From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

Paul S. Rosenbloom
Knowledge Systems Lab.
Computer Science Dept.

Stanford University
Stanford, CA 94305

Abstract

In this article we demonstrate how knowledge level learn-
ing can be performed within the Soar architecture. That
is, we demonstrate how Soar can acquire new knowledge
that is not deductively implied by its existing knowledge
This demonstration culploya Soar’s uxuuKlﬂg mechanisim
— a mechanism which acquires new productions from
goal-based experience — as its only learning mechanism.
MNheenldn s hoa nnavianely heen demonsiratad ta he o e
Chunking has previously been demonstrated to be a use-
ful symbol level learning mechanism, able to speed up the
performance of existing systems, but this is the first
demonstration of its ability to verform knowledee level

y to perform knowledge level

learning. Two simple declarative-memory tasks are
employed for this demonstration: recognition and recall.

I. Introduction

Dietterich has recently divided learning systems into two

loamal
SYiiod WEUCe

learners [3]. The distinction is based on whether or not the
knowledge in the system, as measured by a knowledge level

analvsis (10!
analysis {10

olaaanc: aaren bl Lo nasl odan
CiaS8¢s:

lomaos oma and .
Ritowieage

vCATTNCTS ana

lonsnl
e€VCe

increases with learnine A sgvstem nerforms
|, lDnCreases wiin iearning. A sysiem periorms

symbol level learning if it improves its computational perfor-
mance but does not increase the amount of knowledge it con-

tains

According to a knowledee level analveis knowledoe

According a knowledge level analysis, knowledge
only increases if a fact is added that is not implied by the ex-

isting knowledge; that is, if the fact is not in the deductive
closure of the

Exvplanation-based

Explanation-based
generalization (EBG) (2; 9] is a prime example of a learning
technique that has proven quite successful as a mechanism for
ep_abhng a eyefnm to pprfnrm eymhn] level]nnrn\ng EBQ al-
lows tasks that a system can already perform to be refor-
mulated in such a way that they can be performed more ef-

ficientlv. PBRecause EBRQG onlv eenerates knowledee that is al-

nclently 2eCaulse L%z CIIY gOneraves XNCOwW.edge vaal IS as

ready within the deductive closure of its current knowledge

base, it does no knowledge level learning (at least when used
'I'n anv ('\I’\VI(\'“Q WQVG\

Symbol level learmng can be quite useful for an intelligent
system. By speeding up the system’s performa,nce it allows

the gvstem to perform more tasks while usineg the same
the system to periorm more tasks whlle ing the same

amount of resources, and enables the system to complete

lrnnw]a{‘] ge,

SXISLIRG XnOWIeCge

existing

LThis research was sponsored by the Defense Advanced Research
Projects Agency (DOD) under contract N00039-86-C-0133 and by
the Sloan Foundation. uompuuer facilities were partiauy pi‘OVid:;d
by NIH grant RR-00785 to Sumex-Aim. The views and conclusions
contained in this document are those of the authors and should not
be rpreted as representing the official policies, either expressed
or implied of the Defense Advanced Research Projects Agency, the

US Government, the Sloan Foundation, or the National Institutes

of Health.

John E. Laird

Department of EECS Con pute' Sc
TTnnrnrqifv of Mmhm‘an

Ann Arbor MI 48109

o TATAANQ

Plttsburgh PA 15213

tasks that capacity limitations previously prevented it from
completing. However, an intelligent system cannot live by
symbol level learning alone. If a system were incapable of
performing knowledge level learning — that is, of adding facts
nob alread‘y' imp}ied by its chbung nxlO'v'v'u:ugr: — a host of
critical capabilities would be beyond its grasp. These range
from relatively SImple declarative memory capablhtles such
as 1earnmg to recognize preﬁous:y seen oucLba and to store
and retrieve representations of new objects, to more complex
capabilities of learning to perform novel tasks.

Soar is an attempt to build an architecture that
port general intelligent behavior [6].
learning mechanism, chunking [7].

can sup-

It contains a single
Chunking creates new
productions, or chunks, based on the results of goal-based
problem solving. The actions of a chunk contain the results
of the goal. The conditions of the chunk test those aspects of
the pre-goal situation that were relevant to the generation of
the results. We have been successful in demonstrating Soar’s
ability to acquire a variety of types of knowledge, including

..... contro raduetions

'S 1
S€arcin-Convro: PpProuucvioiis,

macro-operators, and operator-
implementation productlons [14]. We have also demonstrated
Soar’s ability to perform the basic tasks of EBG and, in the

nrocess. nrovided a mannine hetwesen FRO and Soar H‘)‘
Process, Pproviaia a mapping oCvween Lo aliG SOarl (14,

This mapping suggests that chunking is a symbol level learn-
ing mechanism; an identification that is supported by the fact

that all of the Anmnnao-'-nhnno listed above 1
vaay Ol (ne aemonsirations iisied above Invo

bol level learning.
However, chunkmg originated in psychologlcal theories of

N domos ke amabiera e oo N

tlle Strucuiure oOi dCleld:blVC lllﬂ‘llUIy lO] wvue blbdal bllull.l\'
ing result is that if a list of items is to be memorized for later
reca.ll, the memory structure is organized as a hierarchical
atnisntnna oaf ahoanla (1] Ohunling ot lanat of thic alacoioa 1
DUIULvUIT VUl viniuuno lJ.J. \Jllulll\lllé av 1Taduv Ul viio MLGDDJLG/I
variety, is thus strongly implicated in the acquisition of new
knowledge. This has encouraged us to believe that Soar’s

should be able to perform knowledge

chunking mechanism should able to perform knowledge
level learning. It has also placed a responsibility on us to
demonstrate these classical chunking phenomena in Soar in

order to justify that its learning mechanism is entitled to its
name. To distinguish between the form of chunking currently
performed by Soar and the more declarative classical chunk-
ing capability, we refer to the classical form of chunking as
data chunkmg.

The purpose of this article is to report on recent work
with Soar that demonstrates data chunking, and thus
knowledge level learning, using chunking as the only learning
mechanism. In Section Il we give a brief overview of Soar. In
Section III we describe the fundamental concepts underlying
the implementation of data chunking in Soar. In Sections IV
and V we then describe in detail how Soar performs two
simple data chunking tasks: learning to recognize new objects
and learning to recall new objects. In Section VI we conclude

as search in problem spaces. The problem ace determlnes
the set of legal states and operators that can be used during

the nrocessine to attain o coal

The states renresent sitna-
the processing te attain a goeas.

The states represent situa
tions. There is an initial state, representing the initial situa-
tion, and a set of desired states that represent the goal. An
operator, when applied to a state in the problem space, yields
another state in the problem space. The goal is achieved
when one of the desired states is reached as the result of a
string of operator applications starting from the initial state.
Goals, problem spaces, states, and operators exist as data
structures in Soar’s working memory — a short-term declara-
tive memory. Each goal defines a problem solving context
("context" for short). A context is a data structure in the
working memory that contains, in addition to a goal, roles for
a problem space, a state, and an operator. Problem solving
for a goal is driven by the acts of selectmg problem spaces,
iors for the appropriate roles in the context.
Each of the deliberate acts of the Soar architecture — a selec-
tion of a problem space, a state or an operator — is ac-
complished via a two-phase decision cycle. First, during the
elaboration phase, the description of the current situation
(that is, the contents of working memory) is elaborated with
relevant information from Soar’s production memory — a

long-term procedural memory. The elaboration process in-

volves the creation of new ohiects. the addition of knowledeoe
VOIVES D¢ Creation Of new Oljects, tae aqqiiion o Xnowiedge

about existing objects, and the addition of preferences. There
is a ilxed language of preferences that is used to describe the
of the al being con-
srdered for selectlon By usmg different preferences, it is pos-
sible to assert that a particular problem space, state, or
operator is acceptable (should be considered for selection),
rejected (should not be considered for selection), better than
another d.lteffld.blve, and so on. When the elaboration phase
reaches quiescence — that is, no more productions can fire —
the preferences in working memory are interpreted by a fixed

degision nrocedure
GECIsion proceaure.

If the nreferences uniguely sneeifv an ob-
11 vl Preierences unijquéiry Spechiy ani OO

ject to be selected for a role in a context, then a decision can

be made, and the specified object becomes the current value
of the role. The decision nvr-‘n then repeat s, startine with

cecision ¢l tien repe suarting witia

another elaboration phase.
If an elaboration phase ever reaches quiescence while the

prafaronr'nﬂ in '\x'lnrlnno‘ mnmr\ry are either incomnlete or in-

references in working mem. either incomplete or in
consistent, an impasse occurs in problem solving because the
system does not know how to proceed. When an impasse oc-
curs, a subgoal with an associated problem solving context is
automatically generated for the task of resolving the impasse.
The impasses, and thus their subgoals, vary from problems of
selection (of problem spaces, states, and operators) to
problems of generation (e.g., operator application). Given a
subgoal, Soar can bring its full problem solving capability and
knowledge to bear on resolving the impasse that caused the
subgoal. When subgoals occur within subgoals, a goal hierar-
chy results (wh]ch therefore defines a hierarchy of nnntexfe\
The top goa.] in the hierarchy is a task goal. The subgoa.ls
below it are all generaied as the result of impasses in problem
solving. A subgoal terminates when its impasse is resolved,
even if there are many levels of subgoals below it (the lower

ones were all in the gsarvice of the tarminataed subesgal s thevy
ones were all in the service of the terminated SU0gECa, SC uvily

can be eliminated if it is resolved).
Chunking is a learning mechanism that automatically ac-

vires new productions that summarize the processing that

1)
[~
(=

Machine Learning & Knowledge Acquisition

leads to results of subgoals. The actions of the new produc-
tions are based on the result,s of the subgoal The conditions
are based on those aspects of the pre-goal situation that were
relevant to the determination of the results. Relevance is

determined by treating the traces of the productions that

fired durine the suhooal as denendencev structures. Startine
Iired Quring the sudgeal as Gepenaency struciures. stariing

from the production trace that generated the subgoal’s result,
those production traces that generated the working-memory
elements in the condition of the trace are found, and then the
traces that generated their condition elements are found, and
so on until elements are reached that exist outside of the sub-
goal. These elements form the basis for the conditions of the
chunk. Productlons that only generate preferences do not

nantiainada thic hoalidna
parvicipave in this backtra

g PIV\/CBD - PlclclcllbcD Ullly d«f"
fect the efficiency with which a goal is achieved, and not the
correctness of the goal’s results. Once the working-memory
elements that are to form the basis of the conditions and ac-

tions of a chunk have been determined, the elements are
processed to yield the final conditions and actions. For the
purposes of this article, the most important part of this
processing is the repla,cement of some of the symbols in the
working-memory elements by variables. If a symbol is an ob-
ject identifier — a temporary place-holder symbol used to tie
together the information about an object in working memory
— then it is replaced by a variable; otherwise the symbol is
left as a constant. This is the minimal generalization re-
quired to get any transfer.

Chunkine annlies to all of the subeoals gen ted during
“OuUnckiing app:es vO an Oi val Suoglass ve

task performance. Once a chunk has been earned the new

production will fire during the elaboration phase in relevantly
similar sitnations in the future, directly nroducing the re-

.......... 1 tae ature, qlreciy procucing ae

quired information. No impasse will occur, and problem solv-
ing can proceed smoothly. Chunking is thus a form of goal-
based caching which avoids redundant future effort by
directly producing a result that once required problem solvmg
to determine.

II. Fundamentals of Data Chunking

Reduced to its essentials, data chunking involves the per-
ception of some new piece of knowledge, followed by the
storage of some representation of the new knowledge into
long-term memory. Thus, the first step in performing data
chunking in Soar is for Soar to use its perceptual capabilities
to generate a representation of the new knowledge in its
working mem(()ry.2 At this point, the new knowledge is avail-
able for use by the system, but it has not yet been learned —
working memory is only a temporary memory which holds the
current data upon which the system is working. The learning
act occurs when a production is created which can, at ap-
propriate points in the future, retrieve the new knowledge

intc workine memory If Qaar is to use its chunkine
nvec working moemory. i S0ar IS VO use IS Caunking

mechanism to do this, it must take advantage of the fact that
chunking learns from goal-based experience. The key is for it
to set up the right internal tasks so that

ts problem solving
experience in subgoals leads to the creation of chunks that
represent the new knowledge. Suppose Soar is to memorize a
new object, call it object A, so that it can be recalled on

demand. To accomplish this, a chunk needs to be acquired

that can generate the ghicct when the demand arises The
viigv Call gonciravd uwinl OU0jeCy Wilhi i adimana arises. 108

appropriate internal task for this problem would appear to be

2Soar does not yet have an appropriate I/O interface, so in the
current implementation of data chunking this perceptual phase is
performed by special purpose Lisp code.

simply to copy the object in a subgoal. The chunk that is
learned from this experience has actions which generate an
object B that is a copy of object A.

This simple solution glosses over two important problems.
The first problem is that, if the generation of object B is
based on an examination of object A, then the conditions of
the chunk will test for the existence of object A before
generating object B, thus allowing the object to be recalled in
only those circumstances where it is already available. The
solution to this problem that we have discovered is to split
the act of recalling information into separate generate and
test phases. A generation problem space is provided in which
new objects can be constructed by generating and combining
objects that the system has already learned to recall. Object
B is thus constructed from scratch out of objects that the sys-
tem already knows, rather than being a direct copy of object
A. Object A is not examined during this process; instead, it is
examined during a test phase in which it is compared with
object B to see if they are equivalent. Separate chunks are
learned for the generate and test phases, allowing a chunk to
be learned that generates object B without examining object
A.

The second problem is that, at recall time, the system
must both generate the learned object B and avoid generating
all of the other objects that it could potentially generate.
The direct effect of the generation chunk is simply to cache
the generation of object B, allowing it to be generated more
efficiently in the future (symbol level learning). This, by it-
self, does not enable Soar to discriminate between object B
and the other objects that could be generated (knowledge
level learning). However, this additional capability can be
provided if: all of the learned objects can be recalled before
any new objects can be generated; and if a termination signal
can be given after the learned objects have been recalled and
before any other objects are generated. In Soar, this
capability is provided directly by the structure of the decision
cycle. The chunks fire during the elaboration phase, allowing
learned objects to be recalled directly. After all of the
learned objects have been recalled, an impasse occurs. Other
objects could be generated in the subgoal for this impasse, or
alternatively (and correctly) the impasse can be treated as a
termination signal, keeping other objects from being
generated. Soar can thus break through the otherwise seam-
less interface, in which a cached value looks exactly like a
computed value, by making use of Soar’s ability to reflect on
its own behavior [13] — specifically, its ability to base a deci-
sion on whether an impasse has occurred.

Generation chunks thus support symbol level learning
(caching the generation of the object) and knowledge level
learning (correct performance on recall tasks). As described
in the following two sections, rather than actually learning
test chunks, recognition chunks are learned. These recog-
nition chunks speed up the performance of the system on
both recall and recognition tasks (symbol level learning), plus
they allow Soar to perform correctly on recognition tasks
(knowledge level learning). The abilities to learn to recognize
and recall new objects are two of the most basic, yet most
important, data chunking capabilities. If Soar is able to ac-
complish these two paradigmatic learning tasks, it would
seem to have opened the gates to the demonstration of the
remaining data chunking tasks, as well as to more sophis-
ticated forms of knowledge level learning.

IV. Recognition

The recognition task is the simplest declarative memory

task. There are two types of trials: training and performance.
On each training trial the system is presented with a new ob-
ject, and it must learn enough to be able to perform correctly
on the performance trials. On each performance trial the sys-
tem is presented with an object which it may or may not
have seen during the training trials. It must respond affirma-
tively if it has seen the object, and negatively if it has not.

The objects that the system deals with are one of two
types: primitive or composite. Primitive objects are those
that the system is initially set up to recognize: the letters
a-z, plus the special objects [and]. A composite object is
a hierarchical structure of simpler objects that is eventually
grounded in primitive objects. The object representation in-
cludes two attributes: name and substructure. An object is
recognized if it has a name. A primitive object has nothing
but a name. A composite object may or may not have a
name, depending on whether it is recognized or not. A com-
posite object is distinguished from a primitive object by
having a substructure attribute that gives the list of objects
out of which the object is composed. The list always begins
with [, ends with], and has one or more other objects — ei-
ther primitive or composite — in between. For example, [a
b c] and [[a b ¢l [d e]l, are two typical composite ob-
jects.

To learn to recognize a new composite object, an internal
task is set up in which the system first recognizes each of the
subobjects out of which the object is composed, and then
generates a new name for the composite object. The name
becomes the result of the subgoal, and thus forms the basis
for the action of a chunk. The name is dependent on the
recognition of all of the object’s subobjects, so the conditions
of the chunk test for the subobjects’ names. During a perfor-
mance trial, the recognition chunk can be used to assign a
name to a presented object if it is equivalent to the learned
one, allowing an affirmative response to be made to the
recognition query.

In more detail, a training trial begins with a goal to learn
to recognize an object. A recognition problem space is
selected along with a state that points to the object that is to
be learned — the current object — for example, [a b c]. If
the current object is recognized — that is, has a name — the
training trial is terminated because its task is already ac-
complished. There is only one operator in the recognition
problem space: get-next-element. If the current-object is
recognized, then the get-next-element operator receives an ac-
ceptable preference, allowing it to be selected as the current
operator. When the operator is executed, it generates a new
state that points to the object that follows the current one.

However, if the current object is not recognized, the get-
next-element operator cannot be selected, and an impasse oc-
curs. It is in the subgoal that is generated for this impasse
that recognition of the object is learned. The recognition
problem space is used recursively in this subgoal, with an in-
itial state that points to the object’s first subobject (i.e., [).
Because this new current object has a name, the get-next-
element operator is selected and applied, making the next
subobject (a, for the current example) the current object. If
the subobject were not recognized, a second-level subgoal
would be generated, and the problem solving would again
recur, but this time on the substructure of the subobject.
The recursion is grounded whenever objects are reached that
the system has previously learned to recognize. Initially this
is just for the primitive objects, but as the system learns to
recognize composite objects, they too can terminate the recur-
sion.

Rosenbloom, Laird, and Newell 501

When the system has succeeded in recognizing all of the
object’s subobjects, a wunique internal name, such as
*p0045+%, is generated for the object. The new name is
returned as the result of the subgoal, allowing the problem
solving to proceed in the parent context because now its cur-
rent object has a name. The subgoal is thus terminated, and
a chunk is learned that examines the object’s subobjects, and
generates the object’s name. This recognition production can
fire whenever a state is selected that points to an object that
has the same substructure. In schematic pseudo-code, the
production for the current example looks like the following.

Current-Object(s, [a b cl<z>) -—>

Name(z, *p0045%) 1
The variable s binds to the current state in the context. The
variable z binds to the identifier of the current object, whose
substructure must be [a b c]. The appearance of the
relevant constants — [, a, b, ¢,], and *p0045% — in the
conditions and actions of this production occur because, in
creating a chunk from a set of production traces, constant
symbols are not replaced by variables.

If [a b c¢] is now presented on a performance trial,
production 1 (above) fires and augments the object with its
name. The system can then respond that it has recognized
the object because there is a name associated with it. If an
unknown object, such as [x y 2], is presented on a perfor-
mance trial, no recognition production fires, and an impasse
occurs. This impasse is used as a signal to terminate the per-
formance trial with a "no" answer.

If the object being learned is a multi-level composite ob-
ject, then in addition to learning to recognize the object itself,
recognition productions are learned for all of the unrecognized
subobjects (and subsubobjects, etc.). For example, if the sys-
tem is learning to recognize the object [[a b c] [d e]l], it
first uses production 1 to recognize [a2 b c] and then learns
the following two new recognition productions:

Current-Object(s, [d el<z>) —->

Name (z, *p0046%) (2)
Current-Object(s, [%p0045% *p0046%]I<z>) —-—>
Name (z, *p0047%) 3

Chunks are also learned that allow composite subobjects to
be recognized directly in the context of the current object.
To recognize a composite subobject without these chunks, the
system would have to go into a subgoal in which the sub-
object could itself be made the current object.

If [{a b c] [d e]] is now presented on a performance
trial, productions first fire to recognize [2 b c] and [d e]
as objects *p0045% and *p0O046%*. Production 3 then fires
to recognize [#p0045#% *p0046*] as object *p0047*. The
system can then reply in the affirmative to the recognition
query.

V. Recall

The recall task involves the memorization of a set of ob-
jects, which are later to be generated on demand. From the
point of view of the internal task, it is the dual of the recog-
nition task. Instead of incorporating information about a
new object into the conditions of a production, the infor-
mation must be incorporated into the actions. As with recog-
nition, there are training and performance trials. On each
training trial the system is presented with a new object, and
it must learn to generate the object on demand. On a perfor-
mance trial, the system receives a recall request, and must
respond by producing the objects that it learned to generate
on the training trials.

502 Machine Learning & Knowledge Acquisition

As described in Section III, on a training trial the general
approach is to set up a two-phase internal task in which the
object is copied. In the first phase, a new composite object is
generated by executing a sequence of operators that recall and
assemble subobjects that the system already knows. This
generation process does not depend on the presented object.
In the second phase, the generated object is tested to see if it
is equivalent to the presented object. Though this approach
solves the problem discussed in Section III, it also introduces
a smaller but still important technical issue — how to ef-
ficiently generate the new object without examining the
presented object. Because it is possible to generate any ob-
ject that can be constructed out of the already known objects,
there is a control problem involved in ensuring that the right
object is generated. The solution to this problem is to use
the presented object as search-control knowledge during the
process of generating the new object. Search-control
knowledge determines how quickly a problem is solved, not
the correctness of the solution — the goal test determines the
correctness — so the result does not depend on any of the
knowledge used to control the search. Thus, chunks never in-
corporate control knowledge. In consequence, the generation
process can proceed efficiently, but the chunk created for it
will not depend on the presented object.

In more detail, a training trial begins with a goal to learn
to recall a presented object. The system selects a recall
problem space. An initial state is created and selected that
points to the presented object; for example, Presented (s1,
[a b ¢]), where 81 is the identifier of the state. There is
only one type of operator in the recall problem space: recall.
An instance of the recall operator is generated for each of the
objects that the system knows how to recall. To enable the
system to find these objects, they are all attached to the
recall problem space. This can be a very large set if many
objects have been memorized; a problem to which we return
in Section VI. Initially the system knows how to recall the
same primitive objects that it can recognize: a-z, [, and J.
This set increases as the system learns to recall composite ob-
jects.

The presented object acts as search control for the genera-
tion process by influencing which recall operator is selected.
First the system tries to recognize the presented object. For
the current example, production 1 fires, augmenting the ob-
ject with its name (*p0045%). If the system had not
previously learned to recognize the presented object, it does
so now before proceeding to learn to recall it. Then, if there
is a recall operator that will recall an object with the same
name, an acceptable preference is generated for the operator,
allowing it to be selected. When a recall operator executes, it
creates a new state in which it adds the recalled object to a
structure representing the object being generated. If this hap-
pens in the top goal, it means that the system has already
learned to recall the presented object, and it is therefore done
with the training trial.

However, when the system does not already know how to
recall the object, as is true in this instance, no recall operator
can be selected. An impasse occurs and a subgoal is
generated. In this subgoal, processing recurses with the at-
tempt to recall the subobjects out of which the presented ob-
ject is composed. A new instance of the recall problem space
is created and selected. Then, an initial state is selected that
points to the first subobject of the presented object
(Presented(s2, [)). In this subgoal, processing proceeds
just as in the parent goal. If the object is not recognized, the
system learns to recognize it. Then, if the object cannot be

recalled, the system learns to recall it in a further subgoal.
However, in this case the object ([) is a primitive and can
thus already be recognized and recalled. The appropriate
recall operator is selected and creates a new state with a
newly generated [object in it (Generated(s3, [)). The
operator also augments the new state with the successor to
the presented object (Presented(s3, a)). This infor-
mation is used later to guide the selection of the next recall
operator.

The system continues in this fashion until a state is
created that contains a completely generated object (for ex-
ample, Generated(s7, [a b c])). The one thing missing
from the generated object is a name, so the system next tries
to recognize the generated object as an instance of some
known object. If recognition fails, the subgoal stays around
and the system has the opportunity to try again to generate a
recognizable object. If recognition succeeds, as it does here,
the generated object is augmented with its name (¥p0045x).
Generation is now complete, so the generated object is added
to the set of objects that can be recalled in the parent goal
(unless there is already an object with that name in the set).
This act makes the generated object a result of the subgoal,
causing a chunk to be learned which can generate the object
in the future. Execution of this chunk is the basic act of
retrieving the remembered object from long-term (production)
memory into working memory. In schematic pseudo-code,
this chunk looks like the following.

-Object(recall, *p0045%) —-—>

Object(recall, *p0045%[a b cl) (€))
This production says that the object should be generated and
attached to the recall problem space if there is not already an
object with that name so attached.

Though generation is now complete, the generated object
cannot yet be recalled in the parent goal until a goal test has
been performed to ensure that the generated object is equiv-
alent to the presented object. This test is performed by com-
paring the name of the presented object with the name of the
generated object. If the names match, a recall operator can
be selected in the parent goal for the generated object, and
the subgoal is terminated. The recall operator is then ex-
ecuted, and processing continues. If the names do not match,
no recall operator is selected, the subgoal does not terminate,
and the system has the opportunity to keep trying.

During a performance trial, the top goal is to recall all of
the objects so far learned. A recall problem space is created,
selected, and then augmented with the set of objects that the
system has learned to recall. Since the goal is to recall all
learned objects rather than just a specific one, acceptable and
indifferent preferences are created for all of the recall
operators, allowing everything that has been so far learned to
be recalled in random order — the indifferent preferences state
that it doesn’t care which of the operators is selected first.
Recall performance is terminated when no more recall
operators can be selected. This condition is signaled by the
occurrence of an impasse. In the resulting subgoal the system
could generate more objects, but it should not because they
would not correspond to objects it has seen.

-If the object being learned is a multi-level composite ob-
ject, the system learns to recall the object as well as each sub-
object, assuming it has not previously learned them. If the
system were to learn to recall the object [{a b ¢] [d el],
given that it has already learned to recognize the object and
its subobjects, and to recall the subobject [a b ¢], the fol-
lowing two new generation productions would be learned.

-Object(recall, *p0046%) —-—>

Object(recall, *p0046*[d el) (5)
-Object(recall, *p0047%) -->

Object(recall, *pO047x[*p0045% *p0046%1) (6)

On a performance trial that follows these training trials, the
system would recall all three objects.

VI. Conclusion

In this article we have demonstrated how Soar can expand
its knowledge level to incorporate information about new ob-
jects, and thus perform knowledge level learning. This was
accomplished with chunking, a symbol level learning
mechanism, as the only learning mechanism. One new
mechanism was added to Soar for this work: the ability to
generate new long-term symbols to serve as the names of ob-
Jects. However, this capability is only critical for the learning
of object hierarchies. Knowledge level learning can be
demonstrated for simpler one-level objects without this added
capability.

One implication of this demonstration is that caution
must be exercised in classifying learning mechanisms as either
symbol level or knowledge level. The distinction may not be
as fundamental as it seems. In fact, other symbol level learn-
ing mechanisms, such as EBG, may also be able to produce
knowledge level learning. A second implication of this
demonstration is that chunking may not have been mis-
named, and that it may be able to produce the full span of
data chunking phenomena.

Three important items are left for future work. The first
item is to extend the demonstrations provided here to more
complex tasks. Work is currently underway on several
projects that incorporate data chunking as part of a larger
whole. In one such project, data chunking will be used during
the acquisition of problem spaces for new tasks (14]. Work is
also underway on more complex forms of knowledge level
learning. In one such project, based on the work described in
(5], analogical problem solving will be used as a basis for
bottom-up (generalization-based) induction. In a second such
project, top-down (discrimination-based) induction is per-
formed during paired-associate learning (see also the next
paragraph). Both of these latter two projects demonstrate
what Dietterich termed nondeductive knowledge level
learning [3].

The second item is to overcome a flaw in the way recall
works. The problem is that whenever a recall problem space
is entered, all of the objects that the system has ever learned
to recall are retrieved from production memory into working
memory. If the system has remembered many objects, this
may be quite a time-consuming operation. We have begun
work on an alternative approach to recall that is based on a
cued-recall paradigm. In this version, the system builds up a
discrimination network of cues that tell it which objects
should be retrieved into working memory. Early results with
this version have demonstrated the ability to greatly reduce
the number of objects retrieved into working memory. The
results also demonstrate a form of discrimination-based in-
duction that allows objects to be recalled based on partial
specifications.

The third item is to use our data chunking approach as
the basis for a psychological model of declarative learning and
memory. There are already a number of promising indica-
tions: the resemblance between our model of recall and the
generate-recognize theory of recall (see, for example, [15]); the
resemblance between the discrimination network learned
during cued recall and the EPAM model of paired-associate

Rosenbloom, Laird, and Newell 503

learning [4]; the resemblance of retrieval-by-partial-
specification to the description-based memory model of Nor-
man and Bobrow [11]; and the way in which both learning
and retrieval are reconstructive processes in the cued recall
model. These resemblances came about not because we were
trying to model the human data, but because the constraints
on the architecture forced us to approach the problems in the
way we have.

References
1. Buschke, H. "Learning is organized by chunking."
Journal of Verbal Learning and Verbal Behavior 15 (1976),
313-324.
2. Delong, G., & Mooney, R. "Explanation-based learning:
An alternative view." Machine Learning 1 (1986), 145-176.
3. Dietterich, T. G. *Learning at the knowledge level."
Machine Learning 1 (1986), 287-315.
4. Feigenbaum, E. A, & Simon, H. A. "EPAM-like models
of recognition and learning." Cognitive Science 8 (1984),
305-336.
5. Golding, A., Rosenbloom, P. S., & Laird, J. E. Learning
general search control from outside guidance. Proceedings of
1JCAI-87, Milan, 1987. In press
8. Laird, J. E., Newell, A., & Rosenbloom, P. S. “Soar: An
architecture for general intelligence." Artificial Intelligence
33(1987). In Press
7. Laird, J. E., Rosenbloom, P. S., & Newell, A. "Chunking
in Soar: The anatomy of a general learning mechanism."
Machine Learning 1 (1986), 11-46.

504 Machine Learning & Knowledge Acquisition

8. Miller, G. A. "The magic number seven plus or minus
two: Some limits on our capacity for processing information."
Psychological Review 68 (1956), 81-97.

9. Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T.
"Explanation-based generalization: A unifying view."
Machine Learning 1 (1986), 47-80.

10. Newell, A. "The knowledge level." AI Magazine 2
(1981), 1-20.

11. Norman, D. A., & Bobrow, D. G. "Descriptions: An in-
termediate stage in memory retrieval." Cognitive Psychology
11 (1979), 107-123.

12. Rosenbloom, P. S., & Laird, J. E. Mapping explanation-
based generalization onto Soar. Proceedings of AAAI-86,
Philadelphia, 1986.

13. Rosenbloom, P. S, Laird, J. E., & Newell, A. Meta-
levels in Soar. Proceedings of the Workshop on Meta-Level
Architecture and Reflection, Sardinia, 1986.

14. Steier, D. M., Laird, J. E., Newell, A., Rosenbloom,

P. S, Flynn, R., Golding, A., Polk, T. A., Shivers, O. G., Un-
ruh, A, & Yost, G. R. Varieties of Learning in Soar: 1987.
Proceedings of the Fourth International Machine Learning
Workshop, Irvine, 1987. In press

15. Watkins, M. J., & Gardiner, J. M. "An appreciation of
generate-recognize theory of recall.” Journal of Verbal
Learning and Verbal Behavior 18 (1979), 687-704.

