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To remain effective without human interaction, intelligent sys- 
tems must be able to adapt to their environment. One useful 
form of adaptation is to incrementally form concepts from ex- 
amples for the purposes of inference and problem-solving. A 
number of systems have been constructed for this task, yet their 
capability is limited by the language used to represent concepts. 
This paper presents an extension to the concept acquisition 
system STAGGER that allows it to utilize continuously valued 
attributes. The combination of methods employed is able to 
dynamically acquire appropriate representations, thereby mini- 
mizing the impact of initial representational bias decisions. Of 
additional interest is the distinction between the computational 
flavor of the learning methods, for one is similar to connectionist 
approaches while the other two are of a more symbolic nature. 

Consider the task of constructing a concept description 
given a series of examples and non-examples. This has 
been addressed by a number of learning systems, yet many 
have limited capability due to inflexibility inherent in the 
concept representational language. If the language is too 
restrictive, there will be some concepts which cannot be 
represented or learned. The restriction imposed by the 

concept representation language is necessary, though, and 
without it the learning method could do no better than 
to guess randomly at the concept’s definition (Utgoff 8c 
Mitchell, 1982). To all eviate this bind between flexibility 
and tractability, a system might modify the underlying rep- 
resentational language in some way or another, either in- 
creasing the language to accommodate more possible con- 
cepts ok reducing it to improve the possibility of finding an 
appropriate concept description. 

This paper describes a two part extension to a concept 
acquisition system called STAGGER (Schlimmer & &anger, 
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1986). First, a new method is added that discretizes con- 
tinuously valued attributes. Secondly, by combining this 
new method with the existing methods that weight and 
refine a distributed concept description, STAGGER is able 
to overcome limitations inherent in its initial concept lan- 
guage. After briefly describing some related work, this pa- 
per describes each of the three learning methods and then 
demonstrates their interaction. 

IL 

A number of researchers have studied the problem of 
utilizing numerically valued information in symbolic con- 

cept learning. For example, Michalski (1983) presents the 
closing interval generalization rule. It specifies that if two 
values are found in positive examples, assume that all of 
the values between them will be. This mapping from con- 
tinuous to discrete values is similar to the type of approach 
used by Lebowitz’s (1985) UNIMEM which partitions real 
values in both a generalization and a data-driven manner. 
In the first, clusters of examples formed on the basis of dis- 
crete attributes partition a real range by implicitly group- 
ing the values. The latter, data-driven technique searches 

a subset of the numeric values present for gaps indicated 
by the distribution of real values across objects. Quinlan’s 
(1986) ID3 y t s s em forms a number of competing pairs of 
intervals, centered around potential splits in the real-value 
range. ID3 then considers these intervals as possible deci- 
sion tree roots by interpreting them as binary valued at- 

tributes. 

A distinctly different approach for handling numeric in- 
formation is taken by Bradshaw (1985) in his speech under- 
standing system. Instead of attempting to map the contin- 
uous information representing a verbal utterance into some 
set of symbolic values, his system retains a set of attribute 
averages for each word concept. 

Rendell’s (1986) PLS family of concept induction sys- 
tems incorporate both partitioning and averaging ap- 
proaches. In some instances concepts are represented as 
“rectangles” or value ranges, while in other cases concepts 
appear to be described in terms of their central values. 
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Along representational lines, Utgoff and Mitchell (1982) 
were perhaps the first to address the issue of constrictive 
representational assumptions. In this and subsequent work 
(Utgoff, 1986) they develop a method which explicitly iden- 
tifies shortcomings and triggers procedures for relaxing the 
descriptive language. 

STAGGER’S numeric learning belongs in the partition- 
ing class, for it divides real values into a dynamically de- 
termined number of discrete ones. Perhaps more impor- 

tantly, interaction between the three learning components 
of STAGGER alleviates the impact of an ill-fitting initial 
concept description language. This representational ad- 
justment occurs in a continuous and natural manner; each 
of the methods assists the others while performing its own 

task. 

STAGGER uses three interacting learning components 
and represents concepts as a set of weighted, symbolic de- 
scription pieces. One of the learning methods adjusts the 
weights, another adds new Boolean pieces, and the third 
adds new pieces corresponding to an aggregation of real- 
values into a few discrete ones. The interaction between 
these methods may be viewed as a form of representational 
learning, for they exert influence on each other by changing 
the substrate from which induction proceeds. 

A. Concept representation and matching 

Concepts are represented in STAGGER as a set of dually- 
weighted, symbolic pieces. Each element of the concept 
description may be a single attribute-value pair, a range of 
acceptable values for a real-valued attribute, or a Boolean 
combination. Figure 1 depicts a typical concept description 
for size=medium & color=red. Each descriptive element is 
dually weighted to capture positive and negative implica- 
tion. One weight formalizes the element’s sufficiency (solid 
line), or matched ==s example, and the other represents its 
necessity (dashed line), or lmatched =s- -example. These 
weights are based on the logical sufficiency (LS) and log- 
ical necessity (LN) measures used in Prospector (Duda, 
Gaschnig, & Hart, 1979). 

LS = .m 

LN = p(Tmatehedlexample) 
p(lmatchedl-example) 

(1) 

LS ranges from zero to infinity and is interpreted in terms 
of 0dds.l A weight greater than one indicates predictive- 
ness; less than one denotes an element that predicts non- 
examples. EN has the same range but the opposite inter- 
pretation. For both, a weight of one indicates irrelevance. 

lTo convert odds into probability, divide odds by one plus odds. 

LS I.24 
.m~.m~.m--.m~ 

Figurewedium & red concept description. 

Given a new example, all of the weighted concept ele- 
ments influence expectation of its identity. Following the 
mechanism used in (Duda et aI., 1979), the prior expec- 
tation of a positive example is metered by multiplying in 
the LS weight of each matching piece and the LN weight 
of each unmatched one. 

odds(Ejfeatures) = odds(E) x LS x LN (2) 
Vhf V4-f 

The resulting matching score is the odds in favor of a pos- 
itive example and reflects the degree of match between the 
concept description and the example. This holistic flavor 
of matching differs from many machine learning systems in 
which a single characterization completely influences con- 
cept prediction. 

. Modif$ng element weights 

The weights associated with each of the concept descrip- 
tion elements are easily adjusted by incrementally counting 
the number of different matches between an element and 
examples; these counts are used to compute estimates of 
the probabilities in Equation 1. 

LS = 1 
matched&example 1 examples 

matched&examplej/ -examples 
(31 

.  I  

LN= I 
~matched&example examples 

Tmatched&-example Texamples 

Keeping counts of matchings between elements and exam- 
ples also allows calculating the prior expectation for an 
example: odds(example) = lexamplesl/l~examplesl. 
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By adjusting the weights associated with each of the de- 
scriptive elements, STAGGER is behaving as a single layer 
connection& model. Without hidden units, these mod- 

els suffer from the same representational limitations that 
STAGGER does without its Boolean learning method. Both 
are unable to assign weights to a combination of values, and 
this severely limits the number of discoverable concepts 
to only linearly-separable ones. From a representational 
point of view, the weight method can only form concepts 
in terms of existing description elements. Instead of in- 
cluding an element for all possible Boolean combinations 
of the attribute-values, this method begins with the rela- 
tively strong bias of only single attribute-value elements. 

c. Forming new Boolean combinations 

STAGGER selectively adds new elements by beam- 
searching through the space of all possible Booleans. The 
initial search frontier is the set of single attribute-value 
pairs. The B oo ean 1 method uses three search operators, 
specialization, generalization, and inversion to add new el- 

ements to the search frontier. The search is limited by 
proposing a new element only when STAGGER makes an 
expectation error. This cautiously extends the descriptive 
power of the weight adjusting process while retaining the 
constructive properties of a limited representation. 

For instance, when a non-example is expected to be a 
positive example, STAGGER is behaving too inclusively, too 
generally, and thus a more specific element may be needed. 
So, STAGGER expands the search frontier by tentatively 
adding a new AND formed from two elements which are 
necessary for the concept. The selection of component ele- 
ments is based on two observations: at least one necessary 
element is unmatched in a non-example, and necessary el- 
ements typically have strong logical necessity weights. 

The other type of prediction error also triggers the ex- 
pansion. A guess that a positive example is negative is 
overly specific. To correct for this underestimation, search 

is expanded to include a more general element; a new OR 
formed from two sufficient elements is tentatively added. 
Both predictive errors are opportunities to invert poor ele- 
ments. Further details concerning the Boolean method are 
documented in (Schlimmer $t Granger, 1986). 

Though the space of possible Boolean combinations is 
large, it does not include states for numerically valued at- 
tributes. Therefore, STAGGER has a third learning method 
which extends this space by adding discrete values for real 
value ranges. 

D. Partitioning real-valued attributes 

In order to carve up an attribute’s real-valued range 
into a set of discrete intervals, STAGGER retains a sim- 
ple statistic for a number of potential’interval end-points. 

These end-points are taken from processed examples and, 
through a beam-search, the best are utilized to naturally 
break up the range into discrete values. Each new exam- 

ple supplies a value to update these statistics, and in turn 
this method transforms successive examples into a palat- 
able form for the weight and Boolean learning methods. 

Specifically, for each potential end-point, a two by two 

record is kept of the number of positive and negative ex- 
amples with values less and greater than this potential end- 
point. A measure apphed to these numbers indicates useful 
divisions in the value range. By interpreting these divisions 
as the end points of discrete values, STAGGER maps the 
real-valued attributes of subsequent instances into discrete 
values. The utility measure is similar to Equation 2, for 
it involves the prior odds of each class and a conditional 
probability ratio similar to LS and LN. 

IClCZ88@.8l 

U( end-point) = odds( class;) x 
p(cZass; 1 < e-p) 
p(classi 1 > e-p) (4) 

i=l 

These conditional probabilities may be computed from the 
number of positive and negative examples with values less 
and greater than the measured end-point. Since the poten- 
tial end-points are taken from actual examples, the method 
is independent of scale considerations and does not en- 
tail any assumptions about the range of values. Further- 
more, because partitioning is driven by a statistic based 
on class information, the method is able to uncover effec- 
tive partitionings even when the values are uniformly dis- 
tributed across all classes, something a gap finding method 
(Lebowitz, 1985) is unable to do. 

A straightforward strategy for fractioning the real-value 
range would be to choose the end-point with a maximal 
utility and thereby divide the range into two discrete val- 
ues: greater and less. Rowever, for concept learning tasks 
which require finer distinctions, it would be more effective 
to divide the range into a number of discrete values. So af- 
ter applying a local smoothing function, STAGGER chooses 
the end-points that are locally maximal. These end-points 
represent pivotal values, for Equation 4 favors those that 
are predictive of concept indentity. This approach has the 
advantage that it naturally selects appropriate end-points 
and an effective number of discrete values. 

Having aggregated the real-valued range, attributes with 
continuous values in successive examples may be trans- 
formed into their discrete counterparts. This mapping re- 
sults in example descriptions that are consistent with the 
input requirements of both the weight and Boolean learn- 
ing methods described above. Furthermore, it embodies a 
type of representational learning, because by partitioning 
values into ranges, the concept description languages for 
the other learning methods is expanded. * 

E. Interactions between the learning methods 

STAGGER'S three learning methods cooperatively inter- 
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Figure 2: Interaction between STAGGER'S three methods. 

act as Figure 2 depicts. The Boolean learning method 
alters the-representational base for the weight adjusting 
method; it is restructuring the input to the weight ad- 
justing method so the latter is able to capture the con- 
cept’s description. The numeric learning method has this 
administrative role for both the weight and Boolean learn- 

ing processes; it rewrites the real-valued attributes into a 
form suitable for induction by the latter methods. The de- 
pendent learning methods also exert influence on the rep- 
resentational processes which counsel them. The Boolean 
method draws its components from the pool of ranked el- 
ements maintained by the weight learner. The weighting 
method also provides a weak form of feedback for the nu- 
meric method: the similarity between the numeric eval- 
uation function (Equation 4) and the matching equation 
(Equation 2) implicitly ensures that the division of real 
attributes will be amenable to weighting and matching. 

IV. Empirical Performance 

The interaction of the three learning methods is perhaps 
best illustrated by examining their behavior on concept 
learning tasks. Consider STAGGER'S acquisition of a pair 
of simple object concepts. Each object is describable in 
terms of its size (real value between 0 and 20), its color 
(one of 3 discrete values), and shape (3 discrete values). 

For the first concept, an object is a positive example if 
red and between 5 and 15 in size. Optimally, the size at- 
tribute should be divided into three ranges: size < 5, 5 < 
size < 15, and 15 < size. In each of 10 executions, STAG- 
GER'S numeric partitioning method discovers this three- 
way split, and its Boolean combination technique forms 
a conjunction combining the middle value of size and the 
color red. The weight adjusting method further gives this 
element more influence over matching than any other. The 
following is typical of the elements formed by the cooper- 
ative action of the three learning methods. 

To illustrate the functioning of the partitioning method, 
consider the set of potential end-points for this task de- 
picted in Figure 3. Note that the partitioning measure 
(Equation 4) clearly identifies the two local maxima near 
5 and 15 that are used to partition the size attribute into 
three discrete values. 

U( end-point) 

25 

0 1 I I I 

0 5 10 15 20 
SIZE 

Figure 3: End-points for 5.0 ssize< 15.0 & red. 

The complete, conjunctive element does not appear sud- 
denly. Though th e methods are not explicitly synchro- 

nized, they appear to operate in a staged manner as Fig- 
ure 2 indicates. First, the numerical partitioning method 
begins to search for a reasonable way to partition real 
ranges. At the same time, the weight adjusting method 
searches for appropriate element strengths. The weight of 
color=red is adjusted at this time, but combination with 
the size attribute must wait until the numerical method 
settles down. After processing about 50 examples, the 
tripartite division of the size attribute is stable, and the 
weight method is able to assign a strong LN weight to the 
middle value of the size attribute. After this, the Boolean 
method combines the size and color elements to form the 
element depicted above. Weight adjusting finishes the job 
by giving this element strong LS and LN values. 

Regrettably, these three learning methods are not suffi- 
cient for all concept learning tasks; there are some concepts 
for which the numerical method is unable to uncover an ef- 
fective partitioning. For example, consider the concept of 
objects that have a size between 5 and 15 or are red but not 
both. Figure 4 indicates that the numerical method is un- 
able to identify a reasonable partitioning in this case. This 
limitation also arises if we consider the capabilities of the 
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U ( end-point) 
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the weight method: if a concept involves ‘an exclusive-or of 
a real-value range, STAGGER is unable to discover it. 

0 5 10 15 20 
SIZE 

Figure 4: End-points for 5.0 lsize< 15.0 @ red. 

weight method used without the other methods; the weight 
learner alone is only able to describe linearly-separable con- 

cepts (which does not include exclusive-or). The Boolean 
method allows it to overcome this limitation by rewriting 
its representational language. If the Boolean method could 
direct the numerical method, then the latter would also be 
able to move beyond linearly-separable concepts. This is 

an area for future study. 

V. Conclusions and Future 

This paper describes a three part approach to the task 
of learning a concept from examples. A connectionist style 
learning method modifies a simple concept description by 
changing the weights associated with descriptive elements. 
A second, symbolic learning method forms Boolean com- 
binations of these descriptive elements and allows the first 
method to overcome a representational shortcoming. The 
third learning method divides real-valued attributes into a 
set of discrete ranges, so other methods are able to con- 
struct descriptions of numerical concepts. Overall, the 

interaction between these three methods is a type of co- 
operative representational learning. The numeric method 
changes the bias for both the Boolean and weight method. 
Similarly, the Boolean method forms new compound ele- 
ments and thus increases the representational capabilities 
of the weight adjusting method. 

One drawback illustrated in the previous section arises 
because cooperation between the methods is incomplete. 
Dynamic feedback is lacking for the numeric method. 
Though it attempts to form value partitions that allow 
effective learning by the other methods, it does not use 
information about the progress of learning at those levels 
to alter its course of action. Consequently the numerical 
method can only uncover partitions that can be utilized by 
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