
Knowledge Level Learning in Soar1

Paul S. Rosenbloom John E. Laird Allen Newell
Knowledge Systems Lab. Department of EECS Computer Science Dept.
Computer Science Dept. University of Michigan Carnegie-Mellon U.

Stanford University Ann Arbor, MI 48109 Pittsburgh, PA 15213
Stanford, CA 94305

Abstract
In this article we demonstrate how knowledge level learn-
ing can be performed within the Soar architecture. That
is, we demonstrate how Soar can acquire new knowledge
that is not deductively implied by its existing knowledge.
This demonstration employs Soar’s chunking mechanism
- a mechanism which acquires new productions from
goal-baaed experience - as its only learning mechanism.
Chunking has previously been demonstrated to be a use-
ful symbol level learning mechanism, able to speed up the
performance of existing systems, but this is the first
demonstration of its ability to perform knowledge level
learning. Two simple declarative-memory tasks are
employed for this demonstration: recognition and recall.

I. Introduction
Dietterich has recently divided learning systems into two

classes: symbol level learners and knowledge level
learners [3]. The distinction is based on whether or not the
knowledge in the system, as measured by a knowledge level
analysis [lo], increases with learning. A system performs
symbol level learning if it improves its computational perfor-
mance but does not increase the amount of knowledge it con-
tains. According to a knowledge level analysis, knowledge
only increases if a fact is added that is not implied by the ex-
isting knowledge; that is, if the fact is not in the deductive
closure of the existing knowledge. Explanation-based
generalization (EBG) [2; 91 is a prime example of a learning
technique that has proven quite successful as a mechanism for
enabling a system to perform symbol level learning. EBG al-
lows tasks that a system can already perform to be refor-
mulated in such a way that they can be performed more ef-
ficiently. Because EBG only generates knowledge that is al-
ready within the deductive closure of its current knowledge
base, it does no knowledge level learning (at least when used
in any obvious ways).

Symbol level learning can be quite useful for an intelligent
system. By speeding up the system’s performance, it allows
the system to perform more tasks while using the same
amount of resources, and enables the system to complete

%‘his research was sponsored by the Defense Advanced Research
Projects Agency (DOD) under contract NOOO39-86-C-0133 and by
the Sloan Foundation. Computer facilities were partially provided
by NIH grant RR-00785 to Sumex-Aim. The views and conclusions
contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed
or implied, of the Defense Advanced Research Projects Agency, the
US Government, the Sloan Foundation, or the National Institutes
of Health.

Rosenbloom, Laird, and Newell 499

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

and describe some important future work.

II. Overview of Soar
Soar is based on formulating all goal-oriented processing

as search in problem spaces. The problem space determines
the set of legal states and operators that can be used during
the processing to attain a goal. The states represent situa-
tions. There is an initial state, representing the initial situa-
tion, and a set of desired states that represent the goal. An
operator, when applied to a state in the problem space, yields
another state in the problem space. The goal is achieved
when one of the desired states is reached as the result of a
string of operator applications starting from the initial state.

Goals, problem spaces, states, and operators exist as data
structures in Soar’s working memory - a short-term declara-
tive memory. Each goal defines a problem solving context
(“context” for short). A context is a data structure in the
working memory that contains, in addition to a goal, roles for
a problem space, a state, and an operator. Problem solving
for a goal is driven by the acts of selecting problem spaces,
states, and operators for the appropriate roles in the context.
Each of the deliberate acts of the Soar architecture - a selec-
tion of a problem space, a state or an operator - is ac-
complished via a two-phase decision cycle. First, during the
elaboration phase, the description of the current situation
(that is, the contents of working memory) is elaborated with
relevant information from Soar’s production memory - a
long-term procedural memory. The elaboration process in-
volves the creation of new objects, the addition of knowledge
about existing objects, and the addition of preferences. There
is a fixed language of preferences that is used to describe the
acceptability and desirability of the alternatives being con-
sidered for selection. By using different preferences, it is pos-
sible to assert that a particular problem space, state, or
operator is acceptable (should be considered for selection),
rejected (should not be considered for selection), better than
another alternative, and so on. When the elaboration phase
reaches quiescence - that is, no more productions can fire -
the preferences in working memory are interpreted by a fixed
decision procedure. If the preferences uniquely specify an ob-
ject to be selected for a role in a context, then a decision can
be made, and the specified object becomes the current value
of the role. The decision cycle then repeats, starting with
another elaboration phase.

leads to results of subgoals. The actions of the new produc-
tions are based on the results of the subgoal. The conditions
are based on those aspects of the pre-goal situation that were
relevant to the determination of the results. Relevance is
determined by treating the traces of the productions that
fired during the subgoal as dependency structures. Starting
from the production trace that generated the subgoal’s result,
those production traces that generated the working-memory
elements in the condition of the trace are found, and then the
traces that generated their condition elements are found, and
so on until elements are reached that exist outside of the sub-
goal. These elements form the basis for the conditions of the
chunk. Productions that only generate preferences do not
participate in this backtracing process - preferences only af-
fect the efficiency with which a goal is achieved, and not the
correctness of the goal’s results. Once the working-memory
elements that are to form the basis of the conditions and ac-
tions of a chunk have been determined, the elements are
processed to yield the final conditions and actions. For the
purposes of this article, the most important part of this
processing is the replacement of some of the symbols in the
working-memory elements by variables. If a symbol is an ob-
ject identifier - a temporary place-holder symbol used to tie
together the information about an object in working memory
_ then it is replaced by a variable; otherwise the symbol is
left as a constant. This is the minimal generalization re-
quired to get any transfer.

Chunking applies to all of the subgoals generated during
task performance. Once a chunk has been learned, the new
production will fire during the elaboration phase in relevantly
similar situations in the future, directly producing the re-
quired information. No impasse will occur, and problem solv-
ing can proceed smoothly. Chunking is thus a form of goal-
based caching which avoids redundant future effort by
directly producing a result that once required problem solving
to determine.

. F~mdament%els of Data Ghunking
Reduced to its essentials, data chunking involves the per-

ception of some new piece of knowledge, followed by the
storage of some representation of the new knowledge into
long-term memory. Thus, the first step in performing data
chunking in Soar is for Soar to use its perceptual capabilities
to generate a representation of the new knowledge in its

If an elaboration phase ever reaches quiescence while the
preferences in working memory are either incomplete or in-
consistent, an impasse occurs in problem solving because the
system does not know how to proceed. When an impasse oc-
curs, a subgoal with an associated problem solving context is
automatically generated for the task of resolving the impasse.
The impasses, and thus their subgoals, vary from problems of
selection (of problem spaces, states, and operators) to
problems of generation (e.g., operator application). Given a
subgoal, Soar can bring its full problem solving capability and
knowledge to bear on resolving the impasse that caused the
subgoal. When subgoals occur within subgoals, a goal hierar-
chy results (which therefore defines a hierarchy of contexts).
The top goal in the hierarchy is a task goal. The subgoals
below it are all generated as the result of impasses in problem
solving. A subgoal terminates when its impasse is resolved,
even if there are many levels of subgoals below it (the lower
ones were all in the service of the terminated subgoal, so they
can be eliminated if it is resolved).

Chunking is a learning mechanism that automatically ac-
quires new productions that summarize the processing that

working memory.’ At this point, the new knowledge is avail-
able for use by the system, but it has not yet been learned -
working memory is only a temporary memory which holds the
current data upon which the system is working. The learning
act occurs when a production is created which can, at ap-
propriate points in the future, retrieve the new knowledge
into working memory. If Soar is to use its chunking
mechanism to do this, it must take advantage of the fact that
chunking learns from goal-based experience. The key is for it
to set up the right internal tasks so that its problem solving
experience in subgoals leads to the creation of chunks that
represent the new knowledge. Suppose Soar is to memorize a
new object, call it object A, so that it can be recalled on
demand. To accomplish this, a chunk needs to be acquired
that can generate the object when the demand arises. The
appropriate internal task for this problem would appear to be

‘Soar does not yet have an appropriate I/O interface, so in the
current implementation of data chunking this perceptual phase ip
performed by special purpose Lisp code.

580 Machine Learning & Knowledge Acquisition

simply to copy the object in a subgoal. The chunk that is task. There are two types of trials: training and performance.

learned from this experience has actions which generate an On each training trial the system is presented with a new ob-

object B that is a copy of object a. ject, and it must learn enough to be able to perform correctly

This simple solution glosses over two important problems. on the performance trials. On each performance trial the sys-

The first problem is that, if the generation of object B is tern is presented with an object which it may or may not

based on an examination of object A, then the conditions of have seen during the training trials. It must respond affirma-

the chunk will test for the existence of object A before tively if it has seen the object, and negatively if it has not.

generating object B, thus allowing the object to be recalled in The objects that the system deals with are one of two

only those circumstances where it is already available. The types: primitive or composite. Primitive objects are those

solution to this problem that we have discovered is to split that the system is initially set up to recognize: the letters

the act of recalling information into separate generate and a-z, plus the special objects C and 1. A composite object is

test phases. A generation problem space is provided in which a hierarchical structure of simpler objects that is eventually
new objects can be constructed by generating and combining grounded in primitive objects. The object representation in-
objects that the system has already learned to recall. Object eludes two attributes: name and substructure. An object is
B is thus constructed from scratch out of objects that the sys- recognized if it has a name. A primitive object has nothing
tern already knows, rather than being a direct copy of object but a name. A composite object may or may not have a
A. Object A is not examined during this process; instead, it is name, depending on whether it is recognized or not. A com-
examined during a test phase in which it is compared with posite object is distinguished from a primitive object by
object B to see if they are equivalent. Separate chunks are having a substructure attribute that gives the list of objects
learned for the generate and test phases, allowing a chunk to out of which the object is composed. The list always begins
be learned that generates object B without examining object with C, ends with I, and has one or more other objects - ei-
A. ther primitive or composite - in between. For example, [a

The second problem is that, at recall time, the system b cl and C Ca b cl [d e] 1, are two typical composite ob-

must both generate the learned object B and avoid generating jects.

all of the other objects that it could potentially generate. To learn to recognize a new composite object, an internal
The direct effect of the generation chunk is simply to cache task is set up in which the system first recognizes each of the
the generation of object B, allowing it to be generated more subobjects out of which the object is composed, and then
efficiently in the future (symbol level learning). This, by it- generates a new name for the composite object. The name
self, does not enable Soar to discriminate between object B becomes the result of the subgoal, and thus forms the basis
and the other objects that could be generated (knowledge for the action of a chunk. The name is dependent on the
level learning). However, this additional capability can be recognition of all of the object’s subobjects, so the conditions
provided if: all of the learned objects can be recalled before of the chunk test for the subobjects’ names. During a perfor-
any new objects can be generated; and if a termination signal mance trial, the recognition chunk can be used to assign a
can be given after the learned objects have been recalled and name to a presented object if it is equivalent to the learned
before any other objects are generated. In Soar, this one, allowing an affirmative response to be made to the
capability is provided directly by the structure of the decision recognition query.
cycle. The chunks fire during the elaboration phase, allowing In more detail, a training trial begins with a goal to learn
learned objects to be recalled directly. After all of the to recognize an object. A recognition problem space is
learned objects have been recalled, an impasse occurs. Other selected along with a state that points to the object that is to
objects could be generated in the subgoal for this impasse, or be learned - the current object - for example, Ca b cl. If
alternatively (and correctly) the impasse can be treated as a the current object is recognized - that is, has a name - the
termination signal, keeping other objects from being training trial is terminated because its task is already ac-
generated. Soar can thus break through the otherwise seam- complished. There is only one operator in the recognition
less interface, in which a cached value looks exactly like a problem space: get-next-element. If the current-object is
computed value, by making use of Soar’s ability to reflect on recognized, then the get-next-element operator receives an ac-
its own behavior [13] - specifically, its ability to base a deci- ceptable preference, allowing it to be selected as the current
sion on whether an impasse has occurred. operator. When the operator is executed, it generates a new

Generation chunks thus support symbol level learning state that points to the object that follows the current one.

(caching the generation of the object) and knowledge level However, if the current object is not recognized, the get-
learning (correct performance on recall tasks). As described next-element operator cannot be selected, and an impasse oc-
in the following two sections, rather than actually learning curs. It is in the subgoal that is generated for this impasse
test chunks, recognition chunks are learned. These recog- that recognition of the object is learned. The recognition
nition chunks speed up the performance of the system on problem space is used recursively in this subgoal, with an in-
both recall and recognition tasks (symbol level learning), plus
they allow Soar to perform correctly on recognition tasks

itial state that points to the object’s first subobject (i.e., [).
Because this new current object has a name, the get-next-

(knowledge level learning). The abilities to learn to recognize element operator is selected and applied, making the next
and recall new objects are two of the most basic, yet most
important, data chunking capabilities. If Soar is able to ac-

subobject (a, for the current example) the current object. If

complish these two paradigmatic learning tasks, it would
the subobject were not recognized, a second-level subgoal

seem to have opened the gates to the demonstration of the
would be generated, and the problem solving would again

remaining data chunking tasks, as well as to more sophis-
recur, but this time on the substructure of the subobject.
The recursion is grounded whenever objects are reached that

ticated forms of knowledge level learning. the system has previously learned to recognize. Initially this

TV. Recognition
is just for the primitive objects, but as the system learns to
recognize composite objects, they too can terminate the recur-

The recognition task is the simplest declarative memory sion.

Rosenbloom, bird, and Newell 506

When the system has succeeded in recognizing all of the As described in Section III, on a training trial the general

object’s subobjects, a unique internal name, such as approach is to set up a two-phase internal task in which the

PO@!&, is generated for the object. The new name is object is copied. In the first phase, a new composite object is

returned as the result of the subgoal, allowing the problem generated by executing a sequence of operators that recall and

solving to proceed in the parent context because now its cur- assemble subobjects that the system already knows. This

rent object has a name. The subgoal is thus terminated, and generation process does not depend on the presented object.

a chunk is learned that examines the object’s subobjects, and In the second phase, the generated object is tested to see if it

generates the object’s name. This recognition production can is equivalent to the presented object. Though this approach

fire whenever a state is selected that points to an object that solves the problem discussed in Section III, it also introduces

has the same substructure. In schematic pseudo-code, the a smaller but still important technical issue - how to ef-

production for the current example looks like the following. ficiently generate the new object without examining the

Currenl;-Obj ect(s, [a b cl <z>> --> presented object. Because it is possible to generate any ob-

Name (5, *pOO45*) (1) ject that can be constructed out of the already known objects,

The variable s binds to the current state in the context. The
there is a control problem involved in ensuring that the right

variable z binds to the identifier of the current object, whose
object is generated. The solution to this problem is to use

substructure must be [a b cl. The appearance of the
the presented object as search-control knowledge during the

relevant constants - [, a, b, c, I, and *pOO45* - in the
process of generating the new object. Search-control

conditions and actions of this production occur because, in
knowledge determines how quickly a problem is solved, not

creating a chunk from a set of production traces, constant
the correctness of the solution - the goal test determines the

symbols are not replaced by variables.
correctness - so the result does not depend on any of the

If [a b cl is now presented on a performance trial,
knowledge used to control the search. Thus, chunks never in-

production 1 (above) fires and augments the object with its
corporate control knowledge. In consequence, the generation

name. The system can then respond that it has recognized
process can proceed efficiently, but the chunk created for it

the object because there is a name associated with it. If an
will not depend on the presented object.

unknown object, such as [x y z], is presented on a perfor-
In more detail, a training trial begins with a goal to learn

mance trial, no recognition production fires, and an impasse
to recall a presented object. The system selects a recall

occurs. This impasse is used as a signal to terminate the per-
problem space. An initial state is created and selected that

formance trial with a “no” answer.
points to the presented object; for example, Presented (~1,
[a b cl), where sl is the identifier of the state. There is

If the object being learned is a multi-level composite ob-
ject, then in addition to learning to recognize the object itself,

only one type of operator in the recall problem space: recall.

recognition productions are learned for all of the unrecognized
An instance of the recall operator is generated for each of the

subobjects (and subsubobjects, etc.). For example, if the sys-
objects that the system knows how to recall. To enable the

tern is learning to recognize the object [[a b cl Cd e] 1, it
system to find these objects, they are all attached to the
recall problem space. This can be a very large set if many

first uses production 1 to recognize [a b c] and then learns
the following two new recognition productions:

objects have been memorized; a problem to which we return
in Section VI. Initially the system knows how to recall the

Current-Ob j ect (s, [d el <$>I --> same primitive objects that it can recognize: a-z, C, and 3.
Name (z, *pOO46*) (2) This set increases as the system learns to recall composite ob-

Current-Ob j ect (s, I*pOO45* *pOO46*] <z>> --> jects.
Name(z, *pOO47*) (3) The presented object acts as search control for the genera-

Chunks are also learned that allow composite subobjects to tion process by influencing which recall operator is selected.
be recognized directly in the context of the current object. First the system tries to recognize the presented object. For
To recognize a composite subobject without these chunks, the the current example, production 1 fires, augmenting the ob-
system would have to go into a subgoal in which the sub- ject with its name (*p0045*). If the system had not
object could itself be made the current object. previously learned to recognize the presented object, it does

If C Ca b cl Cd ell is now presented on a performance so now before proceeding to learn to recall it. Then, if there
trial, productions first fire to recognize [a b cl and Cd el is a recall operator that will recall an object with the same
as objects *pOO45* and *pOO46*. Production 3 then fires name, an acceptable preference is generated for the operator,
to recognize E*p0045* *pOO46*] as object *pOO47*. The allowing it to be selected. When a recall operator executes, it
system can then’ reply in the affirmative to the recognition creates a new state in which it adds the recalled object to a
query. structure representing the object being generated. If this hap-

v. Recall
pens in the top goal, it means that the system has already
learned to recall the presented object, and it is therefore done

The recall task involves the memorization of a set of ob- with the training trial.

jects, which are later to be generated on demand. From the However, when the system does not already know how to
point of view of the internal task, it is the dual of the recog- recall the object, as is true in this instance, no recall operator
nition task. Instead of incorporating information about a can be selected. An impasse occurs and a subgoal is
new object into the conditions of a production, the infor- generated. In this subgoal, processing recurses with the at-
mation must be incorporated into the actions. As with recog- tempt to recall the subobjects out of which the presented ob-
nition, there are training and performance trials. On each ject is composed. A new instance of the recall problem space
training trial the system is presented with a new object, and is created and selected. Then, an initial state is selected that
it must learn to generate the object on demand. On a perfor- points to the first subobject of the presented object

mance trial, the system receives a recall request, and must (Presented (s2, I>). In this subgoal, processing proceeds

respond by producing the objects that it learned to generate just as in the parent goal. If the object is not recognized, the
on the training trials. system learns to recognize it. Then, if the object cannot be

502 Machine learning & Knowledge Acquisition

recalled, the system learns to recall it in a further subgoal.
However, in this case the object (C) is a primitive and can
thus already be recognized and recalled. The appropriate
recall operator is selected and creates a new state with a
newly generated [object, in it (Generated (s3, 0). The
operator also augments the new state with the successor to
the presented object (Presented Cs3, a)). This infor-
mation is used later to guide the selection of the next, recall
operator.

The system continues in this fashion until a state is
created that contains a completely generated object (for ex-
ample, Generated(s7, [a b cl I). The one thing missing
from the generated object is a name, so the system next, tries
to recognize the generated object as an instance of some
known object,. If recognition fails, the subgoal stays around
and the system has the opportunity to try again to generate a
recognizable object. If recognition succeeds, as it does here,
the generated object, is augmented with its name (*pOO45+).
Generation is now complete, so the generated object is added
to the set, of objects that can be recalled in the parent goal
(unless there is already an object, with that name in the set).
This act makes the generated object a result of the subgoal,
causing a chunk to be learned which can generate the object
in the future. Execution of this chunk is the basic act of
retrieving the remembered object from long-term (production)
memory into working memory. In schematic pseudo-code,
this chunk looks like the following.

-0b j ect (recall, +pOO45*) -->
Object(recal1, *p0045*Ca b cl> (4)

This production says that the object should be generated and
attached to the recall problem space if there is not, already an
object with that name so attached.

Though generation is now complete, the generated object,
cannot yet be recalled in the parent goal until a goal test has
been performed to ensure that the generated object is equiv-
alent to the presented object. This test is performed by com-
paring the name of the presented object with the name of the
generated object. If the names match, a recall operator can
be selected in the parent goal for the generated object, and
the subgoal is terminated. The recall operator is then ex-
ecuted, and processing continues. If the names do not, match,
no recall operator is selected, the subgoal does not terminate,
and the system has the opportunity to keep trying.

During a performance trial, the top goal is to recall all of
the objects so far learned. A recall problem space is created,
selected, and then augmented with the set of objects that the
system has learned Go recall. Since the goal is to recall all
learned objects rather than just a specific one, acceptable and
indifferent preferences are created for all of the recall
operators, allowing everything that has been so far learned to
be recalled in random order - the indifferent preferences state
that it doesn’t care which of the operators is selected first,.
Recall performance is terminated when no more recall
operators can be selected. This condition is signaled by the
occurrence of an impasse. In the resulting subgoal the system
cpuld generate more objects, but, it should not, because they
would not correspond to objects it has seen.

-If the object being learned is a multi-level composite ob-
ject, the system learns to recall the object as well as each sub-
object, assuming it has not previously learned them. If the
system were to learn to recall the object [[a b c] [d el I,
given that it has already learned to recognize the object and
its subobjects, and to recall the subobject [a b cl, the fol-
lowing two new generation productions would be learned.

-0bj ect (recall, *pOO46S) -->
Object (recall, *pOO46* [d el > (5)

-0b j ect (recall, *pOO47*) -->
Object (recall, *pOO47* [*pOO45* *pOO46*] > (6)

On a performance trial that follows these training trials, the
system would recall all three objects.

In this article we have demonstrated how Soar can expand
its knowledge level to incorporate information about new ob-
jects, and thus perform knowledge level learning. This was
accomplished with chunking, a symbol level learning
mechanism, as the only learning mechanism. One new
mechanism was added to Soar for this work: the ability to
generate new long-term symbols to serve as the names of ob-
jects. However, this capability is only critical for the learning
of object, hierarchies. Knowledge level learning can be
demonstrated for simpler one-level objects without this added
capability.

One implication of this demonstration is that caution
must be exercised in classifying learning mechanisms as either
symbol level or knowledge level. The distinction may not be
as fundamental as it seems. In fact, other symbol level learn-
ing mechanisms, such as EBG, may also be able to produce
knowledge level learning. A second implication of this
demonstration is that chunking may not have been mis-
named, and that it may be able to produce the full span of
data chunking phenomena.

Three important items are left for future work. The first
item is to extend the demonstrations provided here to more
complex tasks. Work is currently underway on several
projects that incorporate data chunking as part of a larger
whole. In one such project,, data chunking will be used during
the acquisition of problem spaces for new tasks [14]. Work is
also underway on more complex forms of knowledge level
learning. In one such project,, based on the work described in
[S], analogical problem solving will be used as a basis for

bottom-up (generalization-based) induction. In a second such
project, top-down (discrimination-based) induction is per-
formed during paired-associate learning (see also the next
paragraph). Both of these latter two projects demonstrate
what Dietterich termed
learning [3].

nondeductive knowledge level

The second item is to overcome a flaw in the way recall
works. The problem is that whenever a recall problem space
is entered, all of the objects that the system has ever learned
to recall are retrieved from production memory into working
memory. If the system has remembered many objects, this
may be quite a time-consuming operation. We have begun
work on an alternative approach to recall that is based on a
cued-recall paradigm. In this version, the system builds up a
discrimination network of cues that tell it which objects
should be retrieved into working memory. Early results with
this version have demonstrated the ability to greatly reduce
the number of objects retrieved into working memory. The
results also demonstrate a form of discrimination-based in-
duction that allows objects to be recalled based on partial
specifications.

The third item is to use our data chunking approach as
the basis for a psychological model of declarative learning and
memory. Th ere are already a number of promising indica-
tions: the resemblance between our model of recall and the
generate-recognize theory of recall (see, for example, [IS]); the
resemblance between the discrimination network learned
during cued recall and the EPAM model of paired-associate

Rosenbloom, bird, and Newell 503

learning [4]; the resemblance of retrieval-by-partial- 8. Miller, G. A. “The magic number seven plus or minus

specification to the description-based memory model of Nor- two: Some limits on our capacity for processing information.”

man and Bobrow [ll]; and the way in which both learning Psychological Review 69 (1956), 81-97.

and retrieval are reconstructive processes in the cued recall 9. Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T.

model. These resemblances came about not because we were “Explanation-based generalization: A unifying view.”

trying to model the human data, but because the constraints Machine Learning 1 (1986), 47-80.

on the architecture forced us to approach the problems in the 10. Newell, A. “The knowledge level.” AT Magazine 2
way we have. (1981), l-20.

References
1. Buschke, H. “Learning is organized by chunking. ‘I
Journal of Verbal Learning and Verbal Behavior 15 (1976)
313-324.
2. DeJong, G., & Mooney, R. “Explanation-based learning:
An alternative view. ‘I
3. Dietterich, T. G.

Machine Learning 1 (1986), 145-176.
“Learning at the knowledge level. ‘1

Machine Learning 1 (1986), 287-315.
4. Feigenbaum, E. A., & Simon, H. A. “EPAM-like models
of recognition and learning. ”
305-336.

Cbgnitive Science 8 (1984),

5. Golding, A., Rosenbloom, P. S., & Laird, J. E. Learning
general search control from outside guidance. Proceedings of
IJCAI-87, Milan, 1987. In press
6. Laird, J. E., Newell, A., & Rosenbloom, P. S. “Soar: An
architecture for general intelligence.” Artificial Intelligence
33 (1987). In Press
7. Laird, J. E., Rosenbloom, P. S., & Newell, A. “Chunking
in Soar: The anatomy of a general learning mechanism. ‘I
Machine Learning I (1986), 11-46.

11. Norman, D. A., & Bobrow, D. G. “Descriptions: An in-
termediate stage in memory retrieval.” Cognitive Psychology
11 (1979), 107-123.
12. Rosenbloom, P. S., & Laird, J. E. Mapping explanation-
based generalization onto Soar. Proceedings of AAAI-86,
Philadelphia, 1986.
13. Rosenbloom, P. S., Laird, J. E., & Newell, A. Meta-
levels in Soar. Proceedings of the Workshop on Me&Level
Architecture and Reflection, Sardinia, 1986.
14. Steier, D. M., Laird, J. E., Newell, A., Rosenbloom,
P. S., Flynn, R., Golding, A., Polk, T. A., Shivers, 0. G., Un-
ruh, A., & Yost, G. R. Varieties of Learning in Soar: 1987.
Proceedings of the Fourth International Machine Learning
Workshop, Irvine, 1987. In press
15. Watkins, M. J., & Gardiner, J. M. “An appreciation of
generate-recognize theory of recall. ” Journal of Verbal
Learning and Verbal Behavior 18 (1979), 687-704.

504 Machine learning & Knowledge Acquisition

