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Abstract 
In this article we demonstrate how knowledge level learn- 
ing can be performed within the Soar architecture. That 
is, we demonstrate how Soar can acquire new knowledge 
that is not deductively implied by its existing knowledge. 
This demonstration employs Soar’s chunking mechanism 
- a mechanism which acquires new productions from 
goal-baaed experience - as its only learning mechanism. 
Chunking has previously been demonstrated to be a use- 
ful symbol level learning mechanism, able to speed up the 
performance of existing systems, but this is the first 
demonstration of its ability to perform knowledge level 
learning. Two simple declarative-memory tasks are 
employed for this demonstration: recognition and recall. 

I. Introduction 
Dietterich has recently divided learning systems into two 

classes: symbol level learners and knowledge level 
learners [3]. The distinction is based on whether or not the 
knowledge in the system, as measured by a knowledge level 
analysis [lo], increases with learning. A system performs 
symbol level learning if it improves its computational perfor- 
mance but does not increase the amount of knowledge it con- 
tains. According to a knowledge level analysis, knowledge 
only increases if a fact is added that is not implied by the ex- 
isting knowledge; that is, if the fact is not in the deductive 
closure of the existing knowledge. Explanation-based 
generalization (EBG) [2; 91 is a prime example of a learning 
technique that has proven quite successful as a mechanism for 
enabling a system to perform symbol level learning. EBG al- 
lows tasks that a system can already perform to be refor- 
mulated in such a way that they can be performed more ef- 
ficiently. Because EBG only generates knowledge that is al- 
ready within the deductive closure of its current knowledge 
base, it does no knowledge level learning (at least when used 
in any obvious ways). 

Symbol level learning can be quite useful for an intelligent 
system. By speeding up the system’s performance, it allows 
the system to perform more tasks while using the same 
amount of resources, and enables the system to complete 
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and describe some important future work. 

II. Overview of Soar 
Soar is based on formulating all goal-oriented processing 

as search in problem spaces. The problem space determines 
the set of legal states and operators that can be used during 
the processing to attain a goal. The states represent situa- 
tions. There is an initial state, representing the initial situa- 
tion, and a set of desired states that represent the goal. An 
operator, when applied to a state in the problem space, yields 
another state in the problem space. The goal is achieved 
when one of the desired states is reached as the result of a 
string of operator applications starting from the initial state. 

Goals, problem spaces, states, and operators exist as data 
structures in Soar’s working memory - a short-term declara- 
tive memory. Each goal defines a problem solving context 
(“context” for short). A context is a data structure in the 
working memory that contains, in addition to a goal, roles for 
a problem space, a state, and an operator. Problem solving 
for a goal is driven by the acts of selecting problem spaces, 
states, and operators for the appropriate roles in the context. 
Each of the deliberate acts of the Soar architecture - a selec- 
tion of a problem space, a state or an operator - is ac- 
complished via a two-phase decision cycle. First, during the 
elaboration phase, the description of the current situation 
(that is, the contents of working memory) is elaborated with 
relevant information from Soar’s production memory - a 
long-term procedural memory. The elaboration process in- 
volves the creation of new objects, the addition of knowledge 
about existing objects, and the addition of preferences. There 
is a fixed language of preferences that is used to describe the 
acceptability and desirability of the alternatives being con- 
sidered for selection. By using different preferences, it is pos- 
sible to assert that a particular problem space, state, or 
operator is acceptable (should be considered for selection), 
rejected (should not be considered for selection), better than 
another alternative, and so on. When the elaboration phase 
reaches quiescence - that is, no more productions can fire - 
the preferences in working memory are interpreted by a fixed 
decision procedure. If the preferences uniquely specify an ob- 
ject to be selected for a role in a context, then a decision can 
be made, and the specified object becomes the current value 
of the role. The decision cycle then repeats, starting with 
another elaboration phase. 

leads to results of subgoals. The actions of the new produc- 
tions are based on the results of the subgoal. The conditions 
are based on those aspects of the pre-goal situation that were 
relevant to the determination of the results. Relevance is 
determined by treating the traces of the productions that 
fired during the subgoal as dependency structures. Starting 
from the production trace that generated the subgoal’s result, 
those production traces that generated the working-memory 
elements in the condition of the trace are found, and then the 
traces that generated their condition elements are found, and 
so on until elements are reached that exist outside of the sub- 
goal. These elements form the basis for the conditions of the 
chunk. Productions that only generate preferences do not 
participate in this backtracing process - preferences only af- 
fect the efficiency with which a goal is achieved, and not the 
correctness of the goal’s results. Once the working-memory 
elements that are to form the basis of the conditions and ac- 
tions of a chunk have been determined, the elements are 
processed to yield the final conditions and actions. For the 
purposes of this article, the most important part of this 
processing is the replacement of some of the symbols in the 
working-memory elements by variables. If a symbol is an ob- 
ject identifier - a temporary place-holder symbol used to tie 
together the information about an object in working memory 
_ then it is replaced by a variable; otherwise the symbol is 
left as a constant. This is the minimal generalization re- 
quired to get any transfer. 

Chunking applies to all of the subgoals generated during 
task performance. Once a chunk has been learned, the new 
production will fire during the elaboration phase in relevantly 
similar situations in the future, directly producing the re- 
quired information. No impasse will occur, and problem solv- 
ing can proceed smoothly. Chunking is thus a form of goal- 
based caching which avoids redundant future effort by 
directly producing a result that once required problem solving 
to determine. 

. F~mdament%els of Data Ghunking 
Reduced to its essentials, data chunking involves the per- 

ception of some new piece of knowledge, followed by the 
storage of some representation of the new knowledge into 
long-term memory. Thus, the first step in performing data 
chunking in Soar is for Soar to use its perceptual capabilities 
to generate a representation of the new knowledge in its 

If an elaboration phase ever reaches quiescence while the 
preferences in working memory are either incomplete or in- 
consistent, an impasse occurs in problem solving because the 
system does not know how to proceed. When an impasse oc- 
curs, a subgoal with an associated problem solving context is 
automatically generated for the task of resolving the impasse. 
The impasses, and thus their subgoals, vary from problems of 
selection (of problem spaces, states, and operators) to 
problems of generation (e.g., operator application). Given a 
subgoal, Soar can bring its full problem solving capability and 
knowledge to bear on resolving the impasse that caused the 
subgoal. When subgoals occur within subgoals, a goal hierar- 
chy results (which therefore defines a hierarchy of contexts). 
The top goal in the hierarchy is a task goal. The subgoals 
below it are all generated as the result of impasses in problem 
solving. A subgoal terminates when its impasse is resolved, 
even if there are many levels of subgoals below it (the lower 
ones were all in the service of the terminated subgoal, so they 
can be eliminated if it is resolved). 

Chunking is a learning mechanism that automatically ac- 
quires new productions that summarize the processing that 

working memory.’ At this point, the new knowledge is avail- 
able for use by the system, but it has not yet been learned - 
working memory is only a temporary memory which holds the 
current data upon which the system is working. The learning 
act occurs when a production is created which can, at ap- 
propriate points in the future, retrieve the new knowledge 
into working memory. If Soar is to use its chunking 
mechanism to do this, it must take advantage of the fact that 
chunking learns from goal-based experience. The key is for it 
to set up the right internal tasks so that its problem solving 
experience in subgoals leads to the creation of chunks that 
represent the new knowledge. Suppose Soar is to memorize a 
new object, call it object A, so that it can be recalled on 
demand. To accomplish this, a chunk needs to be acquired 
that can generate the object when the demand arises. The 
appropriate internal task for this problem would appear to be 

‘Soar does not yet have an appropriate I/O interface, so in the 
current implementation of data chunking this perceptual phase ip 
performed by special purpose Lisp code. 
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simply to copy the object in a subgoal. The chunk that is task. There are two types of trials: training and performance. 

learned from this experience has actions which generate an On each training trial the system is presented with a new ob- 

object B that is a copy of object a. ject, and it must learn enough to be able to perform correctly 

This simple solution glosses over two important problems. on the performance trials. On each performance trial the sys- 

The first problem is that, if the generation of object B is tern is presented with an object which it may or may not 

based on an examination of object A, then the conditions of have seen during the training trials. It must respond affirma- 

the chunk will test for the existence of object A before tively if it has seen the object, and negatively if it has not. 

generating object B, thus allowing the object to be recalled in The objects that the system deals with are one of two 

only those circumstances where it is already available. The types: primitive or composite. Primitive objects are those 

solution to this problem that we have discovered is to split that the system is initially set up to recognize: the letters 

the act of recalling information into separate generate and a-z, plus the special objects C and 1. A composite object is 

test phases. A generation problem space is provided in which a hierarchical structure of simpler objects that is eventually 
new objects can be constructed by generating and combining grounded in primitive objects. The object representation in- 
objects that the system has already learned to recall. Object eludes two attributes: name and substructure. An object is 
B is thus constructed from scratch out of objects that the sys- recognized if it has a name. A primitive object has nothing 
tern already knows, rather than being a direct copy of object but a name. A composite object may or may not have a 
A. Object A is not examined during this process; instead, it is name, depending on whether it is recognized or not. A com- 
examined during a test phase in which it is compared with posite object is distinguished from a primitive object by 
object B to see if they are equivalent. Separate chunks are having a substructure attribute that gives the list of objects 
learned for the generate and test phases, allowing a chunk to out of which the object is composed. The list always begins 
be learned that generates object B without examining object with C, ends with I, and has one or more other objects - ei- 
A. ther primitive or composite - in between. For example, [a 

The second problem is that, at recall time, the system b cl and C Ca b cl [d e] 1, are two typical composite ob- 

must both generate the learned object B and avoid generating jects. 

all of the other objects that it could potentially generate. To learn to recognize a new composite object, an internal 
The direct effect of the generation chunk is simply to cache task is set up in which the system first recognizes each of the 
the generation of object B, allowing it to be generated more subobjects out of which the object is composed, and then 
efficiently in the future (symbol level learning). This, by it- generates a new name for the composite object. The name 
self, does not enable Soar to discriminate between object B becomes the result of the subgoal, and thus forms the basis 
and the other objects that could be generated (knowledge for the action of a chunk. The name is dependent on the 
level learning). However, this additional capability can be recognition of all of the object’s subobjects, so the conditions 
provided if: all of the learned objects can be recalled before of the chunk test for the subobjects’ names. During a perfor- 
any new objects can be generated; and if a termination signal mance trial, the recognition chunk can be used to assign a 
can be given after the learned objects have been recalled and name to a presented object if it is equivalent to the learned 
before any other objects are generated. In Soar, this one, allowing an affirmative response to be made to the 
capability is provided directly by the structure of the decision recognition query. 
cycle. The chunks fire during the elaboration phase, allowing In more detail, a training trial begins with a goal to learn 
learned objects to be recalled directly. After all of the to recognize an object. A recognition problem space is 
learned objects have been recalled, an impasse occurs. Other selected along with a state that points to the object that is to 
objects could be generated in the subgoal for this impasse, or be learned - the current object - for example, Ca b cl. If 
alternatively (and correctly) the impasse can be treated as a the current object is recognized - that is, has a name - the 
termination signal, keeping other objects from being training trial is terminated because its task is already ac- 
generated. Soar can thus break through the otherwise seam- complished. There is only one operator in the recognition 
less interface, in which a cached value looks exactly like a problem space: get-next-element. If the current-object is 
computed value, by making use of Soar’s ability to reflect on recognized, then the get-next-element operator receives an ac- 
its own behavior [13] - specifically, its ability to base a deci- ceptable preference, allowing it to be selected as the current 
sion on whether an impasse has occurred. operator. When the operator is executed, it generates a new 

Generation chunks thus support symbol level learning state that points to the object that follows the current one. 

(caching the generation of the object) and knowledge level However, if the current object is not recognized, the get- 
learning (correct performance on recall tasks). As described next-element operator cannot be selected, and an impasse oc- 
in the following two sections, rather than actually learning curs. It is in the subgoal that is generated for this impasse 
test chunks, recognition chunks are learned. These recog- that recognition of the object is learned. The recognition 
nition chunks speed up the performance of the system on problem space is used recursively in this subgoal, with an in- 
both recall and recognition tasks (symbol level learning), plus 
they allow Soar to perform correctly on recognition tasks 

itial state that points to the object’s first subobject (i.e., [). 
Because this new current object has a name, the get-next- 

(knowledge level learning). The abilities to learn to recognize element operator is selected and applied, making the next 
and recall new objects are two of the most basic, yet most 
important, data chunking capabilities. If Soar is able to ac- 

subobject (a, for the current example) the current object. If 

complish these two paradigmatic learning tasks, it would 
the subobject were not recognized, a second-level subgoal 

seem to have opened the gates to the demonstration of the 
would be generated, and the problem solving would again 

remaining data chunking tasks, as well as to more sophis- 
recur, but this time on the substructure of the subobject. 
The recursion is grounded whenever objects are reached that 

ticated forms of knowledge level learning. the system has previously learned to recognize. Initially this 

TV. Recognition 
is just for the primitive objects, but as the system learns to 
recognize composite objects, they too can terminate the recur- 

The recognition task is the simplest declarative memory sion. 

Rosenbloom, bird, and Newell 506 



When the system has succeeded in recognizing all of the As described in Section III, on a training trial the general 

object’s subobjects, a unique internal name, such as approach is to set up a two-phase internal task in which the 

*PO@!&*, is generated for the object. The new name is object is copied. In the first phase, a new composite object is 

returned as the result of the subgoal, allowing the problem generated by executing a sequence of operators that recall and 

solving to proceed in the parent context because now its cur- assemble subobjects that the system already knows. This 

rent object has a name. The subgoal is thus terminated, and generation process does not depend on the presented object. 

a chunk is learned that examines the object’s subobjects, and In the second phase, the generated object is tested to see if it 

generates the object’s name. This recognition production can is equivalent to the presented object. Though this approach 

fire whenever a state is selected that points to an object that solves the problem discussed in Section III, it also introduces 

has the same substructure. In schematic pseudo-code, the a smaller but still important technical issue - how to ef- 

production for the current example looks like the following. ficiently generate the new object without examining the 

Currenl;-Obj ect(s, [a b cl <z>> --> presented object. Because it is possible to generate any ob- 

Name (5, *pOO45*) (1) ject that can be constructed out of the already known objects, 

The variable s binds to the current state in the context. The 
there is a control problem involved in ensuring that the right 

variable z binds to the identifier of the current object, whose 
object is generated. The solution to this problem is to use 

substructure must be [a b cl. The appearance of the 
the presented object as search-control knowledge during the 

relevant constants - [, a, b, c, I, and *pOO45* - in the 
process of generating the new object. Search-control 

conditions and actions of this production occur because, in 
knowledge determines how quickly a problem is solved, not 

creating a chunk from a set of production traces, constant 
the correctness of the solution - the goal test determines the 

symbols are not replaced by variables. 
correctness - so the result does not depend on any of the 

If [a b cl is now presented on a performance trial, 
knowledge used to control the search. Thus, chunks never in- 

production 1 (above) fires and augments the object with its 
corporate control knowledge. In consequence, the generation 

name. The system can then respond that it has recognized 
process can proceed efficiently, but the chunk created for it 

the object because there is a name associated with it. If an 
will not depend on the presented object. 

unknown object, such as [x y z], is presented on a perfor- 
In more detail, a training trial begins with a goal to learn 

mance trial, no recognition production fires, and an impasse 
to recall a presented object. The system selects a recall 

occurs. This impasse is used as a signal to terminate the per- 
problem space. An initial state is created and selected that 

formance trial with a “no” answer. 
points to the presented object; for example, Presented (~1, 
[a b cl), where sl is the identifier of the state. There is 

If the object being learned is a multi-level composite ob- 
ject, then in addition to learning to recognize the object itself, 

only one type of operator in the recall problem space: recall. 

recognition productions are learned for all of the unrecognized 
An instance of the recall operator is generated for each of the 

subobjects (and subsubobjects, etc.). For example, if the sys- 
objects that the system knows how to recall. To enable the 

tern is learning to recognize the object [ [a b cl Cd e] 1, it 
system to find these objects, they are all attached to the 
recall problem space. This can be a very large set if many 

first uses production 1 to recognize [a b c] and then learns 
the following two new recognition productions: 

objects have been memorized; a problem to which we return 
in Section VI. Initially the system knows how to recall the 

Current-Ob j ect (s, [d el <$>I --> same primitive objects that it can recognize: a-z, C, and 3. 
Name (z, *pOO46*) (2) This set increases as the system learns to recall composite ob- 

Current-Ob j ect (s, I*pOO45* *pOO46*] <z>> --> jects. 
Name(z, *pOO47*) (3) The presented object acts as search control for the genera- 

Chunks are also learned that allow composite subobjects to tion process by influencing which recall operator is selected. 
be recognized directly in the context of the current object. First the system tries to recognize the presented object. For 
To recognize a composite subobject without these chunks, the the current example, production 1 fires, augmenting the ob- 
system would have to go into a subgoal in which the sub- ject with its name (*p0045*). If the system had not 
object could itself be made the current object. previously learned to recognize the presented object, it does 

If C Ca b cl Cd ell is now presented on a performance so now before proceeding to learn to recall it. Then, if there 
trial, productions first fire to recognize [a b cl and Cd el is a recall operator that will recall an object with the same 
as objects *pOO45* and *pOO46*. Production 3 then fires name, an acceptable preference is generated for the operator, 
to recognize E*p0045* *pOO46*] as object *pOO47*. The allowing it to be selected. When a recall operator executes, it 
system can then’ reply in the affirmative to the recognition creates a new state in which it adds the recalled object to a 
query. structure representing the object being generated. If this hap- 

v. Recall 
pens in the top goal, it means that the system has already 
learned to recall the presented object, and it is therefore done 

The recall task involves the memorization of a set of ob- with the training trial. 

jects, which are later to be generated on demand. From the However, when the system does not already know how to 
point of view of the internal task, it is the dual of the recog- recall the object, as is true in this instance, no recall operator 
nition task. Instead of incorporating information about a can be selected. An impasse occurs and a subgoal is 
new object into the conditions of a production, the infor- generated. In this subgoal, processing recurses with the at- 
mation must be incorporated into the actions. As with recog- tempt to recall the subobjects out of which the presented ob- 
nition, there are training and performance trials. On each ject is composed. A new instance of the recall problem space 
training trial the system is presented with a new object, and is created and selected. Then, an initial state is selected that 
it must learn to generate the object on demand. On a perfor- points to the first subobject of the presented object 

mance trial, the system receives a recall request, and must (Presented (s2, I> ). In this subgoal, processing proceeds 

respond by producing the objects that it learned to generate just as in the parent goal. If the object is not recognized, the 
on the training trials. system learns to recognize it. Then, if the object cannot be 
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recalled, the system learns to recall it in a further subgoal. 
However, in this case the object (C) is a primitive and can 
thus already be recognized and recalled. The appropriate 
recall operator is selected and creates a new state with a 
newly generated [ object, in it (Generated (s3, 0). The 
operator also augments the new state with the successor to 
the presented object (Presented Cs3, a)). This infor- 
mation is used later to guide the selection of the next, recall 
operator. 

The system continues in this fashion until a state is 
created that contains a completely generated object (for ex- 
ample, Generated(s7, [a b cl I). The one thing missing 
from the generated object is a name, so the system next, tries 
to recognize the generated object as an instance of some 
known object,. If recognition fails, the subgoal stays around 
and the system has the opportunity to try again to generate a 
recognizable object. If recognition succeeds, as it does here, 
the generated object, is augmented with its name (*pOO45+). 
Generation is now complete, so the generated object is added 
to the set, of objects that can be recalled in the parent goal 
(unless there is already an object, with that name in the set). 
This act makes the generated object a result of the subgoal, 
causing a chunk to be learned which can generate the object 
in the future. Execution of this chunk is the basic act of 
retrieving the remembered object from long-term (production) 
memory into working memory. In schematic pseudo-code, 
this chunk looks like the following. 

-0b j ect (recall, +pOO45*) --> 
Object(recal1, *p0045*Ca b cl> (4) 

This production says that the object should be generated and 
attached to the recall problem space if there is not, already an 
object with that name so attached. 

Though generation is now complete, the generated object, 
cannot yet be recalled in the parent goal until a goal test has 
been performed to ensure that the generated object is equiv- 
alent to the presented object. This test is performed by com- 
paring the name of the presented object with the name of the 
generated object. If the names match, a recall operator can 
be selected in the parent goal for the generated object, and 
the subgoal is terminated. The recall operator is then ex- 
ecuted, and processing continues. If the names do not, match, 
no recall operator is selected, the subgoal does not terminate, 
and the system has the opportunity to keep trying. 

During a performance trial, the top goal is to recall all of 
the objects so far learned. A recall problem space is created, 
selected, and then augmented with the set of objects that the 
system has learned Go recall. Since the goal is to recall all 
learned objects rather than just a specific one, acceptable and 
indifferent preferences are created for all of the recall 
operators, allowing everything that has been so far learned to 
be recalled in random order - the indifferent preferences state 
that it doesn’t care which of the operators is selected first,. 
Recall performance is terminated when no more recall 
operators can be selected. This condition is signaled by the 
occurrence of an impasse. In the resulting subgoal the system 
cpuld generate more objects, but, it should not, because they 
would not correspond to objects it has seen. 

-If the object being learned is a multi-level composite ob- 
ject, the system learns to recall the object as well as each sub- 
object, assuming it has not previously learned them. If the 
system were to learn to recall the object [[a b c] [d el I, 
given that it has already learned to recognize the object and 
its subobjects, and to recall the subobject [a b cl, the fol- 
lowing two new generation productions would be learned. 

-0bj ect (recall, *pOO46S) --> 
Object (recall, *pOO46* [d el > (5) 

-0b j ect (recall, *pOO47*) --> 
Object (recall, *pOO47* [*pOO45* *pOO46*] > (6) 

On a performance trial that follows these training trials, the 
system would recall all three objects. 

In this article we have demonstrated how Soar can expand 
its knowledge level to incorporate information about new ob- 
jects, and thus perform knowledge level learning. This was 
accomplished with chunking, a symbol level learning 
mechanism, as the only learning mechanism. One new 
mechanism was added to Soar for this work: the ability to 
generate new long-term symbols to serve as the names of ob- 
jects. However, this capability is only critical for the learning 
of object, hierarchies. Knowledge level learning can be 
demonstrated for simpler one-level objects without this added 
capability. 

One implication of this demonstration is that caution 
must be exercised in classifying learning mechanisms as either 
symbol level or knowledge level. The distinction may not be 
as fundamental as it seems. In fact, other symbol level learn- 
ing mechanisms, such as EBG, may also be able to produce 
knowledge level learning. A second implication of this 
demonstration is that chunking may not have been mis- 
named, and that it may be able to produce the full span of 
data chunking phenomena. 

Three important items are left for future work. The first 
item is to extend the demonstrations provided here to more 
complex tasks. Work is currently underway on several 
projects that incorporate data chunking as part of a larger 
whole. In one such project,, data chunking will be used during 
the acquisition of problem spaces for new tasks [14]. Work is 
also underway on more complex forms of knowledge level 
learning. In one such project,, based on the work described in 
[S], analogical problem solving will be used as a basis for 

bottom-up (generalization-based) induction. In a second such 
project, top-down (discrimination-based) induction is per- 
formed during paired-associate learning (see also the next 
paragraph). Both of these latter two projects demonstrate 
what Dietterich termed 
learning [3]. 

nondeductive knowledge level 

The second item is to overcome a flaw in the way recall 
works. The problem is that whenever a recall problem space 
is entered, all of the objects that the system has ever learned 
to recall are retrieved from production memory into working 
memory. If the system has remembered many objects, this 
may be quite a time-consuming operation. We have begun 
work on an alternative approach to recall that is based on a 
cued-recall paradigm. In this version, the system builds up a 
discrimination network of cues that tell it which objects 
should be retrieved into working memory. Early results with 
this version have demonstrated the ability to greatly reduce 
the number of objects retrieved into working memory. The 
results also demonstrate a form of discrimination-based in- 
duction that allows objects to be recalled based on partial 
specifications. 

The third item is to use our data chunking approach as 
the basis for a psychological model of declarative learning and 
memory. Th ere are already a number of promising indica- 
tions: the resemblance between our model of recall and the 
generate-recognize theory of recall (see, for example, [IS]); the 
resemblance between the discrimination network learned 
during cued recall and the EPAM model of paired-associate 
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learning [4]; the resemblance of retrieval-by-partial- 8. Miller, G. A. “The magic number seven plus or minus 

specification to the description-based memory model of Nor- two: Some limits on our capacity for processing information.” 

man and Bobrow [ll]; and the way in which both learning Psychological Review 69 (1956), 81-97. 

and retrieval are reconstructive processes in the cued recall 9. Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. 

model. These resemblances came about not because we were “Explanation-based generalization: A unifying view.” 

trying to model the human data, but because the constraints Machine Learning 1 (1986), 47-80. 

on the architecture forced us to approach the problems in the 10. Newell, A. “The knowledge level.” AT Magazine 2 
way we have. (1981), l-20. 
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