three
dimensions. The next section discusses MetaLEX and its
treatment of operationality.

V. MetaL
The MetaLEX program [Keller, 1987b, Keller, 1987a] is a
successor to LEX2, designed to explore the concept oper-
ationalization paradigm introduced in [Keller, 19831. Met-
aLEX approaches essentially the same learning task as
LEXP, but solves it using a different technique. In partic-
ular, both MetaLEX and LEX2 learn a description of the
set of USEFUL problem solving moves to execute during
forward search. Both systems start with the same non-
operational target concept description (“a USEFUL prob-

lem solving move leads eventually to a solution state”),
and attempt to transform it into an operational descrip-
tion. Where the systems differ is in their methods for ac-
complishing the transformation.

LEX2 transforms the initial target concept descrip-
tion using explanation-based methods. In a sense, LEX2
conducts a bidirectional search of the concept description
space, with the initial target concept description anchoring
the search in the non-operational region and a training in-
stance description anchoring the search in the operational
region. The explanation is used as a means of traversing
the search space.

In contrast, MetaLEX searches out from the initial
description in the direction of an operational description
using a form of hill-climbing. We do not describe the hill-
climbing algorithm or the operators used to search the
space in this paper. Instead, we focus on how MetaLEX
assesses the operationality of a concept description.

The definition of operationality used by MetaLEX is
given in Table 3. Note that there are two objectives spec-
ified for the SOLVER performance system, one involving
efficiency and the other involving effectiveness. The ob-
jectives require that an operational description improve
SOLVER’s problem solving efficiency while also maintain-
ing its effectiveness. The efficiency and effectiveness per-
formance measures establish a metric over the description
space that guides the hill-climbing search.

To assess operationality for a description of the USE-
FUL concept, MetaLEX inserts that description into
SOLVER and observes SOLVER’s behavior on a set of
benchmark calculus problems. During SOLVER’s execu-
tion, the USEFUL description guides expansion of prob-
lem solving moves: any move recognized as USEFUL is
expanded, while other moves are pruned. SOLVER’s ef-
ficiency and effectiveness are monitored during the prob-
lem solving session. If SOLVER’s performance meets the

Table 3: MetaLEX Operationality Definition
Given:

Concept description: Description of class of USEFUL
problem solving moves to expand during search

Performance system: SOLVER, a forward search
problem solving system

Performance objectives: Improve SOLVER’s run-time
efficiency on a set of benchmark calculus problems
by X%, while maintaining its effectiveness in solving
those problems correctly

Then: the USEFUL description is considered operational
if it satisfies the following two sequirements:

1. usability: the description is usable (i.e., evaluable) by
SOLVER and

2. utility: using the description, SOLVER’s efficiency
achieves an X% improvement without a deterioration
in effectiveness.

486 Machine learning & Knowledge Acquisition

established performance objectives, the USEFUL descrip-
tion is considered operational. If SOLVER’s perform=ce
fails to attain the desired levels of efficiency or effective-
ness, MetaLEX can evaluate how far from operational the
description is, and can assess whether the operationaliza-
tion search is headed in the right direction.

In the terminology of the previous section, MetaLEX’s
operationality assessment method can be characterized as:

~9 “dynamic” - because operationality assessment de-
pends on the current state of SOLVER and the current
performance objectives;

@ “continuous” - because assessment yields a measure
of the degree of efficiency (in CPU seconds) and the
degree of effectiveness (in number of benchmark prob-
lems solved); and

e “guaranteed - because assessment is accomplished by
directly executing SOLVER, and observing whether
its performance meets the stated objectives.

However, MetaLEX’s assessment method is also extremely
expensive because the performance system must be tested
each time operationality assessment is required. Met-
aLEX reduces these costs by estimating system perfor-
mance whenever possible in lieu of executing a system test.

Operationality is the key feature that distinguishes the out-
put concept description from the input concept description
in an explanation-based system. As such, operationality is
at the heart of what it means for an explanation-based
system (or more generally, for a knowledge transforma-
tion system) to “learn.” Yet current methods for assessing
operationality tacitly depend on simplifying performance
assumptions that likely will be violated as learning pro-
gresses. The MetaLEX program circumvents the problems
associated with violated assumptions by defining opera-
tionality directly in terms of the performance system. The
handling of operationality in MetaLEX may provide in-
sight into how to construct general purpose explanation-
based learning systems - systems that are more sophis-
ticated in their operationality assessment capabilities, and
that function properly over time, and for tasks other than
“efficient instance recognition.

Thanks go to my thesis advisor, Tom Mitchell, and to Jack
Mostow, both of whom provided invaluable guidance in
directing this research. Smadar Kedar-Cabelli provided
encouragement and helpful comments on earlier drafts of
this paper. Discussions with Steve Minton helped clar-
ify the presentation of PRODIGY and SOAR. Chun Liew
provided formatting assistance. Funding to support

this research was provided by NSF grant #DCS83-51523
and DARPA contract #N00014-85-K-0116.

[Dietterich, 1986] T. G. Dietterich. Learning at the knowl-
edge level. Machine Learning, 1(3):287-316, 1986.

[Keller, 19831 R. M. K e 11 er. Learning by re-expressing con-
cepts for efficient recognition. In Proceedings AAAI-
89, pages 182-186, Washington, D.C., August 1983.

[Keller, 1987a] R. M. Keller. Concept learning in context.
In Proc. 4th International &facAine Learning Work-
shop, University of Galifornia, Irvine, June 1987.

[Keller, 1987bj R. M. Keller. The Role of Explicit Con-
textual Knowledge in Learning Concepts to Improve
Performance. PhD thesis, Rutgers University, Jan-
uary 1987. Technical Report #ML-TR-7.

[Minton, 19851 S. Minton. Selectively generalizing plans
for problem-solving. In Proceedings IJCd I-9,
pages 596-599, Los Angeles, CA, August 1985.

[Minton, 19861 S. Minton. Improving the effectiveness of
explanation-based learning. In Proceedings of the
Workshop on Knowledge Compilation, Oregon State
University, Corvallis, September 1986.

[Mitchell, 19821 T. M. Mitchell. Generalization as search.
Artificial Intelligence, 18(2):203-226, March 1982.

[Mitchell et aI., 19861 T. M. Mitchell, R. M. Keller, and
S. T. Kedar-Cabelli. Explanation-based generaliza-
tion: a unifying view. Machine &earning, l(l), 1986.

[Mooney and DeJong, 19851 R. Mooney and G. DeJong.
Learning schemata for natural language processing.
In Proceedings IJCdI-8, pages 681-687, Los Angeles,
CA, August 1985.

[Mostow, 19811 D. J. Mostow. Mechanical Transformation
of Task Heuristics into Operational Procedures. PhD
thesis, Comp.Sci.Dept., @MU, 1981.

[Rosenbloom and Laird, 19861 P. S. Rosenbloom and J. E.
Laird. Mapping explanation-based generalization
onto soar. In Proceedings AddI-86, AAAI, Philadel-
phia, PA, August 1986.

[Utgoff, 19861 P. E. Utgoff. Machine Learning of Inductive
Bs’as. Kluwer Academic, Hingham, MA, 1986.

[Winston et al., 19831 P. H. Winston, T. 0. Binford, B.
Katz, and M. Lowry. Learning physical descriptions
from functional definitions, examples, and precedents.
In Proceeds’ngs AdAI-89, pages 433-439, Washington,
D.C., August 1983.

Keller 487

