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Many concepts require generalizing number. For example, 
concepts such as momentum and energy conservation apply to 
arbitrary numbers of physical objects, clearing the top of a desk 
can require an arbitrary number of object relocations, and 
setting a table involves an arbitrary number of guests. In 
addition. there is recent psychological evidence [Ahn87] that 
people can generalize number on the basis of one example. 

A domain-independent, explanation-based approach to the 
problem of “generalizing to N *’ is presented in [Shavlik8 7b]. 

* This research was partially supported by the National Science Foundation 
under grant NSF IS-T 85-l 1542. 

t University of Illinois Cognitive Science/Artificial Intelligence Fellow. 

That paper presents a theory of generalizing number. It also 
motivates the need for augmenting explanations. discusses other 
approaches to generalizing the structure of explanations 
[Cheng86, Prieditis86. Shavlik85, Shavlik87al and briefly 
discusses how this approach handles examples from several 
domains. This paper describes the details of a working system 
based on 
structures 

that -theory. The 
of the form shown 

system analyzes and 
in the left-hand side of 

generalizes 
figure 1. 

Observation of the repeated application of a rule or 
operator indicates that generalizing the number of rules in the 
explanation may be appropriate. The desired form of structural 
recursion is manifested as repeated application of an inference 
rule in such a manner that a portion of each consequent is used 
to satisfy some of the antecedents of the next application. When 
such a sequence is detected, it is determined how an arbitrary 
number of instantiations of this rule can be concatenated 
together. This indefinite-length sequence of rules is conceptually 
merged into the explanation. replacing the specific-length 
collection of rules, and a standard explanation-based algorithm 
produces a new rule from the augmented explanation. An 
additional requirement is that the preconditions for the N rule 
applications be fully specified in terms of the state of the world 
when the new rule is applied. That is. the preconditions do not 
depend on the results of intermediate applications of the 
underlying rule. 
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Figure 1. Augmenting the Explanation 

II. THE BAGGER SYSTEM 

The BAGGER system (Building Augmented Generalizations 
by Generating Extended Recurrences) an&zes predicate calculus 
proofs and - attempts 

- - 
to construct concepts that involve 

generalizing to N . Most of the examples under study use the 
situation calculus to reason about actions. 

One 
figure 2s. 

problem 
The goal 

solution analyzed by BAGGER 
is to clear block x . The system 

is shown in 
is provided 

low-level domain knowledge about blocks. including how to 
transfer a block from one location to another. Briefly. to move a 
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Figure 2s. Unstacking a Specific Tower 

block it must have nothing on it and there must be free space at 
which to place it. Additional inference rules (many of which are 
frame axioms) are used to reason about the effects of moving an 
object. The system produces a situation calculus proof 
validating the actions shown in figure 2s. in which two blocks 
must be moved to clear the desired block. By analyzing this 
example, the system acquires a general plan for clearing an 
arbitrary block contained in a tower of arbitrary height. The 
acquired plan applies. for example, to the problem of clearing 
block z in figure 2g. Note that there may be a different number 
of blocks on z than on x . 
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Figure 2g. A General Plan for Unstacking Towers 

In another example, the system observes several blocks 
being stacked upon one another in order to satisfy the goal of 
having a block at a specified height. Extending the explanation 
of these actions produces a plan for stacking any number of 
blocks in order to reach any given height (provided enough 
blocks exist). Figure 3 illustrates this general plan. 

* + goal El 
A 

and the acquired inference rules. can be found in [Shavlik87c]. 

IPI. GENERALIZATION IN BAGGER 

The system begins its analysis of a specific solution at the 
goal node. It then traces backward, looking for repeated rule 
applications. These repeated applications need not directly 
connect - there can be intervening rules. The general rule 
repeatedly applied is called a focus rule. Once a focus rule is 
found, BAGGER ascertains how an arbitrary number of 
instantiations of this rule and any intervening rules can be 
concatenated together (as illustrated in figure 1). This 
indefinite-length collection of rules is conceptually merged into 
the explanation. replacing the specific-length collection. and a 
new rule is produced from the augmented explanation. 

Three classes of terms must be collected to construct the 
antecedents of a new rule. First. the antecedents of the initial 
rule application in the arbitrary length sequence of rule 
applications must be satisfied. To do this, the antecedents of the 
focus rule are used. Second, the preconditions imposed by 
chaining together an arbitrary number of rule applications must 
be collected. These are derived by analyzing instantiations of 
the focus rule in the sample proof. Those applications thaj 
provide enough information to be viewed as the arbitrary ith 

application produce this second class of preconditions. Third. the 
preconditions from the rest of the explanation must be collected. 
This determines the constraints on the final applications of the 
focus rule. 

The consequents of the new rule are produced by collecting 
the consequents of the last application in the chain of focus rule 
applications and any other terms in the goal expression. For 
example. the consequents for the rules illustrated by figures 2g 
and 4 state that in the final situation the object originally under 
the last object moved is clear. In the rule represented by 
figure 3. the consequents state that the last block moved is at the 
goal location. 

Figure 3. A General Plan for Building Towers 

Unlike many other block-manipulation examples, in these 
examples it is not assumed that blocks can support only one 
other block. This means that moving a block does not 
necessarily clear its supporting block. Another concept learned 
by BAGGER is a general plan for clearing an object directly 
supporting any number of blocks. This plan is illustrated in 
figure 4. 

Figure 4. A General Plan for Clearing Objects 

The domain of digital circuit design has also been 
investigated. By observing the repeated application of 
DeMorgan’s law to implement two cascaded and gates using or 
and not gates, BAGGER produces a general version of 
DeMorgan’s law which can be used to implement N cascaded 
and gates with N or and one not gate. 

The next section describes how BAGGER constructs these 
general plans. Complete details on these examples, including the 
initial set of inference rules used, the situation calculus proofs, 

In order to package a sequence of rule applications into a 
single macro-rztle, the preconditions that must be satisfied at each 
of the N rule applications must be collected and combined. The 
preconditions for applying the resulting extended rule must be 
specifiable in terms of the initial state, and not in terms of 
intermediate states. This insures that. given that the necessary 
conditions are satisfied in the initial state. a plan represented in 
an extended rule will run to completion without further 
problem solving, regardless of the number of intervening states 
necessary. For example. there is no possibility that a plan will 
lead to moving N - 2 blocks and then get stuck. If the 
preconditions for the ith rule application were expressed in terms 
of the result of the (i-11th application, each of the N rule 
applications would have to be considered in turn to see if the 
preconditions of the next are satisfied. In the approach taken, 
extra work during generalization and a possible loss of generality 
are traded off for a rule whose preconditions are easier to check. 

When a focus rule is concatenated an arbitrary number of 
times, variables need to be chosen for each rule application. A 
sequence of p-dimensional vectors. called the rule instantiation 
sequence (RIS). is used to represent this in,formation. The 
general form of the RIS is: 

<Vl,J,. f . , Vlg >. <v2,1.. . . , vzg > , . . . , <v, ,,, . . . . V” ,p > (1) 

In the unstacking example of figure 2s. p = 3: the current state, 
the object to be moved. and the object where the moved object 
will be placed. 

Depending on the rule used. the choice of elements for this 
sequence may be constrained. For example. certain elements 
may have to possess various properties. specific relations may 
have to hold among various elements, some elements may be 
constrained to be equal to or unequal to other elements, and 
some elements may be functions of other elements. 
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To determine the preconditions in terms of the initial state, 
each of the focus rule instantiations appearing in the specific 
proof is viewed as the ith application of the underlying rule. The 
antecedents of this rule are analyzed as to what must be true of 
the initial state in order that it is guaranteed the ith collection of 
antecedents are satisfied when needed. This involves analyzing 
the proof tree, considering how each antecedent is proved. An 
augmented version of a standard explanation-based algorithm 
[Mooney861 is used to determine which variables in this portion 
of the proof ree are constrained to be identical.’ Once this is 
done, the k va iables are expressed as components of the p- 
dimensional vectors described above, and the system ascertains 
what must be true of this sequence of vectors so that each 
antecedent is satisfied when necessary. All antecedents of the 
chosen instantiation of the focus rule must be satisfied in one of 
the following ways for generalizing to N to be possible: 

(1) 

(2) 

(3) 

(4) 

The antecedent may be situation-independent. Terms of 
this type are unaffected by actions. 

The antecedent may be supported by a consequent of an 
earlier application of the focus rule. Terms of this type 
place inter-vector constraints on the sequence of p- 
dimensional vectors. 

The antecedent may be supported by an “unwindable 
rule.” When this happens, the antecedent is unwound to 
the initial state and all of the preconditions necessary to 
insure that the antecedent holds when needed are collected. 
This process is elaborated later. It. too, may place inter- 
vector constraints on the sequence of p-dimensional 
vectors. 

The antecedent is supported by other terms that are 
satisfied in one of these ways. 

Notice that antecedents are considered satisfied when they 
can be expressed in terms of the initial state. and not when a leaf 
of the proof tree is reached. Conceivably. to satisfy these 
antecedents could require a large number of inference rules. If 
that is the case. it may be better to trace backwards through 
these rules until more operational terms are encountered. This 
operationality/generality trade-off [Mitchell861 is a major issue 
in explanation-based learning, and, except where it relates 
directly to generalizing to N , will not be discussed further here. 

A second point to notice is that not all proof subtrees will 
terminate in one of the above ways. If this is the case. this 
application of the focus rule cannot be viewed as the ith 

application.2 

The possibility that a specific solution does not provide 
enough information to generalize to N is an important point in 
explanation-based approaches to generalizing number. A concept 
involving an arbitrary number of substructures may involve an 
arbitrary number of substantially different problems. Any 
specific solution will only have addressed a finite number of 
these sub-problems. Due to fortuitous circumstances in the 
example some of the potential problems may not have arisen. To 
generalize to N , a system must recognize all the problems that 
exist in the general concept and, by analyzing the specific 
solution, surmount them. Inference rules of a certain form 

’ The rules used in the specific proof are replaced by their general versions 
and the algorithm determines which uniEcations must hold to maintain the 
veracity of the proof. That is, expressions must be unified wherever a rule 
consequent is used to satisfy an antecedent of another rule. 

* One solution to this problem would be to have the system search through 
its collection of unwindable rules and incorporate a relevant one into the proof 
structure. To study the limits of this paper’s approach to generalizing to N, we 
are requiring that al2 necessary information be present in the explanation: no 
problem-solving search is performed during generalization. Another solution 
‘would be to assume the problem solver could overcome this problem at rule 
application time. This second technique, however, would eliminate the property 
that a learned plan will always run to completion whenever its preconditions are 
satisfied in the initial state. 

(described later) elegantly support this task in the BAGGER 
system. They allow the system to reason backwards through an 
arbitrary number of actions. 

A specific solution will contain several instantiations of the 
general rule chosen as the focus rule. Each of these applications 
of the rule addresses the need of satisfying the rule’s 
antecedents, possibly in different ways. For example. when 
clearing an object. the blocks moved can be placed in several 
qualitatively different types of locations. The moved block can 
be placed on a table (the domain model specifies that tables are 
always clear). it can be placed on a block moved in a previous 
step. or it can be placed on a block that was originally clear. 

BAGGER analyzes all applications of the general focus rule 
that appear in the specific example. When several instantiations 
of the focus rule provide sufficient information for number 
generalization, BAGGER collects the preconditions for satisfying 
their antecedents in a disjunction of conjunctions (one conjunct 
for each acceptable instantiation). Common terms are factored 
out of the disjunction. Knowledge about the independence of the 
methods of satisfying the antecedents can be used to further 
simplify the disjunction of conjunctions. 

The learned rule illustrated in figure 2g only allows 
clearing towers by unstacking each block (after the first) on the 
previously moved one. The first transfer of figure 2s provides no 
information that can be used to guarantee that the block to be 
moved in step i is clear at that step. The acquired rule would be 
more general if it contained provisions for placing moved objects 
in any of the types of locations mentioned above. When an 
example of unstacking a four-block tower is presented to the 
system. where one intermediate block is placed on the table. a 
disjunctive rule is learned. In this case. the learned rule provides 
a choice of places to locate moved blocks. The disjunctive rule 
represented by figure 3 involves a choice of where to get the next 
block for the tower being constructed. Either a block that is 
clear in the initial state is used. or a block that is cleared by 
earlier transfers is chosen. 

Figure 5 contains a portion of the proof for the unstacking 
example. Portions of two consecutive transfers are shown. All 
variables are universally quantified. Arrows run from the 
antecedents of a rule to its consequents. Double-headed arrows 
represent terms that are equated in the specific explanation. The 
generalization algorithm used enforces the unification of these 
paired terms. 

There are four antecedents of a transfer. To define a 
transfer, the block moved (x- >, the object on which it is placed 
(y >, and a state (s > must be specified, and the constraints among 
these variables must be satisfied. One antecedent, the one 
requiring a block not be placed on top of itself, is type 1 - it is 
situation-independent. The next two antecedents are type 2. 

transfer, 

(Clear ?x, (Do (Transfer ?x, ?y, ) ?s, )) 
(State (Do (Transfer ?x, ?y, ) ?s, )) 

I 
b (FlatTop ?z 1 (Clear ?z ?s ) 

(FreeSpace ?z ?s ) 

. 
.* 

(State ?s, ) 
(# %, ?yj+~2Li:J~~) 

transfer, 

Figure 5. Satisfying Antecedents by IPrevious Consequents 
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Two of the consequents of the ith transfer are used to satisfy 
these antecedents of the jth transfer. During transfer, . in state 
s, object x, is moved on to object y, . The consequents of this 
transfer are that a new state is produced, the object moved is 
clear in the new state. and x, is on y, in the resulting state. (The 
On term is not shown.) 

The state that results from transfer, satisfies the second 
antecedent of transfer, . Unifying these terms completely 
defines sJ in terms of the previous variables in the RIS. 

Another antecedent requires that. in state sJ , there be space 
on object y, to put block xJ . This antecedent is type 4. Another 
inference rule specifies that a clear object with a flat top has free 
space. The cleainess of x, after transfer, is used. Unifying this 
collection of terms leads, in addition to the redundant definition 
of s, , to the equating of y, with z and x, . This means that the 
previously moved block always provides a clear spot to place the 
current block. No provisions need be made to insure the 
existence of a clear location to place intermediate blocks. 

P(x,,,.... ~x,,p,yl,l,... JI,yrsJ 
and 

‘JkE2,...,i 

Q (Xl ,,. - . . ~-%,p’Yk--1,1~~ * - *Yk-l,v*YK,l.. . - ’ yk ,Y) 
and 

Sk =Do (x1 l,...,X 1 ,p’ vk -1 ,I 1 * - * 9 Yk -l,y, *yk -1) 
+ 

P(~j,l”..~X~,~,Y,,1,... ,y~,“?sJ (3) 

Frame axioms often satisfy the form of equation 2. 
Figure 6 shows one way to satisfy the need to have a clear object 
when placing the ith block in a tower. On the left-hand side of 
figure 6 is a portion of the proof of a tower-building example. 
Block x, is clear in state s, because it is clear in state s;-~ and 
the block moved in transfer,-, is not placed upon x, . 
Unwinding this rule leads to the result that block x, will be 
clear in state s, if it is clear in state s r and x, is never used as 
the new support block in any of the intervening transfers. 

The fourth antecedent. that Xj be liftable, is also type 4. A 
rule (not shown) states that an object is liftable if it is a clear 
block. Block x, is determined to be clear because the only object 
it originally supports is moved in transfer,. Tracing backwards 
from the liftable term leads to several situation-independent 
terms and the term (Supports ?x, (?x, > ?s, ). Fortunately. 
although this term contains a situation variable, it is satisfied by 
an “unwindable rule.” and is type 3. 

A Portion of the Explanation Unwound Subgraph 
(Clear ?Z ?S > ( f ?Z ?y > (Clear ?x, ?s 1> (?c ?x, ?y r> 

Y F-Y--- 
(Clear ?z (Do (Transfer ?x ?y > ?s)) (Clear ?n, ?s 2) (f ?x, ?y 2) 

unwindable. The consequent must match one of the antecedents 
Equation 2 presents the form required for a rule to be 

of the rule. Hence, the rule can be applied recursively. This 
feature is used to “unwind” the term from the it?1 state to the 
initial state.3 The variables in the rule are divided into three 
groups. First. there are the x variables. These appear unchanged 
in both the consequent’s term P and the antecedent’s term P. 
Second. there are the y variables which differ in the two P’s. 
Finally, there is the state variable (s >. There can be additional 
requirements of the x and y variables (via predicate Q>, 
however, these requirements cannot depend on a state variable. 
Only the definition of the next state can depend on the current 
state, as it is assumed the sequence of repeated rule applications 
completely determines the sequence of states. 

(Cl ear ?X, ?S, > . 
(Clear ?X, ?S, > 

Figure 6. Unwinding a Rule 
Similar reasoning is used is used in the unstacking example 

to insure that. up until the state in which it is moved, a block 
supports only one other block (and that block is moved in the 
previous transfer). This means that for the new rule to apply, 
an initial state block configuration must have successive support 
relations - in the initial state, the block to be moved in step i 
must support the one to be moved in step i -1 (the first block 
moved must be clear). As expected. a tower of blocks will be 
unstacked from the top downward. The new rule applies to the 
goal of clearing any object involved in the tower (including the 
table. provided there is another table on which to stack). Each 

P~x~,l,-.~~~j,Lc’y~-l,l~..-~y*-,,y~~~l-~~ 
block moved is placed on top of the object previously moved 
because that block is known to be clear at that time. This 

and constraint leads to the building of a new, inverted tower. The 
Q (Xl ,I 9 * - - * .q ,p’ Y2 -I,1 * - - - 1 YI -1 ,vr Y, ,I* * * - 9 Yt ,J first object moved can be placed anywhere that is clear - on the 

and table. on another table. or on another cleared block. In the 
s, = Do (Xj ,,, - * . , x, &’ y1-1 1, - * - 9 Y1-1,p s, -1) initial state. every block to be moved must be supported by an 

3 object that is supporting no other block. If a supporting object 

P~x~,l’~~~~~~,y,Y~,l~-~..y~,“~~~(~ (2) supported more than one block, it would not be clear when it is 
its turn to be moved. or. for the “goal” object. after the new rule 
is applied. 

Applying equation 2 recursively i times produces 
equation 3. This rule determines the requirements on the initial 
state so that the desired term can be guaranteed in state i . 
Except for the definition of the next state. none of the 
antecedents depend on the intermediate states. Notice that a 
collection of y variables must be specified. Any of these 
variables not already contained in the RIS are added to it. 

3 Actually, recursive rules are not always unwound to the initial state. If 
two (or morel of rules of this form are in a pathway, the first is unwound from 
state i to state t and the second is unwound from state t’ to the initial state. For 
example, a block can be supporting another block during some number of 
transfers, can be cleared, can remam clear during another sequence of transfers, 
and finally be added to a tower. 

Notice that information not contained in the focus rule, but 
appearing in the example. is incorporated into the extended rule. 
In the unstacking example. additional rules are used to determine 
when an object becomes clear. The rule for transferring a block 
says nothing about the clearness of the block’s original support 
after the block is moved. It applies to objects supporting any 
number of blocks. Other rules state that the supporting object is 
now clear if the moved block was the only one it formerly 
supported. The combination of these rules means that the new 
rule only applies to towers where each object (other than th@top 
one) only directly supports one block. Unfortunately. while 
more broadly applicable than a plan for clearing three-block 
towers. the newly-acquired rule cannot clear objects directly 
supporting more than one block. The specific example did not 
address this multiple-support problem. Hence, the explanation- 
based BAGGER system did not solve it. 
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Once the repeated rule portion of the extended rule is 
determined. the rest of the explanation is incorporated into the 
final result. In the unstacking example of figure 2s. this involves 
the proof that x is clear in the final state. It is accomplished in a 
manner similar to the way antecedents are satisfied in the 
repeated rule portion. The main difference is that the focus rule 
is now viewed as the Nth rule. application. As before. 
antecedents must be of one of the four specified types. 

Rules produced by BAGGER have the important property 
that their preconditions are expressed in terms of the initial state 

- they do not depend on the results of intermediate applications 
of the focus rule. If the preconditions are met, the results of 
multiple applications of the focus rule are immediately 
determined. There is no need to apply the rule successively. each 
time checking if the preconditions for the next application are 
satisfied. 

The example in figure 6 did not result in any new variables 
being added to the RIS. Other examples of unwinding do add to 
the variables in that sequence.’ Often this occurs during the 
process of specifying the rest of the explanation in terms of the 
initial state. For example. when building a tower, the y- 
coordinate of the last block added is determined by an 
unwindable rule. Unwinding this rule adds two terms to each 
vector in the RIS: the height of the block moved (xi >. and the 
y-coordinate of this block following the transfer. 

Generalizing structure is an important property currently 
lacking in most explanation-based systems. This research 
contributes to the theory and practice of explanation-based 
learning by developing and testing methods for extending the 
structure of explanations during generalization. 

performing it. The learned rule guarantees that they will be 
tiet. 

A problem solver that applies BAGGER’s learned rules has 
been implemented. An acquired rule can be applied if its 
antecedents are satisfied in a state of the world. Satisfying the 
antecedents will produce an RIS. Next, N actions are executed. 
one for each vector. Note that the problem solver need not 

evaluate each action’s preconditions immediately before 
Explanation-Based Learning,” CSL Technical Report, University of 
Illinois, Urbana, IL, February 1987. 
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