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Abstrdct 
Operationality is the key property that distinguishes 
the final description lecarned in an explanation-based 
system from the initial concept description input to 
the system. Yet most existing systems fail to define 
operationality with necessary precision. In particular, 
attempts to define operationality in terms of “efficient 
instance recognition” tacitly incorporate several un- 
realistic, simplifying assumptions about the learner’s 
performance task and the type of performance im- 
provement desired. Over time, these assumptions are 
likely to be violated, and the learning system’s effec- 
tiveness will deteriorate. We survey how operational- 
ity is defined and assessed in several explanation- 
based systems, and then present a more comprehen- 
sive definition of operationality. We also describe an 
implemented system that incorporates our new defini- 
tion and overcomes some of the limitations exhibited 
by current operationality assessment schemes. 

In recent years, the field of machine learning has experi- 
enced a surge of interest in a class of analytic concept learn- 
ing methods called explanation-based methods [Mitchell 
et al., 19861. In contrast to empirical learning meth- 
ods, which perform a simple syntactic analysis of similar- 
ities and differences among large numbers of training in- 
stances, explanation-based methods perform an in-depth, 
knowledge-intensive analysis of a single training example 
- typically a positive instance. That analysis involves first 
explaining why the positive training instance is an exam- 
ple of the concept to be learned (the target concept), and 
then generalizing the explanation in a principled manner 

so it is valid for a larger class of instances than the orig- 
inal instance. Finally, a description of that larger class 
of instances is extracted from the generalized explanation 
structure. The description constitutes a generalization of 
the original instance. 

A seeming paradox of the explanation-based paradigm 
is that in order to produce its final description of the tar- 
get concept, the learning system must possess an initial 
description of that same concept. In fact, without “know- 
ing” an initial description of the target concept, it would be 
impossible for the system to explain why the given train- 
ing instance is an example of the target concept. So if 

an initial target concept description is a prerequisite1 for 
explanation-based methods, then why is learning necessary 
in the first place ? What is wrong with the initial descrip- 
tion? What is there to be learned? These questions are at 
the very heart of the “explanation-based paradox”. 

The way to untangle the paradox is to acknowledge 
that learning can involve knowledge transformation, as well 
as knowledge acquisition. Explanation-based methods do 
not acquire “new” knowledge, per se, but rather transform 
existing knowledge that is unusable or impracticable into 
a form that is usable [Keller, 1983, Dietterich, 19861. Pn 
particular, although the initial target concept description 
given to an explanation-based system generally is correct 
( i.e., it covers the correct set of instances), the descrip- 
tion is in non-operational form. Informally, this means 
the description cannot be used effectively by the learner 
to improve task performance. There is a significant differ- 
ence between having a concept description and being able 
to use it; the task of an explanation-based system is to 
narrow that gap by transforming, or operationalizing, the 
initial description. 

As a concrete example for illustration, consider Win- 
ston et al’s analogy system, which uses explanation-based 
methods to learn a description for CUP [Winston et al., 
19831. In this case, an initial CUP description is given 
to the system, expressed in functional terms: “a CUP is 
an open, stable, liftable vessel.” This description is non- 
operational because it does not contain the necessary infor- 
mation to enable a vision system (the performance system) 
to improve its performance in recognizing CUPS. In order 
for the description to be useful in improving performance, 
the learning system must transform the functional descrip- 
tion into a structural description, composed of primitives 
the vision system is designed to recognize: “a CUP is a 
light object with a handle, a flat bottom, and an upward- 
pointing concavity.” 

Although operationality is the key property that dis- 
tinguishes the final description learned in an explanation- 
based system from the initial target concept description. 
most existing systems fail to define operationality with nec- 
essary precision. Current attempts to define operationality 

‘The initial target concept description may be represented in the 
learning system explicitly (’ IX., in terms of declarative structures) or 
implicitly (i.e., within the system’s procedures) [Keller, 1987b]. 
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tacitly incorporate several unrealistic, simplifying assump- 
tions that may not hold throughout the course of learning. 
In particular, many explanation-based systems treat oper- 
ationality as an independent, static, binary-valued prop- 
erty of concept descriptions. Actually, operationality is a 
dynamic, continuous-valued property of descriptions, de- 
pendent on the learner’s performance task and the type 
of performance improvement desired. A more thorough 
understanding of operationality is necessary to construct 
sophisticated explanation-based systems that can function 
properly in dynamic, real-world environments. 

In what follows, we define operationality more pre- 
cisely and analyze how operationality is assessed in sev- 
eral explanation-based systems. Then we describe how the 
MetaLEX system [Keller, 1987b, Keller, 1987a] overcomes 
some of the limitations exhibited by current operationality 
assessment schemes, by incorporating our new definition of 
operation&y. 

This section introduces some terminology aud establishes 
a common framework to serve as a basis for our discussion 
of operationality. 

We begin by distinguishing between a concept and 
its description. A concept represents a subset of instances 
drawn from some universe. A concept is denoted inten- 
sionally by a concept description, which is a predicate over 
the universe of instances. Two concept descriptions are 
considered synonymous if they denote the same concept. 
Figure 1 illustrates these relationships. In the center, the 
figure depicts the space of all possible concepts that can 
be described by a given learning program. Each point in 
concept space represents a unique set of instances drawn 
from instance space, shown at right. At left, the figure de- 
picts the space of all possible descriptions of the concepts 
in concept space. The description space is partitioned into 
operational and non-operational regions. Note that there 
is a one-to-many correspondence between a point in con- 
cept space and the points in concept description space. As 
illustrated, D1 and D2 are two synonymous descriptions, 
both describing concept C, which covers instances I1,12, 
and 13. However D2 is considered operational, whereas 
D1 is not. So when.there exist different ways to describe 
the same concept, operationality defines the criterion for 
preferring one description over another. 

Figure 1: csncepe 

The role of operationality with respect to explanation- 
based learning is clarified by viewing explanation-based 
learning as a search through the concept description space. 
Suppose D1 in Figure 1 is the initial, non-operational de- 
scription provided to an explanation-based system, and D2 

is the final, operational description learned. Then we can 
as the starting node in a search, D2 as a solution 

node, explanation as the means for traversing the space, 
and operationality as the search termination criterion. We 
call the process of transforming Dl into D2 “concept op- 
erationalization” [Keller, 1987b, Keller, 19831. 

Mitchell first described learning as a search process 
[Mitchell, 19821. A crucial distinction between his formu- 
lation of the problem and ours is that Mitchell effectively 
equates a concept with its description, thereby masking the . 
issue of operationality. Thus he effectively characterizes 
learning as a search through a concept space, not a concept 
deac&ption space. This characterization is insufficient for 
describing explanation-based learning. Explanation-based 
learning involves no searching through the concept space 
because the initial description (Dl) and the final descrip- 
tion (D2) denote the same concept (6). 

a ity 

The definition of operationality most commonly cited in 
describing explanation-based systems is the following: 

Caakrena% Opera%iondi%y efaa.: A concept de- 
scription is operational if it can be used efficiently 
to recognize instances of the concept it denotes. 

Below we review how this definition is instantiated in 
several systems that use explanation-based methods. Note 
that operationality has not been defined explicitly in sev- 
eral of these systems, so the following definitions are based 
on our retrospective analysis and reconstruction. 

ins&cm et de95 nc%icm-S%ruc%use system 
s system, the target concept 

is the set of drinking CUPS and the initial description is a 
functional description: “a CUP is any open, stable, liftable 
vessel.” Instances, however, consist of physical descrip- 
tions of CUBS from the real world, expressed in terms of 
s tructud properties, such as “flat” ) “handle”, “concave”, 
etc. Therefore, an operational CUP description is defined 
in this system as a description stated solely in structural 
terms, so it can be easily matched against instances. 

2 [Mitchell et ad., 19861: In LEXB, the target 
concept is the set of USEFUL problem solving moves to 
apply during search. The initial description of USEFUL 
given to LEX2 states that “USEFUL moves lead imme- 
diately or eventually to a solution.” Instances consist of 
calculus problem solving moves generated while solving ac- 
tual. problems. TQ facilitate matching against instances, an 
operational description of USEFUL is defined in LEXB as a 
description expressed in terms of the calculus features used 
to describe instances (e.g., “sin”, “3”, ‘“product”, etc.), or 
in terms of features easily derivable from them (e.g., “trig- 
function”, “integer99 9 6‘po1ynomia199 9 etc.) S 
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o PRODIGY [Minton, 19861: This system learns the “efficient instance recognition” definition tacitly incor- 
a variety of target concepts related to problem solving, porates several restrictive assumptions about how the final 
including the USEFUL concept learned by LEXB. One concept description will be used to improve performance. 
of PRODIGY’s problem solving domains is a machine- First, the definition assumes that the concept descrip- 
shop scheduling domain, in which raw materials are trans- tion will be used to “recognize instances”. Although in- 
formed into finished goods using operators like LATHE, stance recognition represents one typical use of a concept 
CLAMP, POLISH, etc. PRODIGY, for example, can learn description, there are other uses, including instance gen- 
conditions under which applying these operators is UN- e&ion. For example, in the CUP domain, we might be 
SUCCESSFUL. Instances correspond to different states of interested either in recognizing cups (e.g., if we want to 
the machine-shop environment in which the operators are drink a beverage) or in generating cups (e.g., if we are de- 
applied. An operational description must be phrased in signing new types of cups). An operational description for 
terms of directly observable features of the raw materi- the purposes of generation is functional, rather than struc- 
als and the machine-shop equipment in the environment, tural, because a larger number of novel cup designs can be 
such as “shape”, “temperature”, “idle”, “busy”. The di- generated from the abstract functional description. 
rect observability requirement assures that UNSUCCESS- Second, the “efficient instance recognition” definition 
FUL conditions can be recognized quickly and operator 
application can be avoided in a real-time environment. 

e GENESIS [Mooney and DeJong, 19851: In one of 
GENESIS’s application domains, the target concept cor- 
responds to WEALTH-ACQUISITION-SCENARIO, and 
an initial (although not explicitly stated) description of 
the target concept is that “a WEALTH-ACQUISITION- 
SCENARIO consists of any sequence of actions that culmi- 
nate in an agent’s acquisition of wealth.” Instances consist 
of natural language text describing stories involving acqui- 
sition of wealth, such as stories involving inheritance, kid- 
napping, arson, etc. Unlike in the three systems described 
above, an operational description for GENESIS is not 
stated in terms of the low-level features present in the in- 
stances, but rather in terms of abstract schemata possessed 
by the system. A high-level description of WEALTH- 
ACQUISITION-SCENARIO facilitates “efficient instance 
recognition” because the story understanding component 
in GENESIS parses stories (i.e., instances) efficiently in 
top-down fashion. 

e SOAR [Rosenbloom and Laird, 19861: In SOAR, a 
form of explanation-based learning is an integral part of its 
chunking mechanism. Each time SOAR completes problem 
solving activity for a specific subgoal, the system attempts 
to construct a generalized production to achieve “similar” 
subgoals without resorting to problem solving. For our 
purposes, we can consider a specific subgoal (along with 
the current processing state) as a training instance, the 
class of “similar” subgoals as SOAR’s target concept, and 
the generalized production’s conditions as its operational 
description. An operational description of the target con- 
cept is one that can be used to efficiently recognize whether 
a “similar” subgoal is true in a given processing state. In 
other words, in SOAR an operational production consists 
solely of conditions that can be easily evaluated without 
problem solving, including conditions initially present in 
SOAR’s working memory, and conditions that are evalu- 

used by most systems assumes that execution time is the 
proper measure of performance to use in evaluating oper- 
ationality. However, there are other types of ‘6efficiency9’ 
that may be just as appropriate or more appropriate for 
evaluating performance, including space efficiency. A de- 
scription that is operational with respect to time efficiency 
may not be operational with respect to space efficiency. 
Furthermore, aside from efficiency, there are arbitrarily 
large numbers of other criteria that might be relevant to 
performance, including cost, elegance, simplicity, etc. 

The way to eliminate these restrictive assumptions 
from the definition of operationality is to redefine it in 
terms of the performance system that uses the learned con- 
cept description, and in terms of the criteria for evaluating 
that system’s performance. Table 1 gives our revised def- 
inition of operationality. There are two requirements on 
operationality in the revised definition: usability and utd- 
dty. The usability requirement ensures that the description 
can be used by the performance system. This means that 
the description must be expressed in terms of capabili- 
ties possessed by the system, and in terms of data known 
or computable by the system. (The usability requirement 
corresponds to the original notion of operationality intro- 
duced in [Mostow, 19811.) The utility requirement takes 
usability one step further: the description must not only 

Table 1: Revisedl Operationallity Definition 
Given: 

QB A concept description 

CB A performance ayatem that makes use of the descrip- 
tion to improve performance 

l Performance objectives specifying the type and extent 
of system improvement desired 

Tiren: the concept description is considered operational 
if it satisfies the following two requirements: 

ated using chunks acquired during problem solving. 
- 

1. usability: the description must be usable by the per- 

The notion of “efficient instance recognition” em- 
ployed in these systems is a suitable starting point for 
defining operationality, but is in several ways inadequate 
as a general-purpose definition. A basic problem is that 

formance system 

2. utility: when the description is used by the perfor- 
mance system, the system’s performance must im- 
prove in accordance with the specified objectives. 
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be usable, but also worth using. In particular, using the 
description must improve the behavior of the performance 
system, as defined by its performance objectives. 

As an example of how this revised operationality defi- 
nition might be instantiated for existing explanation-based 
systems, consider once again Winston et al’s CUP domain. 
In this domain, the performance system might consist of 
a mobile robot searching for cups in a room. The perfor- 
mance objectives for the robot might be to improve the 
speed with which it can recognize and retrieve cups. For 
a CUP description to be “usable” by the robot, it must 
be expressed in terms of object properties that can be de. 
tected by the robot’s sensory systems. Those properties 
correspond to structural properties. For a CUP descrip- 
tion to be “utile”, as well as “usable”, the robot must be 
able to easily evaluate the properties used in the descrip- 
tion. Therefore, a structural property such as “specific- 
gravity”, for instance, would not be permitted as part of 
an operational description. 

With the revised definition, the notion of operational- 
ity adjusts to fit the learning situation. Continuing with 
the above example, suppose instead we are learning about 
cups in a design context. In this case, the performance 
system might consist of a design system containing a li- 
brary of functional design primitives. The performance 
objective might be to increase the number of cup designs 
the system can generate. Now the revised operationality 
definition correctly pinpoints an operational description as 
one expressed in terms of the functional design primitives 
known by the system, instead of structural primitives. 

In this section, we discuss how operationality is assessed 
in explanation-based systems. Thus we draw a distinction 
between how operationality is defined and how it is eval- 
uated in practice. Conceptually, each explanation-based 
system contains an operationality aa.9essment procedure, 
which evaluates a concept description and produces a mea- 
sure of its operationality as output. Below, we describe 
three dimensions - variability, granularity, and certainty - 
which characterize the operationality measurements pro- 
duced by an assessment procedure. A comparison of vari- 
ous systems’ assessment procedures along these dimensions 
is given in Table 2. (The table includes the systems de- 
scribed in the previous section, as well as the MetaLEX 
system, which is described in the next section.) 

eVn&bility: A dimension characterizing whether 
operationahty assessment varies with time. Values: datdc 
or dynamic. 

As learning progresses, a description that is initially 
non-operational may become operational, and vice versa, 
due to changes in the performance environment. An ac- 
curate assessment of operationality depends on when the 
assessment is made. For example, consider a performance 

system consisting of a mobile robot equipped with a black 
and white camera. For this system, any object descrip- 
tions which specify color attributes should be considered 
non-operational for recognition. However, if the camera 
were replaced with a color camera, these same descriptions 
should be considered operational for the updated system. 

Some of the systems surveyed in the previous section 
perform a dynamic assessment of operationality, whereas 
others do not. Assessment in GENESIS and SOAR is dy- 
namic because operation&y is defined in terms of the 
ezistdng set of schemata or chunks, respectively. As these b 
systems acquire additional schemata or chunks, the set of 
descriptions considered operational is enlarged. Similarly, 
the set of operational descriptions in LEX2 is augmented 
when the STABB subsystem [Utgoff9 19861 adds a new 
term to the system’s generalization language. Note, how- 
ever, that the set of operational descriptions in Winston et 
al’s system and in PRODIGY remains static throughout 
the course of learning, so these systems cannot automati- 
cally adjust to changes in the performance environment. 

e Granularity: A dimension characterizing the as- 
sessment measure produced. Values: binary or continuous. 

Most of the systems surveyed produce a binary as- 
sessment of operationality: either “operational99 or “non- 
operational”. Rowever, continuous-valued assessment has 
distinct advantages over binary assessment because it al- 
lows the learning system to assess degrees of operational- 
ity. In situations where there exist several synonymous, 
operational descriptions of the target concept, a metric 
on operationality enables the system to learn the “best” 
(i.e., most effective) description. Additionally, continuous- 
valued assessment facilitates attempts to guide the search 
through concept description space by providing a measure 
of progress through the space. 

PRODIGY is one system that features continuous- 
valued assessment. In other words, PRODIGY can as- 
sess how efficient a given description is for the purposes 
of recognition. The system bases this assessment on an 
a priori estimate of the matching costs associated with 
each “observable” feature in the machine;shop environ- 
ment. Given two synonymous, operational descriptions of 
the target concept, PRODIGY evaluates which is more op- 
erational using the matching cost estimates. 

Certrainty: A dimension characterizing confidence 
in the measurement produced by the operationality assess- 
ment procedure. Values: unguaranteed or gumznleed. 

None of the systems surveyed can guarantee the accu- 
racjr of their assessment measurements, because none of the 
systems directly assess operationality. In other words, the 
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systems do not actually test whether a given description 
is “efficient to use for recognizing instances’9. Instead, the 
systems base their assessments on whether the description 
being assessed is contained within a pre-defined language 
of operational descriptions, which is specified by the learn- 
ing system’s human designer. This language includes only 
terms that the designer decides can be evaluated efficiently 
by the performance system in order to accomplish instance 
recognition. In a sense, the language is a “compiled” form 
of the designer’s knowledge about the performance system 
[Keller, 1987b]. For LEX2, that language includes descrip- 
tions expressed in terms of a variety of “syntactic” features 
of calculus problem solving states. For GENESIS, the lan- 
guage includes any description composed of schemata pos- 
sessed by the system. 

The problem with using a “compiled” language to as- 
sess operationality, is that the original performance as- 
sumptions upon which the designer based the language 
may become invalid. In fact 9 this is inevitable as the perfor- 
mance system’s capabilities change over time. The result 
is that the original language definition no longer correctly 
identifies operational descriptions. 

Consider an example from SOAR for clarification. As 
discussed in the previous section, SOAR’s operational lan- 
guage consists of descriptions involving production condi- 
tions that have already been chunked, and thus are pre- 
sumed efficient to use in recognition. However, SOAR’s 
problem solving behavior will likely deteriorate over time 

as more chunks are learned and matching costs increase. 
(This type of difficulty has been documented - with plans, 
rather than chunks - for STRIPS-type problem solvers 
[Minton, 19851.) E ventually, descriptions involving any ar- 
bitrary chunked condition will no longer be efficient to use. 
At this point, it may be necessary to redefine operational- 
ity so that only the “most efficient” chunks are permit- 
ted within operational descriptions. But SOAR lacks the 
proper perspective over its own problem solving/learning 
behavior to identify that the operational language defini- 
tion has become invalid over time. Moreover, SOAR can- 
not automatically “recompile” a’new language definition, 
so changing the definition requires human intervention. 

As is evident from Table 2, the MetaLEX program is 
in a different equivalence class with respect to these three 
dimensions. The next section discusses MetaLEX and its 
treatment of operationality. 

V. MetaL 
The MetaLEX program [Keller, 1987b, Keller, 1987a] is a 
successor to LEX2, designed to explore the concept oper- 
ationalization paradigm introduced in [Keller, 19831. Met- 
aLEX approaches essentially the same learning task as 
LEXP, but solves it using a different technique. In partic- 
ular, both MetaLEX and LEX2 learn a description of the 
set of USEFUL problem solving moves to execute during 
forward search. Both systems start with the same non- 
operational target concept description (“a USEFUL prob- 

lem solving move leads eventually to a solution state”), 
and attempt to transform it into an operational descrip- 
tion. Where the systems differ is in their methods for ac- 
complishing the transformation. 

LEX2 transforms the initial target concept descrip- 
tion using explanation-based methods. In a sense, LEX2 
conducts a bidirectional search of the concept description 
space, with the initial target concept description anchoring 
the search in the non-operational region and a training in- 
stance description anchoring the search in the operational 
region. The explanation is used as a means of traversing 
the search space. 

In contrast, MetaLEX searches out from the initial 
description in the direction of an operational description 
using a form of hill-climbing. We do not describe the hill- 
climbing algorithm or the operators used to search the 
space in this paper. Instead, we focus on how MetaLEX 
assesses the operationality of a concept description. 

The definition of operationality used by MetaLEX is 
given in Table 3. Note that there are two objectives spec- 
ified for the SOLVER performance system, one involving 
efficiency and the other involving effectiveness. The ob- 
jectives require that an operational description improve 
SOLVER’s problem solving efficiency while also maintain- 
ing its effectiveness. The efficiency and effectiveness per- 
formance measures establish a metric over the description 
space that guides the hill-climbing search. 

To assess operationality for a description of the USE- 
FUL concept, MetaLEX inserts that description into 
SOLVER and observes SOLVER’s behavior on a set of 
benchmark calculus problems. During SOLVER’s execu- 
tion, the USEFUL description guides expansion of prob- 
lem solving moves: any move recognized as USEFUL is 
expanded, while other moves are pruned. SOLVER’s ef- 
ficiency and effectiveness are monitored during the prob- 
lem solving session. If SOLVER’s performance meets the 

Table 3: MetaLEX Operationality Definition 
Given: 

Concept description: Description of class of USEFUL 
problem solving moves to expand during search 

Performance system: SOLVER, a forward search 
problem solving system 

Performance objectives: Improve SOLVER’s run-time 
efficiency on a set of benchmark calculus problems 
by X%, while maintaining its effectiveness in solving 
those problems correctly 

Then: the USEFUL description is considered operational 
if it satisfies the following two sequirements: 

1. usability: the description is usable (i.e., evaluable) by 
SOLVER and 

2. utility: using the description, SOLVER’s efficiency 
achieves an X% improvement without a deterioration 
in effectiveness. 
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established performance objectives, the USEFUL descrip- 
tion is considered operational. If SOLVER’s perform=ce 
fails to attain the desired levels of efficiency or effective- 
ness, MetaLEX can evaluate how far from operational the 
description is, and can assess whether the operationaliza- 
tion search is headed in the right direction. 

In the terminology of the previous section, MetaLEX’s 
operationality assessment method can be characterized as: 

~9 “dynamic” - because operationality assessment de- 
pends on the current state of SOLVER and the current 
performance objectives; 

@ “continuous” - because assessment yields a measure 
of the degree of efficiency (in CPU seconds) and the 
degree of effectiveness (in number of benchmark prob- 
lems solved); and 

e “guaranteed - because assessment is accomplished by 
directly executing SOLVER, and observing whether 
its performance meets the stated objectives. 

However, MetaLEX’s assessment method is also extremely 
expensive because the performance system must be tested 
each time operationality assessment is required. Met- 
aLEX reduces these costs by estimating system perfor- 
mance whenever possible in lieu of executing a system test. 

Operationality is the key feature that distinguishes the out- 
put concept description from the input concept description 
in an explanation-based system. As such, operationality is 
at the heart of what it means for an explanation-based 
system (or more generally, for a knowledge transforma- 
tion system) to “learn.” Yet current methods for assessing 
operationality tacitly depend on simplifying performance 
assumptions that likely will be violated as learning pro- 
gresses. The MetaLEX program circumvents the problems 
associated with violated assumptions by defining opera- 
tionality directly in terms of the performance system. The 
handling of operationality in MetaLEX may provide in- 
sight into how to construct general purpose explanation- 
based learning systems - systems that are more sophis- 
ticated in their operationality assessment capabilities, and 
that function properly over time, and for tasks other than 
“efficient instance recognition. 
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