
An EBL System that xtends and Generalizes Explanations *
Jude W. Shavlikl
Gerald F. DeJong

Coordinated Science Laboratory
University of Illinois

Urbana, IL 61801

Many concepts require generalizing number. For example,
concepts such as momentum and energy conservation apply to
arbitrary numbers of physical objects, clearing the top of a desk
can require an arbitrary number of object relocations, and
setting a table involves an arbitrary number of guests. In
addition. there is recent psychological evidence [Ahn87] that
people can generalize number on the basis of one example.

A domain-independent, explanation-based approach to the
problem of “generalizing to N *’ is presented in [Shavlik8 7b].

* This research was partially supported by the National Science Foundation
under grant NSF IS-T 85-l 1542.

t University of Illinois Cognitive Science/Artificial Intelligence Fellow.

That paper presents a theory of generalizing number. It also
motivates the need for augmenting explanations. discusses other
approaches to generalizing the structure of explanations
[Cheng86, Prieditis86. Shavlik85, Shavlik87al and briefly
discusses how this approach handles examples from several
domains. This paper describes the details of a working system
based on
structures

that -theory. The
of the form shown

system analyzes and
in the left-hand side of

generalizes
figure 1.

Observation of the repeated application of a rule or
operator indicates that generalizing the number of rules in the
explanation may be appropriate. The desired form of structural
recursion is manifested as repeated application of an inference
rule in such a manner that a portion of each consequent is used
to satisfy some of the antecedents of the next application. When
such a sequence is detected, it is determined how an arbitrary
number of instantiations of this rule can be concatenated
together. This indefinite-length sequence of rules is conceptually
merged into the explanation. replacing the specific-length
collection of rules, and a standard explanation-based algorithm
produces a new rule from the augmented explanation. An
additional requirement is that the preconditions for the N rule
applications be fully specified in terms of the state of the world
when the new rule is applied. That is. the preconditions do not
depend on the results of intermediate applications of the
underlying rule.

application 1

‘7\y

4

application 2

applxat ion

T : . , 1
applrc tion,

-r--Y

Y

-. . 1 . .- : .

V

goal

applicatron,

@v

goal

Figure 1. Augmenting the Explanation

II. THE BAGGER SYSTEM

The BAGGER system (Building Augmented Generalizations
by Generating Extended Recurrences) an&zes predicate calculus
proofs and - attempts

- -
to construct concepts that involve

generalizing to N . Most of the examples under study use the
situation calculus to reason about actions.

One
figure 2s.

problem
The goal

solution analyzed by BAGGER
is to clear block x . The system

is shown in
is provided

low-level domain knowledge about blocks. including how to
transfer a block from one location to another. Briefly. to move a

516 Machine learning & Knowledge Acquisition

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

Figure 2s. Unstacking a Specific Tower

block it must have nothing on it and there must be free space at
which to place it. Additional inference rules (many of which are
frame axioms) are used to reason about the effects of moving an
object. The system produces a situation calculus proof
validating the actions shown in figure 2s. in which two blocks
must be moved to clear the desired block. By analyzing this
example, the system acquires a general plan for clearing an
arbitrary block contained in a tower of arbitrary height. The
acquired plan applies. for example, to the problem of clearing
block z in figure 2g. Note that there may be a different number
of blocks on z than on x .

lg

a 2
.

I I
m

Figure 2g. A General Plan for Unstacking Towers

In another example, the system observes several blocks
being stacked upon one another in order to satisfy the goal of
having a block at a specified height. Extending the explanation
of these actions produces a plan for stacking any number of
blocks in order to reach any given height (provided enough
blocks exist). Figure 3 illustrates this general plan.

* + goal El
A

and the acquired inference rules. can be found in [Shavlik87c].

IPI. GENERALIZATION IN BAGGER

The system begins its analysis of a specific solution at the
goal node. It then traces backward, looking for repeated rule
applications. These repeated applications need not directly
connect - there can be intervening rules. The general rule
repeatedly applied is called a focus rule. Once a focus rule is
found, BAGGER ascertains how an arbitrary number of
instantiations of this rule and any intervening rules can be
concatenated together (as illustrated in figure 1). This
indefinite-length collection of rules is conceptually merged into
the explanation. replacing the specific-length collection. and a
new rule is produced from the augmented explanation.

Three classes of terms must be collected to construct the
antecedents of a new rule. First. the antecedents of the initial
rule application in the arbitrary length sequence of rule
applications must be satisfied. To do this, the antecedents of the
focus rule are used. Second, the preconditions imposed by
chaining together an arbitrary number of rule applications must
be collected. These are derived by analyzing instantiations of
the focus rule in the sample proof. Those applications thaj
provide enough information to be viewed as the arbitrary ith

application produce this second class of preconditions. Third. the
preconditions from the rest of the explanation must be collected.
This determines the constraints on the final applications of the
focus rule.

The consequents of the new rule are produced by collecting
the consequents of the last application in the chain of focus rule
applications and any other terms in the goal expression. For
example. the consequents for the rules illustrated by figures 2g
and 4 state that in the final situation the object originally under
the last object moved is clear. In the rule represented by
figure 3. the consequents state that the last block moved is at the
goal location.

Figure 3. A General Plan for Building Towers

Unlike many other block-manipulation examples, in these
examples it is not assumed that blocks can support only one
other block. This means that moving a block does not
necessarily clear its supporting block. Another concept learned
by BAGGER is a general plan for clearing an object directly
supporting any number of blocks. This plan is illustrated in
figure 4.

Figure 4. A General Plan for Clearing Objects

The domain of digital circuit design has also been
investigated. By observing the repeated application of
DeMorgan’s law to implement two cascaded and gates using or
and not gates, BAGGER produces a general version of
DeMorgan’s law which can be used to implement N cascaded
and gates with N or and one not gate.

The next section describes how BAGGER constructs these
general plans. Complete details on these examples, including the
initial set of inference rules used, the situation calculus proofs,

In order to package a sequence of rule applications into a
single macro-rztle, the preconditions that must be satisfied at each
of the N rule applications must be collected and combined. The
preconditions for applying the resulting extended rule must be
specifiable in terms of the initial state, and not in terms of
intermediate states. This insures that. given that the necessary
conditions are satisfied in the initial state. a plan represented in
an extended rule will run to completion without further
problem solving, regardless of the number of intervening states
necessary. For example. there is no possibility that a plan will
lead to moving N - 2 blocks and then get stuck. If the
preconditions for the ith rule application were expressed in terms
of the result of the (i-11th application, each of the N rule
applications would have to be considered in turn to see if the
preconditions of the next are satisfied. In the approach taken,
extra work during generalization and a possible loss of generality
are traded off for a rule whose preconditions are easier to check.

When a focus rule is concatenated an arbitrary number of
times, variables need to be chosen for each rule application. A
sequence of p-dimensional vectors. called the rule instantiation
sequence (RIS). is used to represent this in,formation. The
general form of the RIS is:

<Vl,J,. f . , Vlg >. <v2,1.. . . , vzg > , . . . , <v, ,,, V” ,p > (1)

In the unstacking example of figure 2s. p = 3: the current state,
the object to be moved. and the object where the moved object
will be placed.

Depending on the rule used. the choice of elements for this
sequence may be constrained. For example. certain elements
may have to possess various properties. specific relations may
have to hold among various elements, some elements may be
constrained to be equal to or unequal to other elements, and
some elements may be functions of other elements.

Shawlik and DeJong 517

To determine the preconditions in terms of the initial state,
each of the focus rule instantiations appearing in the specific
proof is viewed as the ith application of the underlying rule. The
antecedents of this rule are analyzed as to what must be true of
the initial state in order that it is guaranteed the ith collection of
antecedents are satisfied when needed. This involves analyzing
the proof tree, considering how each antecedent is proved. An
augmented version of a standard explanation-based algorithm
[Mooney861 is used to determine which variables in this portion
of the proof ree are constrained to be identical.’ Once this is
done, the k va iables are expressed as components of the p-
dimensional vectors described above, and the system ascertains
what must be true of this sequence of vectors so that each
antecedent is satisfied when necessary. All antecedents of the
chosen instantiation of the focus rule must be satisfied in one of
the following ways for generalizing to N to be possible:

(1)

(2)

(3)

(4)

The antecedent may be situation-independent. Terms of
this type are unaffected by actions.

The antecedent may be supported by a consequent of an
earlier application of the focus rule. Terms of this type
place inter-vector constraints on the sequence of p-
dimensional vectors.

The antecedent may be supported by an “unwindable
rule.” When this happens, the antecedent is unwound to
the initial state and all of the preconditions necessary to
insure that the antecedent holds when needed are collected.
This process is elaborated later. It. too, may place inter-
vector constraints on the sequence of p-dimensional
vectors.

The antecedent is supported by other terms that are
satisfied in one of these ways.

Notice that antecedents are considered satisfied when they
can be expressed in terms of the initial state. and not when a leaf
of the proof tree is reached. Conceivably. to satisfy these
antecedents could require a large number of inference rules. If
that is the case. it may be better to trace backwards through
these rules until more operational terms are encountered. This
operationality/generality trade-off [Mitchell861 is a major issue
in explanation-based learning, and, except where it relates
directly to generalizing to N , will not be discussed further here.

A second point to notice is that not all proof subtrees will
terminate in one of the above ways. If this is the case. this
application of the focus rule cannot be viewed as the ith

application.2

The possibility that a specific solution does not provide
enough information to generalize to N is an important point in
explanation-based approaches to generalizing number. A concept
involving an arbitrary number of substructures may involve an
arbitrary number of substantially different problems. Any
specific solution will only have addressed a finite number of
these sub-problems. Due to fortuitous circumstances in the
example some of the potential problems may not have arisen. To
generalize to N , a system must recognize all the problems that
exist in the general concept and, by analyzing the specific
solution, surmount them. Inference rules of a certain form

’ The rules used in the specific proof are replaced by their general versions
and the algorithm determines which uniEcations must hold to maintain the
veracity of the proof. That is, expressions must be unified wherever a rule
consequent is used to satisfy an antecedent of another rule.

* One solution to this problem would be to have the system search through
its collection of unwindable rules and incorporate a relevant one into the proof
structure. To study the limits of this paper’s approach to generalizing to N, we
are requiring that al2 necessary information be present in the explanation: no
problem-solving search is performed during generalization. Another solution
‘would be to assume the problem solver could overcome this problem at rule
application time. This second technique, however, would eliminate the property
that a learned plan will always run to completion whenever its preconditions are
satisfied in the initial state.

(described later) elegantly support this task in the BAGGER
system. They allow the system to reason backwards through an
arbitrary number of actions.

A specific solution will contain several instantiations of the
general rule chosen as the focus rule. Each of these applications
of the rule addresses the need of satisfying the rule’s
antecedents, possibly in different ways. For example. when
clearing an object. the blocks moved can be placed in several
qualitatively different types of locations. The moved block can
be placed on a table (the domain model specifies that tables are
always clear). it can be placed on a block moved in a previous
step. or it can be placed on a block that was originally clear.

BAGGER analyzes all applications of the general focus rule
that appear in the specific example. When several instantiations
of the focus rule provide sufficient information for number
generalization, BAGGER collects the preconditions for satisfying
their antecedents in a disjunction of conjunctions (one conjunct
for each acceptable instantiation). Common terms are factored
out of the disjunction. Knowledge about the independence of the
methods of satisfying the antecedents can be used to further
simplify the disjunction of conjunctions.

The learned rule illustrated in figure 2g only allows
clearing towers by unstacking each block (after the first) on the
previously moved one. The first transfer of figure 2s provides no
information that can be used to guarantee that the block to be
moved in step i is clear at that step. The acquired rule would be
more general if it contained provisions for placing moved objects
in any of the types of locations mentioned above. When an
example of unstacking a four-block tower is presented to the
system. where one intermediate block is placed on the table. a
disjunctive rule is learned. In this case. the learned rule provides
a choice of places to locate moved blocks. The disjunctive rule
represented by figure 3 involves a choice of where to get the next
block for the tower being constructed. Either a block that is
clear in the initial state is used. or a block that is cleared by
earlier transfers is chosen.

Figure 5 contains a portion of the proof for the unstacking
example. Portions of two consecutive transfers are shown. All
variables are universally quantified. Arrows run from the
antecedents of a rule to its consequents. Double-headed arrows
represent terms that are equated in the specific explanation. The
generalization algorithm used enforces the unification of these
paired terms.

There are four antecedents of a transfer. To define a
transfer, the block moved (x- >, the object on which it is placed
(y >, and a state (s > must be specified, and the constraints among
these variables must be satisfied. One antecedent, the one
requiring a block not be placed on top of itself, is type 1 - it is
situation-independent. The next two antecedents are type 2.

transfer,

(Clear ?x, (Do (Transfer ?x, ?y,) ?s,))
(State (Do (Transfer ?x, ?y,) ?s,))

I
b (FlatTop ?z 1 (Clear ?z ?s)

(FreeSpace ?z ?s)

.
.*

(State ?s,)
(# %, ?yj+~2Li:J~~)

transfer,

Figure 5. Satisfying Antecedents by IPrevious Consequents

518 Machine learning & Knowledge Acquisition

Two of the consequents of the ith transfer are used to satisfy
these antecedents of the jth transfer. During transfer, . in state
s, object x, is moved on to object y, . The consequents of this
transfer are that a new state is produced, the object moved is
clear in the new state. and x, is on y, in the resulting state. (The
On term is not shown.)

The state that results from transfer, satisfies the second
antecedent of transfer, . Unifying these terms completely
defines sJ in terms of the previous variables in the RIS.

Another antecedent requires that. in state sJ , there be space
on object y, to put block xJ . This antecedent is type 4. Another
inference rule specifies that a clear object with a flat top has free
space. The cleainess of x, after transfer, is used. Unifying this
collection of terms leads, in addition to the redundant definition
of s, , to the equating of y, with z and x, . This means that the
previously moved block always provides a clear spot to place the
current block. No provisions need be made to insure the
existence of a clear location to place intermediate blocks.

P(x,,,.... ~x,,p,yl,l,... JI,yrsJ
and

‘JkE2,...,i

Q (Xl ,,. - . . ~-%,p’Yk--1,1~~ * - *Yk-l,v*YK,l.. . - ’ yk ,Y)
and

Sk =Do (x1 l,...,X 1 ,p’ vk -1 ,I 1 * - * 9 Yk -l,y, *yk -1)
+

P(~j,l”..~X~,~,Y,,1,... ,y~,“?sJ (3)

Frame axioms often satisfy the form of equation 2.
Figure 6 shows one way to satisfy the need to have a clear object
when placing the ith block in a tower. On the left-hand side of
figure 6 is a portion of the proof of a tower-building example.
Block x, is clear in state s, because it is clear in state s;-~ and
the block moved in transfer,-, is not placed upon x, .
Unwinding this rule leads to the result that block x, will be
clear in state s, if it is clear in state s r and x, is never used as
the new support block in any of the intervening transfers.

The fourth antecedent. that Xj be liftable, is also type 4. A
rule (not shown) states that an object is liftable if it is a clear
block. Block x, is determined to be clear because the only object
it originally supports is moved in transfer,. Tracing backwards
from the liftable term leads to several situation-independent
terms and the term (Supports ?x, (?x, > ?s,). Fortunately.
although this term contains a situation variable, it is satisfied by
an “unwindable rule.” and is type 3.

A Portion of the Explanation Unwound Subgraph
(Clear ?Z ?S > (f ?Z ?y > (Clear ?x, ?s 1> (?c ?x, ?y r>

Y F-Y---
(Clear ?z (Do (Transfer ?x ?y > ?s)) (Clear ?n, ?s 2) (f ?x, ?y 2)

unwindable. The consequent must match one of the antecedents
Equation 2 presents the form required for a rule to be

of the rule. Hence, the rule can be applied recursively. This
feature is used to “unwind” the term from the it?1 state to the
initial state.3 The variables in the rule are divided into three
groups. First. there are the x variables. These appear unchanged
in both the consequent’s term P and the antecedent’s term P.
Second. there are the y variables which differ in the two P’s.
Finally, there is the state variable (s >. There can be additional
requirements of the x and y variables (via predicate Q>,
however, these requirements cannot depend on a state variable.
Only the definition of the next state can depend on the current
state, as it is assumed the sequence of repeated rule applications
completely determines the sequence of states.

(Cl ear ?X, ?S, > .
(Clear ?X, ?S, >

Figure 6. Unwinding a Rule
Similar reasoning is used is used in the unstacking example

to insure that. up until the state in which it is moved, a block
supports only one other block (and that block is moved in the
previous transfer). This means that for the new rule to apply,
an initial state block configuration must have successive support
relations - in the initial state, the block to be moved in step i
must support the one to be moved in step i -1 (the first block
moved must be clear). As expected. a tower of blocks will be
unstacked from the top downward. The new rule applies to the
goal of clearing any object involved in the tower (including the
table. provided there is another table on which to stack). Each

P~x~,l,-.~~~j,Lc’y~-l,l~..-~y*-,,y~~~l-~~
block moved is placed on top of the object previously moved
because that block is known to be clear at that time. This

and constraint leads to the building of a new, inverted tower. The
Q (Xl ,I 9 * - - * .q ,p’ Y2 -I,1 * - - - 1 YI -1 ,vr Y, ,I* * * - 9 Yt ,J first object moved can be placed anywhere that is clear - on the

and table. on another table. or on another cleared block. In the
s, = Do (Xj ,,, - * . , x, &’ y1-1 1, - * - 9 Y1-1,p s, -1) initial state. every block to be moved must be supported by an

3 object that is supporting no other block. If a supporting object

P~x~,l’~~~~~~,y,Y~,l~-~..y~,“~~~(~ (2) supported more than one block, it would not be clear when it is
its turn to be moved. or. for the “goal” object. after the new rule
is applied.

Applying equation 2 recursively i times produces
equation 3. This rule determines the requirements on the initial
state so that the desired term can be guaranteed in state i .
Except for the definition of the next state. none of the
antecedents depend on the intermediate states. Notice that a
collection of y variables must be specified. Any of these
variables not already contained in the RIS are added to it.

3 Actually, recursive rules are not always unwound to the initial state. If
two (or morel of rules of this form are in a pathway, the first is unwound from
state i to state t and the second is unwound from state t’ to the initial state. For
example, a block can be supporting another block during some number of
transfers, can be cleared, can remam clear during another sequence of transfers,
and finally be added to a tower.

Notice that information not contained in the focus rule, but
appearing in the example. is incorporated into the extended rule.
In the unstacking example. additional rules are used to determine
when an object becomes clear. The rule for transferring a block
says nothing about the clearness of the block’s original support
after the block is moved. It applies to objects supporting any
number of blocks. Other rules state that the supporting object is
now clear if the moved block was the only one it formerly
supported. The combination of these rules means that the new
rule only applies to towers where each object (other than th@top
one) only directly supports one block. Unfortunately. while
more broadly applicable than a plan for clearing three-block
towers. the newly-acquired rule cannot clear objects directly
supporting more than one block. The specific example did not
address this multiple-support problem. Hence, the explanation-
based BAGGER system did not solve it.

Shavlik and DeJong 519

Once the repeated rule portion of the extended rule is
determined. the rest of the explanation is incorporated into the
final result. In the unstacking example of figure 2s. this involves
the proof that x is clear in the final state. It is accomplished in a
manner similar to the way antecedents are satisfied in the
repeated rule portion. The main difference is that the focus rule
is now viewed as the Nth rule. application. As before.
antecedents must be of one of the four specified types.

Rules produced by BAGGER have the important property
that their preconditions are expressed in terms of the initial state

- they do not depend on the results of intermediate applications
of the focus rule. If the preconditions are met, the results of
multiple applications of the focus rule are immediately
determined. There is no need to apply the rule successively. each
time checking if the preconditions for the next application are
satisfied.

The example in figure 6 did not result in any new variables
being added to the RIS. Other examples of unwinding do add to
the variables in that sequence.’ Often this occurs during the
process of specifying the rest of the explanation in terms of the
initial state. For example. when building a tower, the y-
coordinate of the last block added is determined by an
unwindable rule. Unwinding this rule adds two terms to each
vector in the RIS: the height of the block moved (xi >. and the
y-coordinate of this block following the transfer.

Generalizing structure is an important property currently
lacking in most explanation-based systems. This research
contributes to the theory and practice of explanation-based
learning by developing and testing methods for extending the
structure of explanations during generalization.

performing it. The learned rule guarantees that they will be
tiet.

A problem solver that applies BAGGER’s learned rules has
been implemented. An acquired rule can be applied if its
antecedents are satisfied in a state of the world. Satisfying the
antecedents will produce an RIS. Next, N actions are executed.
one for each vector. Note that the problem solver need not

evaluate each action’s preconditions immediately before
Explanation-Based Learning,” CSL Technical Report, University of
Illinois, Urbana, IL, February 1987.

REFERENCES

[.4hn871 W. Ahn, R. J. Mooney, W. F. Brewer and G. F. DeJong,
“Schema Acquisition from One Example: Psychological Evidence for

IV. CONCLUSION

Most research in explanation-based learning involves
relaxing constraints on the variables in an explanation. rather
than generalizing the structure of the explanation. This paper
presents an explanation-based approach to the problem of
generalizing to iV . To illustrate the approach, situation calculus
examples from the blocks world are analyzed. The approach
presented leads to efficient plans that can be used to clear an
object directly supporting an arbitrary number of other objects.
build towers of arbitrary height, and unstack towers containing
any number of blocks. A generalized version of DeMorgan’s law
is also learned.

The fully-implemented BAGGER system analyzes
explanation structures (in this case, situation calculus proofs)
and detects repeated. inter-dependent applications of rules. Once
a rule on which to focus attention is found, the system
determines how an arbitrary number of instantiations of this
rule can be concatenated together. This indefinite-length
collection of rules is conceptually merged into the explanation.
replacing the specific-length collection of rules, and a standard
explanation-based algorithm
augmented explanation.

produces a new rule from the

The specific example guides the extension of the focus rule
into a structure representing an arbitrary number of repeated
applications. Information not contained in the focus rule, but
appearing in the example, is often incorporated into the extended
rule. In particular, “unwindable rules” provide the guidance as
to how preconditions of the ith application can be specified in
terms of the current state.

A concept involving an arbitrary number of substructures
may involve any number of substantially different problems.
However. a specific solution will have necessarily only addressed
a finite number of them. To properly generalize to N , a system
must recognize all the problems that exist in the general concept
and. by analyzing the specific solution. surmount them. If the
specific solution does not provide enough information to
circumvent all problems, generalization to N cannot occur
because BAGGER is designed not to perform any problem-
solving search during generalization. When a specific solution
surmounts, in an extendible fashion, a sub-problem in different
ways during different instantiations of the focus rule.
disjunctions appear in the acquired rule.

[Cheng86] P. Cheng and J. G. Carbonell, “The FERMI System: Inducing
Iterative Macro-operators from Experience,” Proceedings of .4AAZ-

86, pp. 490-495, Philadelphia, PA, August 1986.

[Fikes72] R. E. Fikes, P. E. Hart and N. J. Nilsson, “Learning and
Executing Generalized Robot Plans,” Artiftcial Intelligence 3,

pp. 251-288, (19721.

[Mitchell86] T. M. Mitchell, R. Keller and S. Kedar-Cabelli,
“Explanation-Based Generalization: A Unifying View,” hlachine

Learning 1, I, pp. 47-80, (January 1986).

[Mooney861 R. J. Mooney and S. W. Bennett, “A Domain Independent
Esplanation-Based Generalizer,” Proceedings of AA.41-86, pp. 551-
555, Philadelphia, PA, August 1986.

[O’Rorke87] P. \‘. O’Rorke, “Esplanation-Based Learning via Constraint
Posting and Propagation,” Ph. D. Thesis, Department of Computer
Science, University of Illinois, Urbana, IL, January 1987.

[Prieditisgb] A. E. Prieditis, “Discovery of Algorithm from Weak
Methods,” Proceedings of the International hZeetirrg on ;Idt*ances in

Leurning, pp. 37-52, Les Arcs, Switzerland, 1986.

[Rosenbloom P. Rosenbloom and J. Laird, “Mapping Esplanation-
Based Generalization into Soar,” Proceedings of .4.4.41-86, pp. 667-

669, Philadelphia, PA, August 1985.

[Shavlik85] J. W. Shavlik, “Building a Computer Model of Learning
Classical Mechanics,” Proceedings of the Se\‘enth Annual Conference
of the Cogr1itiL.e Sciertce Society, pp. 351-355, Irvine, CA, August
1985.

[Shavlik87a] J. W. Shavlik and G. F. DeJong, “Analyzing Variable
Cancellations to Generalize Symbolic Mathematical Calculations,”
Proceedings of the Third IEEE Conference on .4rtijcial Intelligence

Applications, pp. 100-105, Orlando, FL, February 1987.

[Shavlik87b] J. W. Shavlik and G. F. DeJong, “An Explanation-Based
Approach to Generalizing Number,” Proceedings of Z.ZC.lZ-87,
Milan, Italy, August 1987.

[.Shavlik87cl J. W. Shavlik, “Augmenting and Generalizing Explanations
in Explanation-Based Learning,” Ph. D. Thesis, Department of
Computer Science, University of Illinois, Urbana, IL, forthcoming.

520 Machine learning & Knowledge Acquisition

