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Abstract 
An adaptive inteTpTeter for a programming language 
adapts to particular applications by learning from 
execution experience. This paper describes PRO- 
LEARN, a prototype adaptive interpreter for a subset 
of Prolog. It uses two methods to speed up a given 
program: explanation-based generalization and par- 
tial evaluation. The generalization of computed re- 
sults differentiates PROLEARN from programs that 
cache and reuse specific values. We illustrate PRO- 
LEARN on several simple programs and evaluate its 
capabilities and limitations. The effects of adding a 
learning component to Prolog can be summarized as 
follows: the more search and subroutine calling in 
the original query, the more speedup after learning; a 
learned subroutine may slow down queries that match 
its head but fail its body. 

I 
How c0l.M an interpreter adapt to its execution environ- 
ment by learning from execution experience and thereby 
customize itself toward particular apphcations? T&a pa- 
per describes PROLEARN, a prototype crdaptive intep- 
preter for a subset of Prolog. PROLEARN handles all 
of Prolog except for the cut symbol (used to control back- 
tracking) and side-effects (primitives that cause input or 
output or change the database). PROLEARN learns new 
subroutines that represent justifiable gener&zations of ex- 
ample executions. (We will use “subroutine” to mean a 

user-defined Prolog rule, as opposed to a primitive or a 
fact .) 

Search reduction is an important way to increase 
the performance of search-based problem-solving system 
[Mitchell et al., 1986, Mitchell et al., 1983, Minton, 1985, 
Langley, 1983, Laird et al., 198623, Fikes et al., 1972, Ma- 
ha&v=, 1985, Korf, 19851. Because Prolog uses search 
as a basic mechanism and has built-in unification, it is a 
natural vehicle for developing adaptive interpreters. 

PROLEARN combines explanation-based generdiwa- 
tion (EBC) [Mitchell et al., 19861 with partial evaluation 
[Kahn and Carlsson, 1984, Kahn, 19841 to learn from ex- 
ecution experience and thereby reduce future search. As 
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PROLEARN interprets each subroutine call, it uses EBG 
to compute the general class of queries solved by the same 
execution trace. Partial evaluation techniques are used to 
simplify the generalized execution trace for more efficient 
execution. 

The rest of this paper is organized as follows. Section 
II describes EBG in PRQLEARN and Section III describes 
partial evaluation in PROLEARN. PROLEARN is only a 
prototype for a practical adaptive interpreter; Section IV 
discusses some of its shortcomings and suggests possible 
improvements. Section V summarizes the empirical re- 
sults. Section VI discusses related work. Finally, Section 
VII summarizes the research contributions of this work. 

in 
As it executes a program, PROLEARN treats every sub- 
routine call as a goal concept for EBG to operationalize in 
terms of primitives and facts. Using the specific execution 
trace as a template, it constructs a customized version of 

the subroutine, as follows. PROLEARN records all calls to 
primitive subroutines and user-defined facts performed in 
the course of executing the subroutine, generalizes them to 
remove the dependence on the particular arguments passed 
to the subroutine, and conjoins the generalized calls. Thr 
resulting conjunction is used to define a new special case 
version of the original subroutine. 

To illustrate, consider the following database (from 
[Mitchell et al., 19861): 

on(boxf ,, tablei). 
voluwte(boxl,lO). 
isa(boxi S box) . 
iaa(tablei o endtable). 
color(box1 ,red) . 
color (table1 B blue) . 
density(boxl, i0) S 

safe-to-stack(X,Y) :- 
lighter(X,Y);not(fragile(Y)). 

lighter(X,Y) : - 
weight (X,Wl) S 
weight (Y ,W2), 
Wl < w2. 
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weight(X,Y) :- 
wollune~x,~~, 
density(X,D) D 
Y iz V * D. 

weight(K,50O) :- isa(X,endtabae). 

Given the query safe-to-staek(boxl,tablel), 
PROLEARN learns the subroutine definition 

safe-to-stack(X,Y) :- 
claus~(wollame(X,v),true), 
elause(density&X,B)otsue), 
IL4 ie B * D, 

That is, object X is safe to stack on object Y if the 
product of X’s volume and density is less than 500 and 
Y is an endtable. The learned subroutine uses clause to 
ensure that user-defined predicates like wolunw, density, 
and iza are evaluated solely by matching stored facts; oth- 
erwise the learned subroutine might invoke arbitrarily ex- 
pensive subroutines for these predicates, thereby defeating 
its efficiency. PROLEARN also learns similar specialized 
versions of each subroutine invoked in the course of exe- 
cuting safe-to-&a& (e.g., lighter). 

EBG in PROLEARN amounts to subroutine unfold- 
ing with generalization. Unfolding a query into its primi- 
tive calls effectively caches the result of searching for the 
intermediate subroutines needed to answer the query. Par 
example, when the query weight (tablei ,W2) is evaluated 
in the course of executing safe-to-stach(box1 ,tablel) 9 
PROLEARN must determine which definition of weight 
to use. As it turns out, the first definition fails and it must 
use the second one instead, namely isa(obj 2 0 endtable). 
The learned subroutine, which is unfolded in terms of prim- 
itive calls like iaa(Y ,endtabls), eliminates this search. 
While subroutine unfolding provides some speedup in pro- 
cedural languages, in Prolog the speedup can be much 
greater be&use-of this search reduction. 

While the learned subroutine is a special case of the 
original definition, it is a generalization of the execution 
trace generated for the specific query. Therefore it will ap- 
ply to queries other than the one that led to its creation, - _ 
and 

such 
should speed up interpret ation for the entire class of 
queries. This class is restricted to queries whose ex- 

ecution would have followed the same execution path as 
the original query. Relaxing this restriction would require 
allowing learned subroutines to call user-defined subrou- 
tines, which would make learned subroutines more general 
but possibly less efficient. 

PROLEARN relies on EBG to guarantee that tius 
generalization is justifiable. An execution trace constitutes 
a proof of a query in the “theory” defined by the subrou- 
tines and facts in the program. EBG generalizes away only 
those details of the trace ignored by this “proof.99 The 
learned subroutine should therefore P ,,rz for any query it 
matches, that is, produce the sam1~, oehavior as the original 
program. (Section IV discusses the problem of preserving 
correctness of the original program.) 

EBG sometimes produces a conjunction of terms that can 
be simplified by exploiting constraints about the learned 
subroutine. This simplification is similar to partial evalua- 
tion without execution as described in [Kahn and Carlsson, 
19841 and [Bloch, 19841. 

The need for partial evaluation of the generalization 
becomes evident in the following example. The program 
below solves the Towers of Manoi puzzle-where N 2 0 
disks are move’d from the From pole to the To pole via 
the Using pole. The program uses a standard recursive 
formulation of the solution: move N-l disks from the From 
pole to the Using pole, move one disk from the From pole 
to the To pole, and finally move N-l disks from the Using 
pole to the To pole. The resulting plan is bound to the 
variable plan. 

BlOV@(O,- ,- 9- , Cl). 
mower(l,FPo~,To,Using,plan) :- 

N > 0, M is N-1, 
Izlovg(PI,From,UP3ing,To,Subplanl), 
mover(H,lJeing,To,From,Subplan2), 
append(Subplan1, CCFr~~~,T~ll,Frontplan), 
append(Frontplan,Subplan2,Plan). 

app5ndC ClJJ9. 
appsnd(CHIT1 ,L, [HIUI) :- append(T,L,U). 

Given the query move(3,lsft,right,cgnter,Plan), 
Plan is bound to: 

C[left,rightl o i&ft,centerl 9 
[right D center] s Cleft ,ri 
[centsr,rightl , [left ,ri 

Since rsove contains recursive calls to stove, PRO- 
LEARN learns three move subroutines. In particular it 
learns the following subroutine: 

mowe(M,From,To,Using,C[From,Tol D [From,Usingl B 
[To ,Usingl o CFrom,Tol D CUsing,Froml , 

TO] ) [F~oRI,ToI 1) : - 
i5 N-l, pI>O, L is M-f, 

L>O, 0 is L-l, L>O, 0 is L-l, 
M>O, K is M-l, K>O, 0 is K-f, 
K>O, 0 is K-I. 

The saove definition learned by EBG represents a spe- 
cialized subroutine for ’ 3 disks from the From pole 
to the To pole via th pole. The newly learned 
move” z for two disks and one disk are similarly verbose. 
Worse still, future queries with move of N > 3 disks will 

match the learned rule and not fail until they reach the 
conjunct 0 is L-l. 

The term 0 is K-l (in the above conjunction) could 
be eliminated by binding K to 1 instead. In general, if 
two of the unknowns in an expression like X is Y - Z are 
known then the third can be deduced. PROLEARN uses 
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such rules to simplify primitive subroutine calls. PRO- 
LEARN actually learns the above move as: 

move(3,From,To,Using, C[F~O~,TO] a [Frorn,Usingl, 
[To ,Usingl , CF~OIU,TOI , [Using ,Frod , 
[Using I To] , [From, To] 1) . 

PROLEARN partially evaluates the following kinds of 
terms: terms like 3 < 5 (that are always true) are elimi- 
nated, terms like X == Y (a test on whether X and Y are 
the same variable) and X = Y (a test on whether X has the 
same value as Y) are eliminated by binding X to Y, and 
terms like 12 is X * 4 are eliminated by binding X to 
3. Terms like 4 is y/3 are simplified to conjunctions like 
((Y > 119, (Y < 1599 t o exploit PROLEARN’s integer 
division. Early cutoff occurs when Y 5 11. 

After partial evaluation, the learned subroutine is 
added to the database. To ensure that it is tried before 
the less efficient original version from which it was derived, 
PROLEARN inserts it above existing subroutines. 

V Limitations 

PROLEARN exhibits a number of shortcomings common 
to other problem-solving architectures that learn. 

A. The Search Bottleneck PaobBem 
As PROLEARN learns more subroutines, search time 
gradually increases. As an example, consider member, a 
commonly-used Prolog subroutine that tests for member- 
ship of an item in a list: 

member(X, [Xi- I). 
member(X, C-IT]) :- xnember(X,T). 

Giventhe querymember(a, [b,c,d,al), PROLEARN 
learns the following three member definitions (since zaexnber 
is called recursively three times). They represent member- 
ship of an item at the fourth, third and second positions 
in an arbitrary length list. 

mmber(X, [Tl,TB,T3,Xl- I). 
member(X, [TI,T2,Xl- 1). 
member(X, CTl,Xl- I). 

Given the query mexnber(a, [bpc,d,e,al), PRO- 
LEARN must search through all the learned member defi- 
nitions to get to the general case for member. A query test- 
ing the membership of an object in the list of a hundred 
items may generate ninety-nine new member definitions- 
clogging up the interpreter if most of them are executed 
again. 

A number of researchers have observed that uncon- 
trolled learning of macro-operators can cause search bot- 
tlenecks [Minton, 1985, Iba, 1985, Fikes et al., 19721. 
Minton’s programused the frequency of use and the heuris- 
tic usefulness of macro-operators as a filter to control learn- 
ing. Iba’s program learned only those operator sequences 
leading from one state with peak heuristic value to another. 

33. The Learning rth Problem 

Given the tradeoffs between storing and computing, be- 
tween the cost of learning and the resulting speedup, and 
between speeding up some queries at the cost of slowing 
down others, what is worth learning and remembering? 
As an example of possibly worthless learning, consider the 
following database (after [Mahadevan, 19851): 

equiv(X,X). 
equiw(llX,Y) :- equiv(X,Y). 
equiw(l(X V Y) ,M) :- equiv(lX AlY,M) . 
equiv(l(X A Y) ,M) :- equiv(lX V-IY,M) . 
equiw(X A Y,M A I) :- equiv(X,M), equiv(Y,N). 
equiv(X V Y,M V N) :- equiv(X,M),equiv(Y,N). 

The subroutine equiv is used to test whether its two 
arguments are equivalent boolean expressions (with the 
standard logical operators of 1, A and V). Consider the 
following query: 

equiw(ll(a V b) A -(c V d) s(a V b) A (c V d)) 

Prolog interpreters typically index on the subroutine’s 
name (equiv) and the first argument’s principal functor 
(A) to find relevant subroutines. Here the only match is the 
subroutine whose head is equiv(X A Y ,M A N) . In fact, 
there is only one relevant subroutine at each node of the 
entire search tree for this query, so its branching factor is 
1. When branching factor is this low, there is no search to 
eliminate. Here, speedup derives only from elimination of 
subroutine calls in the learned rules, namely: 

equiw(llX A-lY,X A Y) . 
equiv(llX,X 9. 

Whether a query is worth learning from depends on 
its execution cost (search and subroutine calling) without 
learning, the cost of the learning process, and the distri- 
bution of subsequent queries. PROLEARN simply learns 
from every execution without considering these factors. 

6. The Correctness and 

Is the set of programs still correct after PROLEARN learns 
new subroutines? That is, does the new program preserve 
the user-intended behavior? Two problems, redundancy 
and over-generalization, make this question difficult to an- 
swer. 

PROLEARN disallows subroutines with side-effects 
to avoid redundancy. Since every learned subroutine in 
PROLEARN p re resents another way to execute a partic- 
ular query, the database of original subroutines already 
describes how to execute the query (perhaps in a less effi- 
cient manner). The danger lies in side-effects that may be 
repeated and thus change program behavior in a way that 
violates the intent of the original program. 

PROLEARN also disallows the cut symbol (used to 
control backtracking and define negation-as-failure). If 
PROLEARN allowed the cut symbol, learning new subrou- 
tines would, in general, be impossible without considering 
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the context of other subroutines (e.g., cut and fail com- 
binations that were executed during a particular query). 

While applying PROLEARN to a program with side 
effects is not guaranteed to preserve its behavior, neither 
does it necessarily lead to disaster. Demanding that adap- 
tive interpreters preserve program behavior is unnecessar- 
ily restrictive, since not all behavior changes are unac- 
ceptable [Mostow and Cohen, 1985, Cohen, 19861. Fur- 
ther work is needed to characterize and expand the class 
of programs PROLEARN can interpret without changing 
program behavior in unacceptable ways. 

PROLEARN is also theoretically subject to the same 
over-generalization problem as SOAR [Laird et al, 1986a], 
in which a learned rule masks a pre-existing special-case 
rule that didn’t apply when the rule was learned. It ap- 
pears possible (though unwieldy in Prolog) to overcome 
this problem by placing each learned subroutine imme- 
diately above the subroutine from which it was derived 
rather than at the top of the database. 

safe-to-staclt 23 23 1.3 6 
RlOVB 11 94 1 36 
member 4 4 1 3 
equiv 2 2 1 6 

Table 1: Speedup Factors Over Original Query in Prolog 

Table 1 lists the speedup factors in CPU time over the 
original query in Prolog for the examples presented above. 
For each example, the table also lists the average branch- 
ing factor and number of calls to user-defined subroutines 
for the original query. The results can be summarized as 
follows: 

B For EBG alone, the example with the largest aver- 
age branching factor (safe-to-stack) produced the 
greatest speedup. The next greatest speedup resulted 
from eliminating the user subroutine calls (move). 

The two examples with branching factor 1 and few 
user subroutine calls (member and equiv) had the least 
speedup. Any speedup from EBG resulted from sub- 
routine ca3l elimination, not search reduction. 

a The one example (move) where partial evaluation 
helped was sped up by a factor of 8.5 over EBG be- 
cause costly arithmetic operations were eliminated. 

, Since each learned subroutine applies to a whole class 
of queries, the speedup results apply to the entire class. 
However, the results presented above are incomplete, since 
they do not show the slowdown for queries outside this 
class. Such slowdown occurs when a query matches a 
learned subroutine and then fails after executing some of 
the terms in its definition. 

We measured speedup by comparing Prolog execution 
time before and after learning. This comparison measures 

how much speedup would be achieved if PROLEARN’s 
techniques were eficiently implemented in the Prolog in- 
terpreter itself. PROLEARN is actually implemented as a 
simple but inefficient Prolog meta-interpreter. The extra 
level of interpretation imposes a considerable performance 
penalty, largely because it loses the efficiency of Prolog’s 
indexing. Although learning speeds up PROLEARN’s ex- 
ecution of the example queries by factors ranging from 4 
to 32, this speedup is outweighed by the interpretation 
penalty, which renders PRCLEARN 54 to 156 times slower 
than Prolog. 

Like Soar [Laird et a!., 1986b], PROLEARN is an s’ncb- 
dental learning system because it learns as a side-effect of 
problem-solving. While PROLEARN’s cached subroutines 
resemble Soar’s chunks, Soar assumes that multiple occur- 
rences of a constant are instances of the same variable, 
which can cause it to learn chunks that are more specific 
than necessary. PROLEARN uses EBG, which avoids this 
assumption. Also, Soar’s chunking mechanism does not 
use partid evaluation to simplify learned chunks. 

Unlike systems that cache specific values [Mostow and 
Cohen, 1985, Lenat et al., 19791, PROLEARN stores gen- 
eralized procedures. Both approaches pay for decreased 
execution time with increased space costs and lookup time. 

PROLEARN adapts programs to their execution en- 
vironments more dynamically than typical program opti- 
mizers [Aho et al., 1986, Kahn and Carlsson, 1984, Bloch, 
19841. While some optimizers use data about the execu- 
tion environment [Cohen, 19861 or collect statistics about 
the execution frequency of different control paths in a pro- 
gram, they do not generalize as PROLEARN does. 

This paper has shown how an interpreter can adapt to its 
execution environment and thus customize itself to a par- 
ticular application. PROLEARN, an implemented proto- 
type of an adaptive Prolog interpreter, uses two methods to 
increase its performance: explanation-based generalization 
and partial evaluation. The generalization of computed re- 
sults differentiates PROLEARN from programs that cache 
and reuse specific values. 

The effects of adding a learning component to Prolog - 
can be summarized as follows: 

The more search and subroutine calls in the original 
query, the more speedup after learning: the indexing 
and backtracking caused by search are eliminated, as 
well as the overhead of subroutine calls. 

The same speedup applies to the class of queries that 
match the learned subroutine, not just the query from 
which the subroutine was learned. This class includes 
queries that would have followed the same execution 
path as the original query. 

e A learned subroutine may slow down queries that 
match its head but fail its body. 
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