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Abstract 
We give a declarative formulation of the biases used in 
inductive concept learning, particularly the Version- 
Space approach. We then show how the process of 
learning a concept from examples can be implemented 
as a first-order deduction from the bias and the facts 
describing the inst antes . This has the following ad- 
vantages: 1) multiple sources and forms of knowl- 
edge can be incorporated into the learning process; 
2) the learning system can be more fully integrated 
with the rest of the beliefs and reasoning of a com- 
plete intelligent agent. W ithout a semantic8 for the 
bias, we cannot generally 
chines that generate 

and practically build ma- 
inductive biases automatically 

and hence are able to learn indeDendentlv. With this . 
in mind. we show how one Dart bf the bias for Meta- 
DENDkAL, its instance description language, can be 
represented using first-order axioms called determi- 
nations, and can be derived from basic background 
knowledge about chemistry. The second part-of the 
paper shows how bias can be represented as defaults, 
allowing shift of bias to be accommodated in a non- 
monoto&c framework. 

mtro 
The stalzdard paridigm for inciuctive concept learning as hy- 
pothesis refinement from positive and negative examples was 
discussed by John Stuart Mill (2843), and has sinc;kcoFre 
an important part of machine learning research. - 
rently dominant approach to concept learning is that of a search 
through a predefined apace of candidate definitions for one that 
is consistent with the data so far seen. 

The approach that we are proposing is to view the process 
of learning a concept from examples as an inference process, 
beginning from declarnlively expressed premises, namely the in- 
stances and their descriptions together with whatever else the 
system may know, and leading to a conclusion, namely (if the 
system is successful) a belief in the correctness of the concept 
definition arrived at. The premises should provide good rea- 
sons, either deductive or inductive, for the conclusions. One 
part of our project, begun in (Russell, 1986a), is therefore to 
show how existing knowledge can generate extra constraints 
on allowable or preferable hypotheses, over and above simple 
consistency with observed instances. These constraints were 
grouped by Mitchell (1980) under the term bias. This is per- 
haps an unfortunate term, since it suggests that we have some- 
thing other than a good reason for applying these constraints. 
Mitchell himself concludes the paper with: 

It would be wise to make the biases and their use in 
controlling learning just as explicit as past research 
has made the observations and their use. 

The most important reason for the declarative characterization 
of bias is that without it, concept learning cannot practically 
become an integral part of artificially intelligent systems. As 
long as the process of deciding on a bias is left to the program- 
mer, concept learning is not something an AI system can do for 

itself. And as Rendell (1986) has shown, in typical AI concept 
learning systems, most of the information is contained in the - 
choice of bias, rather than in the observed instances. We will 
therefore try to analyze biases to see what they mean as facts 
or assumptions about the world, i.e. the environment external 
to the program. We will also need a plausible argument as to 
how a system could reasonably come to believe the premises of 
the deductive process; they should be automatically acquirable, 
at least in principle. 

We will first describe the Version Space method and can- 
didate elimination procedure of Mitchell (1978), and will show 
how the various types of bias present in this method can be 
represented as first-order statements. We illustrate this by for- 
malizing part of the bias used in the Meta-DENDRAL sys- 
tem (Buchanan and Mitchell 1978), and deriving it from basic 
knowledge of chemistry. 

The second part of the paper deals with the question of 
bias shifi: the process of altering a bias in response to observa- 
tions that contradict or augment an existing bias. We show that 
this process can be formulated as a nonmonotonic deduction. 

in 
-This paper is a condensation of two longer 

preparation for publication elsewhere. 
papers that are 

e rsi ace FO 
In this section we describe how the biases used in the Version 
Space method can be represented as sentences in first-order 
logic. The following section describes the process of updating 
the version space as a deduction from the bias and examples. 

The Version Space method is the most standard AI ap- 
proach to concept learning from examples. It equates the space 
of possible definitions of a target concept with the elements of 
a concept language, which is defined on a predicate vocabulary 
that consists of a set of basic predicates that apply to objects 
in the universe of instances of the concept. The predicates may 
be arranged into a predicate hierarchy, defined by subsump- 
tion relations between elements of the vocabulary. This in turn 
helps to define a concept hierarchy on all the possible, candi- 
date concept definitions in the concept language, based again 
on subsumption as a partial ordering. The programmer defines 
the initial version apace to be the concept language, in the 
belief that the correct definition is expressible in the concept 
language chosen. In addition to the concept language, there is 
an instance description language. The system is also given a 
classification for each instance: either it is a positive example 
of the target concept Q, or it is a negative example. At any 
point in a series of observational updates, some subset (possi- 
bly a singleton or the empty set) of the candidate definitions 
will be consistent with all the observed instances. This subset 
is called the current version apace. Further constraints may be 
used to choose one of the coisistent hypotheses as the ruie to 
be “adopted” - the preference criteria of Michalski (1983). 

The VS approach has the following difficulties: 

t. The framework cannot easily accommodate noisy data. 

2. It is hard to incorporate arbitrazy background knowledge. 
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3. It is very difficult to come up with a suitable concept lan- 
guage for complex or unfamihar concepts. Moreover, there 
rs no semantics attached to the choice, and hence no a pri- 
ori generating mechanism. 

By casting the updating process as a first-order inference, we 
hope to overcome the second and third problems; the first can 
be’solved within a more complex, probabilistic model, or by 
using appropriate default rules (see below). 

A. Concept descriptions and instances 
The concept language, i.e. the initial version space, is a set C of 
candidate (concept) deacriptiona for the concept. The concept 
hierarchy is a strict partial order defined over C. Each concept 
description is a unary predicate schema (open formula) C](z), 
wllere-the argument variable is intended to range over instances. 
Mitchell defines the concept ortfering in terms of matching: C, 
is fess genera! than Ck if and only if C, matcfles a proper sub 
set of the instances matched by Ct. In our formulation, this 
ordering is a logical relationship between concepts. As in (Sub 
ramanian & F&genbaum 1986~), the hierarchy- is expressed as 
a set of facts refating the concepts by implication. The more 
natural ordering is the non-strict relationship 5, representing 
quantified implication, where we define 

(A < B) iff {b’s.A(x)~B(~)} 
(A < B) iff {(A < B) A l(B 5 A)} 

This implication relationship between concept descriptions is 
also Buntine’s aenerulized ;&sumption (19d6). Background 
knowledge, incliding the predicate-hierarchy, that can be used 
to derive < relations between concepts is contained in an artic- 
&lion theory Th, (so called because it links different levels of 
description), so that 

cj < ck iff for any t :, Tha, C,(x) b ck(x). 
For example, if we are trying to induce a definition for Suit- 

ablePet, Th, might contain b’z[BurksALot(z) 3 Noisy(z)], 
which induce8 an ordering between 

Cj = Furry(z) A BirksALot(z) A EutsTooMuch(z) 
and the more general concept 

Ck = Noisy(x) A EutsTooMuch(z). 
Thus the implication relations in the concept hierarchy do not 
have to be encoded explicitly for every pair of concepts. 

An instance is iust an obiect Q inthe universe of-discourse. 
Properties of the instance are’ represented by sentences involv- 
ing a. An instance description is then a unary predicate schema 
D, where D(u) holds. The classification of the instance is given 
by Q(u) or 19(a). Thus the ith observation, say of a positive 
instance, would consist of the conjunction Di(ai) A Q(ai). For 
example, we might have 

Cut(Feliz) A Furry(Feliz) A Euts(Feliz, SO#/duy) A . . . 
A SuitublePet(Fe/iz). 

A concept description C, matches an instance a iff C,(a). This 
must be derived on the basis of the description D of the in- 
stance; the derivation can use facts from the articulation the- 
ory Th, (which thus links instance-level terms to concept-level 
terms). In order to have complete matching, which is neces- 
sary for the VS process to work (Mitchell, 1978), Th, must 
entail either Di < Cj or D; 5 1Cj for any instance description 
Di and any concept description Cj. When these relationships 
hold without relying on facts in the articulation theory, we have 
what is commonly known as the single-representation trick. 

B. The instance language bias 
Our orientation towards the handling of instances is consid- 
erably different from that in, say, the LEX system (Mitchell 
et al. 1983), in which instances are identified with syntac- 
tic structures, as opposed to being objects which happen to 
satisfy descriptive predicates. Logically speaking, an instance 
in Mitchell’s system is a complet term, rather than a symbol 
described by sentences. Thus Felix would be represented by, 
say, (cut; furry; 50f/duy; . . .) instead of a set of sentences about 
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Fe&. Two instances with the same description become iden- 
tical (and therefore co-referring) terms; it is therefore logically 
impossible for them to have different classifications. This is 
clearly a non-trivial assumption, since it says that the instance 
description language contains enough detail to guarantee that 
no considerations that might possibly affect whether or not an 
object satisfies the goal concept Q have been omitted from its 
description. For this reason, we call it the Complete Description 
Assumption (CDA), and note that it may need to be reasoned 
about extensively. We therefore prefer to make it an explicit 
domain fact (or set of facts), i.e. 

(Di 5 Q) V (Di < 19) for every i. 
Another way of expressing this fact is to say that Di de- 

termines whether or not Q had8 for an object.- It therefore 
corresponds to the determination (Davies & Russe!!, 1987): 

where k is a truth-value variable. The CDA can also be seen 
as the ability to do single-instance generalization: 

Vak.{Di(a) A kQ(a)}~{VZ.Di(Z)*kQ(Z)} 
If the instance description language is infinite, then the 

CDA will be an infinite set of determinations. We can, however, 
rewrite it in many cases as a small set of axioms by using binary 
schemata. Take, for example, an instance description language 
consisting of a feature vector with n components, some of which, 
e.g. weight, shape, may have an infinite number of possible 
values. We can reduce the CDA for this infinite language to a 
single axiom, which says that the conjunction of the features 
determines whether or not an instance satisfies Q: 

where F,(z,y,) says that 2 has value y, for the jth feature. 
Such a language appears in the ID3 system (Quinlan 1983). 

It is clear from its formal expression that the instance lan- 
guage bias can only be derived from knowledge concerning the 
target concept itself. In a later section we will give just such a 
derivation using the Meta-DENDRAL system as an example. 

Another perspective on the CDA is that the determina- 
tions underlying it tell us how to recognize and to handle extra 
or lacking information in observations. If the observational up- 
date is Ei(ui)A kQ(ui), w h ere Ei is stronger than Di, the agent 
uses the determination to deduce the single-instance general- 
ization VDi(z)akQ(z), not just the weaker Vz.E,(z)JkQ(z). 
If important information is lucking in the update, the agent can 
use its knowledge of relevancy both to exploit the partial infor- 
mation, and to generate a new goal to obtain the missing detail. 
Thus the declarative formulation suggests how to generalize the 
VS method to less structured learning aituutions. 

C. The concept language bias 
The heart of the Version Space method is the assumption that 
the correct target description is u member of the concept lan- 
guage, i.e. that the concept language bias is in fact true. We can 
represent this assumption in first-order as a single Disjunctive 
D&nubility Axiom: - 

V (Q=Cj) - - 
CjEC 

(Here we abbreviate quantified logical equivalence with ‘r=” in 
the same way we defined “5” .) This axiom may be very long 
or even infinite; we can reduce an infinite DDA to a finite set 
of axioms using determinations, just as for the CDA. 

Subramanian and Feigenbaum (1986) introduce the notion 
of a version space formed from conjunctive jactota. We can 
express such a situation with an axiom that says the target 
concept Q is equivalent to a conjunction of concept factor8 Qr, 
with an analogue of the DDA for each factor. If we can express 
the factor DDA’s concisely using determinations, we then have 
a concise axiomatization of the&era!! D A e.g..: 

V=QW = {Q&) A Qz$,l 

FI(~,YI) s kQ&) 

Fzxca k kQz x 



aspects are generally considered irrelevant, on physical grounds, 
to the behavior of a molecule in a mass spectroscope, though 
for other purposes such as reaction-rate calculations or NMR 
they are highly relevant. 

Secondly, Borne properties are ignored for atoms including 
those, such as identity and history, that we might ascribe to 
other objects. Few chemists worry about whether the atoms in 
a sample are known to their friend8 as Fred. 

Thirdly, properties that are determined by aspects already 
taken into account may also be ignored. For example, the mass, 
valency, electronegativity, and orbital structure of each of the 
atoms are relevant to the mass spectroscopy process; yet they 
are omitted from the instance description because they are de- 
termined by the chemical element to which the atom belongs. 

The following is a derivation of the instance language bias 
starting from basic chemical facts. We know on quantum- 
mechanical ground8 that, for any atom a 

OrbitulStructure(a, 0) j- ChemicalBehauiour(a, ba) (1) 
Element(u, e) )- OrbitulStructure(a, 0) (2) 

implying: 
Element(a, e) + ChemicalBehuuiour(a, ba) (3) 

since determination8 on functional relation8 are transitive. We 
also have the following determination8 for any molecule m: 

BondTopology(m, t) A BehaviorOfNodeJ(n, bn) >- 
MolecularChemic~lBehuviour(m, bm) (4) 

Structz4rulFormulu(m, 8) Z 
BondTopology(m, t) A NodeE/ements(m, n) 

A~olecularChemicalBehaviour(m, bm) + 
MassSpectroscopicBehuviour(m, bs) 

MassSpectroscopicBehuviour(m, bs) $ 
k Breuks(m, cs) 

From (3), using the definition8 of the predicates NodeElement 
and BehuuiourOfNodes (omitted here), we can derive 

NodeElements(m, n) >- 
BehaviourOf Nodes(m, bn) (8) 

which we can combine with (4) to give 
BondTopology(m, t) A NodeElementa(m, n) j- 

MolecularChemiculBehauiour(m, bm) (9) 
nom (5)) (91, (6) and (7) we have, again by transitivity, the 
instance language bias for Meta-Dendral given earlier: 

StructuralFormula(molecule, structure) + 
Breaks(molecule, site) (10) 

The point of this section has not been to elucidate the in- 
tricacies of chemistry, but to show how in a “real-world” domain 
the factual content of part of the VS bias can be arrived at by 
a deduction from accepted premise8 representing background 
knowledge, and in particular to illustrate the use of determi- 
nation8 in expressing these premises. We can now (at least in 
part) automate the process of Jetting up a VS process. 

B We showed how to represent in first-order logic the bias in 
the pure Version Space (VS) method, which is the moat 
standard AI approach to concept learning from examples. 
The most important part of the bias is implicit in the 
choice of the instance and concept candidate description 
languages. A learning system can thus derive it8 own ini- 
tial version space from its background knowledge. We gave 
an account of such a derivation for the Meta-DENDRAE 
system for learning cleavage rule8 in mas8 spectroscopy. 

E) We showed the important role of a form of first-order ax- 
iom, determinutione, in the VS method’s bias. We identi- 
fied a substantive component of the bias in the choice of 
the instance description language. 

* We showed how to represent (pure) VS updating as deduc- 
tion in first-order logic. Using a general theorem-prover, 
we can therefore incorporate arbitrary first-order back- 
ground knowledge into the concept learning process. 
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8 Our declarative analysis of VS bias suggests how to extend Automatic provision or modification of the descrip 
the VS method to less structured learning situations. The tion space is the most urgent open problem facing 
learning agent can use determination-form knowledge to automatic learning.“(Bundy et al 1985, section 7.3) 
actively identify the relevant aspects of its inputs. One common strategy for 8 learning agent, e.g. in the 

As designers of learning agents, instead of starting with 
an algorithm and some contrived inputs, we should insteac! ex- 
amine what knowledge is typically available about the target 
concept, and then show how it may be used efficiently to con- 
struct plausible rules for concluding concept definitions, given 
examples. This more first-principles attitude is facilitated by a 
declarative approach. 

We had difficulty declaratively formulating some other 

- 

kinds of bias which are defined in terms of computational- 

s 

resource-oriented bounds on data structures or syntactic prop 
erties of descriptions, e.g. limits on the sizes of VS boundary 

0 

sets, and limits on negation or disjunction. The latter seems 
sometimes to represent real “semantic” knowledge, e.g. the vo- 
cabulary choice in LEX (Mitchell et al. 1983); exactly how is 

Benjamin Grosof and 

unclear. We suspect that possession of 8 good vocabulary is a 

Stuart 

sine aua non of inductive success. 

Russell 

STABB system for shifting-concept language bias (UCgoff 1984, 
1986), and in the Rleta-DENDRAL system for learning cleavage 
rules in mass spectroscopy (Mitchell l9713), is to start with a 
strong bias, which aids focus and provides a guide to action, 
and then relax when needful to a weaker bias. This shift is 
triggered by falling below some acceptability threshold on an 
evaluation criterion for the working theory. Often the criterion 
is an unacceptable degree of inconsistency with the observed 
instances. Note that new information or pragmatic constraints 
may also lead the agent to atrengthen its bias. 

At bottom of the declarative impulse is the desire to charac- 

mulate deep bi88 as a set of premises which are highly stable, 

terize 8s stably a8 possible the justifying basis for the agent’8 

yet which suffice to justify shifty bias and shifty belief. The no- 

beliefs. In this light, to the extent that bias is formulated in 

tion of a default in non-monotonic logical formalisms offers the 

such a way that it shifts, then to that extent its formulation 
fails to be satisfactorily deep. We thus look for a way to for- 

form of exactly such 8 stable premise. If we represent the trig- 
ger condition for retracting bias as strict logical inconsistency 

The Version Space method can now be implemented as a deduc- 
tive process using the instance observation8 and a declaratively 
expressed ‘bias’. In this part of the paper, we address the issue 
of inductive leapa, and the shift8 of the biases underlying them, 
in concept learning. We begin by observing that, viewed declar- 
atively, inductive leaps and shifts of bias are non-monotonic. 
We develop 8 perspective on shifts of bias in terms of preferred 
beliefs. We then show how to express several kinds of shift8 
of “version-space” bias, as deductions in a new, non-monotonic 
formalism of prioritized defaulta, based on circumscription. In 
particular, we show how to express 1) moving to a different, e.g. 
less restrictive, concept language when confronted by inconsis- 
tency with the observations; and 2) the Freference for more 
specific/genera! description8 (definitions) of a concept. 

of the bias with the instance observations (as in STABB), then 
we can neatly u8e 8 nonmonotonic formalism. 

We can view a default a8 B preferred belief. That is, we 
prefer to believe the default if it is consistent with our other, 
non-retractible, beliefs. If the non-retractible beliefs contradict 
a default, it is retracted. In general, however, defaults may 
conflict with each other. It is useful, therefore, to express pref- 
erences, a.k.a. priorities, between defaults, a8 well. In cases 
of conflict, the agent prefers to believe the default with higher 
priority. If neither has higher priority, then the agent believes 
merely that one must be false without saying which. We can 
regard non-retractible belief8 as having infinite priority. 

Our approach to shifts of bias, then, is to express them 
as the result8 of retracting different concept language biases, 
represented a8 defaults Stronger and weaker retractible bi- 
ases co-exist: when both are consistent, the stronger ones hide 

uctive Leaps and Shifts of 
FE? Non-Monotonic 
sure of its initial bias, no “inductive 

leap” is required to reach a definition for the target concept. 
The potential for retraction is essential to novelty in an induc- 
tive learning process. In other words, useful concept learning 
must be treated as non-monotonic inference. When we ascribe 
8 declarative status to bias a8 something that the agent be- 
lieves about the external world, then the agent’s believed set of 
sentences in general evolves non-monotonically. 

Since we have shown the pure VS method to be monotonic 
deduction, in what sense is it “inductive”, in the sense of mak- 
ing inductive leaps ? Our answer would be that in practice, the 
VS method instantiated with a particular initial version space 
is used as a sub-program: in advance it is not known whether 
that initial version space will be expressively adequate. The 
potential for shift of bias, especially of concept language bias, ia 
vital to a VS-style learning program’8 inductive churacter. We 
will use a non-monotonic formalism to study shift of bias in a 
declarative framework. 

Several researchers have identified the automation of the 
shift of concept language bias, e.g. as in the VS method, as a 
prime outstanding problem in machine learning. 

Methods by which a program could automatically de- 
tect and repair deficiencies in its generalization lan- 
guage would represent a significant advance in this 
field”(Mitchel1 1932, section 6.1) 

the weaker. When the stronger become inconsistent before the 

For now, we- will treat instance observatyons as non- 
weaker. we see a dvnamic relaxation or weakening of bias. 

retractible. However, we might make them have less than in- 
finite priority if we wished to deal with noise or inaccuracy in 
observations, or to tolerate a degree of inconsistency with the 
ObBerVatiOn8 rather than reject elegant 

V. riositiaed 
Several different nonmonotonic formalisms can express defaults, 
more or less. Of these, circumscription (McCarthy 1986; Iifs- 
chitz 1986) has a number of advantages. It is relatively well- 
understood mathematically, especially semantically, and can 
express priorities gracefully. The formalism we employ to de- 
scribe biases is 8 meta-language for specifying circumscriptive 
theories. 

In our language of prioritized defaulta, there are four kinds 
of axioms. A non-monotonic theory NMCtOSU7ZE(A) is de- 
fined a8 the closure under non-monotonic entailment of a set of 
axioms A. 
Base axioms are just non-retractible, first-order axioms: 

bird(Tweety) ostrich(Joe) -rflies(Hulk) 
Vz.ostrich(z)~bird(~) 

Defuult axioms have the form of labelled first-order formulas. 
They express preferred, but retractible, beliefs. Default axioms 
may take the form of open, as we!! as closed, formulas. An 
open formula is in effect 8 schema expressing the collection of 
defaults corresponding to the instantiations of the schema. 

(dl :) :> bird(z)=+flies(z) 

508 Machine learning & Knowledge Acquisition 



(d2 :) :> ostrich(x)*~jlies(x) 

Prioritization axioms express priorities between defaults. One 
default having higher priority than a second means that in case 
of conflict between the two, the first rather than the second 
will be entailed by the non-monotonic theory. Thus the follow- 
ing axiom says that the ostrich default is preferred to the bird 
defau It. 

PRETER( d2, d, ) 
This corresponds to inheritance hierarchies, for example, where 
the slot value (flying) for a more specific class (ostriches) takes 
precedence over the slot value for a more general class (birds). 

Fitiute axioms express constraints on the scope of the defaults’ 
non-monotonic effects. They declare that the truth of certain 
formulas can only be entailed monotonically. 

FZX(bird(x)) 
Taking the above set of axioms as .A, then the non-monotonic 
theory n/MCLXXWRE(A) contains flies(Tureety), by default. 
Both default axioms apply to Joe, since he is both an os- 
trich and a bird, but they conflict. The prioritization axiom 
resolves the conflict. It tells us to prefer the ostrich default. 
Thus NMCLOSURE(A) entails lflies(Joe). The fixture ax- 
iom comes into play by preventing the conclusion that Hulk 
is not a bird, which the consistency of the bird default for the 
instance Hulk seems to tell us to make. 

Now we show how to use our logic of prioritized defaults to 
describe an agent that starts wit& a string concept language 
bias and shifts so as to weaken it in the face of inconsistency 
with observations. Space limits us to a simple example; we 
adapt one from (Mitchell 1982). The agent has an initial bias 
and two weaker, back-up biases, the weakest being just the 
instance language bias itself. 

The available observations describe each instance as a fea- 
ture vector of color (red or blue), size (large or small), and 
shape (circle or triangle). The instance language bias says that 
the target concept is determined by these three features taken 
together. The initial concept language bias CC1 is that the 
concept is equivalent to a conjunction of a Color atom and a 
Size atom. A second, fall-back bias CC2 is that the concept 
is equivalent to a conjunction of a Color atom, a Size atom, 
and a Shape atom. The instance language bias ZG and the 
observational updates 024’ are expressed as base axioms. The 
concept language biases are expressed as defaults. In addition, 
we assume the Unique Names Assumption (so Red # Rive 
etc.). 

2-L : 
{ Vx.3!y.Color(x, y) } 
( Vx.il!y.Size(x, y) } 

{ Vx.3!y.Sihape(xc, y) } 
{ Vxy.Color(x,y)=%{(y = Red) V (y = Blue)} ) 

{ Vxy.Site(x,y)*{(y = Large) V (y = Small)} ) 

{ Vxy.Shape(x,y)*{(y = Circle) V (y = Triangle)} } 

{Color(x,yl) A Size(s,yz) A Shupe(c,y3) % kQ(x)) 

cc1 : 

cc2 : 

{ Color(x,y) % kQFt(x) } A 

{ Size(x, y) !- kQ&(x) 1 A 

1 Vx.Q(x) = {QWx) A Qfi(xc)l 1 

{ Color(x,y) z kQFFt(x) } A 

{ Size(x,y) % kQFFz(x) } A 

{ Shape(x,y) t kQFFa(x:) ) A 

( Vx.Q(x) z (QFfi(x) A QFl;i(x) A QFF3(x) } 

cm’ : Qb 1 A Qb2) A lQ(a3) A 
Cofor(a1 ,Red) A Site(ul, Large) A Shape(ul, Cirde)A 

Color(a2,Red) A Size(a2, Small) A Shupe(u2, Circle)A 

Color(as,Blue) A Size(as, Small) A Shape(a3,Triangle) 

cm2 : lQ(u4) A 
Color(a4, Red) A Sa’te(a4, Large) A Shape(ar , Triangle) 

cm3 : Q(Q~) A 
Color(as, Blue) A Sdze(as, Small) A Shape(us, Circle) 

cm’ : Qb 1 A 
Color(a4, Blue) A SdZe(a6, Large) A Shupe(ue , Triangle) 

The agent’s starting axioms A0 are: 
ase axioms: (the instance language bias) XC. 
efaralt axioms: (d3 :) :> CL* (d, :) :> CL2 

PrioriQizatiorn axioms: none. 
Fixture axioms: 

FZX(Color(x)) 
FZX(Size(x)) 
FZX(Shape(x)) 

Let A” denote A0 A OU’ A . . . A OU”, i.e. the agent’s ax- 
ioms after the mfh observational update. The agent’s umrking 
inductive theory WZ7’” is then equal to NMCLc(3SURE(A”). 

In WZ7’, i.e. after the first update, the initial concept 
language bias is uncontradicted, so it holds by default. That 
is, CGt is consistent (and thus so is the weaker Ct2) and thus 
holds. The corresponding version space has been refined to a 
single candidate; the agent’s working inductive hypothesis is 
that the concept is that the color is red. 

WZT’ k CL1 A CC2 A {Vx.Q(x) I Color(x, Red)} 
The second update, however, contradicts this hypothesis 

and the initial concept language bias. Thus in WZ’T’, CCI is 
retracted. However, CC2 is still consistent and thus holds: the 
agent shifts to the fall-back. The corresponding version space 
has two members. 

wz72 k lCtl A CL2A 
( (Vx.Q(x) E Shape(x, Circle)}V 

{Vx.Q(x) G {Color(x, Red)A 
Shape(x, Circle)}} } 

After the third update, the version space is again refined 
to a single candidate: 

WZ13 j= -CC, A CL2 A {Vx.Q(x) G Shape(x, Circle)} 
However, the fourth update contradicts this hypothesis, 

i.e. even the fall-back bias. Thus in WZI’ the agent retracts 
the fall-back, i.e. CC2 as well as CC1 . 

WZ14 j= -CC1 A -dL2 
The agent is then left with a VUC~OTJJ concept language bias 

which does not go beyond the instance language bias. The ver- 
sion space consists of all subsets of the “describable instances” 
consistent with the observations. Here, there are four of these, 
corresponding to the possible combinations of classifications for 
blue large circles and red small triangles. 

In addition to the concept and instance language bias, 
we can also represent some types of preference bias, includ- 
ing maximal specificity/generality bias, i.e., the preference for 
the most specific/general among concept descriptions that are 
consistent with all observations. This corresponds to minimiz- 
ing/maximizing the extension of the goal concept Q, and hence 
to the following default axio 

Maximal Specificity iom : (ds :) :> -Q(x) 
sximd Generdity Axiom : (de :) :> Q(x) 

In order to express the fact that an agent employs (say) max- 
imal generality bias, we just include the Maximal Generality 
Axiom in the agent’s axioms, bearing in mind that maximal 
generality as a preference may conflict with other defaults. 
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In our example above, intuitively what we would like is to 
apply (say) maximal generality only after attempting to adopt 
the default concept language biases. To express this formally, 
we need to ensure that the Maximal Generality Axiom has lower 
priority than the defaults corresponding to the retractible con- 
cept language biases, e.g. by including pP’REFc‘R( dr , de ) in 
the agent’s axioms. Thus in the above example, after the sec- 
ond update the agent would adopt the more general of the two 
candidates above as its working hypothesis: 

WZ’l?-&c b -CL1 A CL2 A { VZ.Q(Z) zz Shape(x,Circle) } 

In this part of the paper we attempted to show how 
could be dealt with in our declarative framework. 

bias shift 

We observed that from a declarative point of view, induc- 
tive leaps, and shifts of the biases which justify them, are 
non-monotonic. 

We showed how to declaratively represent shifts of bias, i.e. 
“shifiy” bias, using a new language of prioritized defaults, 

based on circumscription, for “version-space”-type concept 
language bias. 

We showed that the maximal specificity and maximal gen- 
erality biases are formulable quite simply: as negative and 
positive default belief, respectively, about the target con- 
cept. Thus we have a logical, semantic formulation for 
these preference-type biases which Dietterich (1986) listed 
as “syntactic” and “symbol-level”. 

Thus we can view inference that is non-deductive at the 
level of first-order logic, i.e. that is inductive, as deduction 
in another “knowledge level” associated with non-monotonic 
beliefs. This allows the use of arbitrary-form non-monotonic 
“background knowledge”. The non-monotonic viewpoint sug- 
gests formulating shifts among base-level bias sentences as de- 
feasible “shifty” bias sentences. How to efficiently implement 
such inference is an open question which we are currently inves- 
tigating. See (Grosof 1987) for a discussion of implementation 
issues. 

Our declarative formulation also poses the question of the 
source of the defaults and preferences among beliefs which are 
the “shifty” premise biases of inductively leaping agents. In our 
view, the justification of inductive leaps arises not just from 
probabilistic beliefs, but also from the pressure to decide, i.e. 
the need to act as if one knows. Because the information about 
which the agent is quite confident is incomplete, it requires an 
additional basis to decide how to act. (Since the agent acts 
some way, we can declaratively ascribe a working hypothesis to 
its decision principle.) A second reason why bias is needed is 
that the agent has computational limits on how many inductive 
hypotheses it can consider, and in what sequence. Thus we ex- 
pect that the justification for bias is largely decision-theoretic, 
based both on probabilities and utilities. 

We are currently investigating, in addition to implementa- 
tion issues, how to extend our approach to several other aspects 
of inductive theory formation, including 1) tolerance for noise 
and errors; 2) preferences for more likely hypotheses; 3) prefer- 
ences for simpler hypotheses, as in Occam’s Razor; and 4) the 
decision-theoretic basis for bias preferences. 
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