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Abstract 
An approach to finding an optimal solution for an important 
diagnostic problem is described. Examples are taken from 
laboratory medicine, where the problem can be stated as 
finding the best combination of tests for making a diagnosis. 
These tests are typically numerical with unknown decision 
thresholds. Because of uncertainty in classification, the 
solution is described in terms of maximizing measures of 
decision rule performance on a data base of cases, for 
example maximizing positive predictive value, subject to a 
constraint of a minimum sensitivity. The resultant rules are 
quite similar to classification production rules, and the 
procedures described should be valid for many knowledge 
acquisition and refinement tasks. The solution is found by a 
heuristic search procedure, and empirical results for several 
data bases and published studies are described.’ 

1. Introduction 

Rule based systems have found increasing success in 
capturing experiential knowledge. While relatively simple in 
structure, these systems have proved useful because they 
capture knowledge in forms that are familiar and easy to 
explain. Many rule-based expert systems solve problems that 
fall into the general category of classification [Clancey, 
1985, Weiss and Kulikowski, 19841 problems. Diagnostic 
decision making is a typical example. This type of problem 
has many characterizations, and formal solutions have been 
developed under various assumptions through statistical 
hypothesis testing, discriminant analysis, and pattern 
recognition [Duda and Hart, 19731. Rule based systems can 
incorporate formal decision models, if the statistical 
information is available to build them, together with the 
pragmatic knowledge of when to invoke them. But in general 
this is not the case, and an expert system is resorted to 
precisely because one needs to start with the human expert’s 
best guess at what constitute good decision rules. The 
decision rules chosen by experts have to be easy to compute 
and explain. They therefore tend to involve relatively small 
chunk of information in their antecedent conditions, and tend 
to use easy-to-understand logical connectives (conjunction 
and disjunction), rather than the more difficult to interpret 
mathematical combing functions (such as linear 
combinations of finding values in linear discriminants). 
While many expert systems have been built over the past 
decade, there has been little progress in relating their 
performance to more traditional decision-making approaches. 
This is tied-in with the often cited weaknesses of the 
mathematics underlying many expert systems’ inference 
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schemes for handling uncertainty, and their related 
difficulties in automatic learning. 

The AI literature has recently had numerous discussions of 
the various approaches for combining rule scores in a valid 
probabilistic manner, e.g. Dempster-Shafer [Gordon and 
ShortIiffe, 19851 or Bayesian approaches. The optimizing 
approach that we describe in this section has a different 
emphasis. Rather than worry about combining different 
scores, we pose the simpler question of finding the left hand 
side of a rule (with certain simplifying structural constraints) 
that has the best potential for yielding correct classification. 
Because the rules are simple forms of standard production 
rules for classification problems; they can be analyzed quite 
exactly. While the knowledge engineering approach to 
building rule-based systems has been predominant in recent 
years, there continues to be a strong interest in search 
strategies that can potentially yield optimal solutions [Kumar 
and Kanal, 1983, Kumar, 1984,Pearl. 19841. In limited 
contexts such solutions can be of use for certain aspects of 
knowledge acquisition, e.g. optimal decision trees [Martelli 
and Montanari, 19781. 

In this paper, we show how a classical medical diagnostic 
problem, subject to some simplifying representational 
choices, can be solved in an optimal or near-optimal fashion. 
This should prove a particularly powerful tool for laboratory- 
based medicine, since it can help indicate what is the best set 
of tests to perform. Of general interest to the AI community 
is that the solution to this problem is an optimal decision rule 
that is posed as a logical set of clauses. While an optimal 
solution is stated in terms of statistical constraints, the 
identification of a solution to the problem is described as a 
heuristic search procedure. 

II. Statement of the Problem 

In this discussion, examples from laboratory medicine will be 
used. However, the solution is general and should be 
applicable to many areas outside medicine. Let us assume 
that we are developing a new diagnostic test whose 
measurement yields a numerical result in a continuous range. 
For a single test, the problem is to select a cutoff point, 
known formally as a referent value, that will lead to 
satisfactory decisions. For example, a physician may 
conclude that all patients having a result greater than a 
specific cutoff have the disease, while others do not. There 
are well-known measures to describe the performance of a 
test at a specific cutoff for a sample population. These 
measures are sensitivity, specificity, positive predictive value, 
negative predictive value, and efficiency [Galen and 
Gambino, 19751. Thus, results at each cutoff can be 
described in terms of these measures. Using a specific cutoff, 
there are four possible outcomes for each test case in the 
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sample.2 This is illustrated in Figure 1. 

1 Test Positive 1 Test Negative 

1 Hypothesis Positive 1 True Positives 1 False Negatives 1 

Hypothesis Negative False Positives True Negatives 

Figureyl: Possible Outcomes of Tests for Hypotheses 

Figure 2 formally describes these measures of performance. 

I Sensitivity ITP/H+ I 
1 Specificity (TN/H- I 
I Predictive value (+) I TP / T+ 

I Predictive value (-> I TN / T- 

[Ffficiency 

Figure 2: Formal Measures of Diagnostic Performance 

While all of these measures have their purpose, the one that 
is typically most valuable for rule-based systems is the 
positive predictive value. Positive predictive value measures 
how often a decision is correct when a test result is positive. 
Thus one may use a positive test that has high predictive 
value in rules that confirm a diagnosis, and apply different 
tests when the result is negative. Many rule based systems 
may be thought of as collections of rules with very high 
positive predictive values.3 We illustrate these points by 
describing data taken from a published study on the 
assessment of 8 laboratory tests to confirm the diagnosis of 
acute appendicitis for patients admitted to an emergency 
room with tentative diagnosis of acute 
appendicitis [Ma&and, Van Lente, and Galen, 19831. In the 
example of Figure 3, the white blood cell count (WI3C) is 
used as the test. 

Figure 3: Example of the 5 Measures of Performance for WE4C>10000 

2For purposes of this discussion, we are eliminating the possibility of 
unknowns. 

3This minimizes the effect of an unknown prevalence. 

In summary, for a single test with a given cutoff and the 
application of an arithmetic operator,4 these five measures 
can be determined for a population. The problem of 
determining an optimal cutoff can be described as 
maximizing one of these measures subject to specific 
constraints on the other measures.5 Constraints are the 
minimum required values for sensitivity, specificity, 
predictive values, and efficiency.6 Finding the optimum 
cutoff for WI3C can be posed in the form illustrated in Figure 
4. 

MAXWWBNG Predictive value (+) of WBC 

The constraints are given below: 

Sensitivity 2 100.00% 
Specificity 2 0.00% 
Predictive value (-) 2 0.00% 
Efficiency z 0.00% 

Figure 4: Example of Problem Constraints for a Single Test 

We note that this problem can be seen as a special 
restriction on a statistical decision-making or pattern 
recognition problem. Here the cutoff threshold is not given 
and instead must be determined. For known population 
statistics, the threshold for each of these measures that 
corresponds to the optimal likelihood ratio choice might be 
determined. However, in diagnostic testing, it is rare that 
population statistics for large numbers of combinations of 
tests can be established. Our form of analysis then answers 
questions of optimal diagnostic performance on an empirical 
basis, for a particular sample of cases. 

Referent value analysis, or cutoff selection, is commonly 
done for single tests. We have developed procedures that 
allow for the possibility of choosing the set of constraints and 
maximizing the remaining measure not only for one or two, 
but for a larger number of tests.7 When more than one test is 
specified, combinations are formed by using logical AND or 
OR operators. We formulate the problem as finding the 
optimal combination of tests that will satisfy the given 
constraints for the data base. An additional constraint is 
added to the problem, in that the length of the expression is 
limited by a chosen threshold.8 In Figure 5 using the 
appendicitis data base, the problem is to find an optimal 
solution in the form of a logical expression whose length is 

9hese operators are less than or greater than. 

‘Sensitivity and specificity move continuously in opposite directions. 
For example, a 100% sensitivity cutoff with 0% specificity can always be 
found by classifying every sample as having the hypothesis. Predictive 
values have no such relationship and vary all over the place. 

?he interrelations among these performance parameters, 
possible patterns of constraints for any given set of data. 

limit the 

71f two tests have the same value for the optimized measure, then its 
conjugate measure is used to decide which test is better. Sensitivity and 
specificity are treated as conjugates to one another and so are positive and 
negative predictive values. When optimizing efficiency, positive predictive 
value is chosen to be the next decisive function. 

‘This sets a limit on the number of tests that may be used in the decision 
rule. Some tests may be also deliberately excluded from consideration and 
some tests may be designated as mandatory. This allows for further pruning 
of the search space. 
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no greater than 3 tests9 

MAXMUING Predictive value (+) 

The constraints are given below: where Bi is the ith Bell number.13 

Sensitivity 
Specificity 
Predictive value (-) 
Efficiency 
Number of terms 

5 100.00% 
r 0.00% 
2 0.00% 
z 0.00% 
I 3 

Figure 5: Example of Problem Constraints for 3 or Fewer Tests 

At this point we note that the rules are just like many found 
in typical classification expert systems, since, like 
productions, they are described as logical combinations of 
findings that are not mutually exclusive.1° Thus, they have 
the intuitive appeal in explaining decisions because of their 
modular nature, while being supported empirically by their 
performance over the data base. In contrast to traditional 
machine learning [Mitchell, 1982, Quinlan, 1986, Michalski, 
Mozetic, Hong, and Lavrac, 19861, the objective here is to 
find the single best conjunctive or disjunctive rule of a fixed 
size. Starting with undetermined cutoffs for continuous 
variables, these rules classify under conditions of uncertainty, 
where two types of classification errors, false positives and 
false negatives, need not be considered of equal importance. 

III. Complexity 

In Section II, we described the problem as finding the best 
logical expression of a fixed length or less that covers a 
sample population. In this section, we consider the 
complexity of exhaustively generating and testing all 
possibilities. Except for relatively small populations or 
numbers of tests,ll the exhaustive approach is not 
computationally feasible. 

Equation 1 is the number of expressions having only 
ANDs; Equation 2 is for expressions having either ANDs or 
ORs. In these equations, n is the number of tests, k is is the 
maximum number of tests in the expression, c is the number 
of constants (cutoff values) to be examined for each test, and 
ci is c raised to the ith power. While the number of distinct 
values that must be examined for each test may vary, we have 
have used a fixed number, c, to simplify the notation and 
analysis. In Equation 2, expressions are generated in 
disjunctive normal form. l2 

ci (1) 

9As noted in Section V, the optimal solution is a disjunction of 2 tests. 

‘*An OR condition may encompass several conditions that are not 
mutually exclusive. The classification may have less than 100% diagnostic 
accuracy. 

l ‘These are tests with relatively few potential cutoffs. 

The most computationally expensive (exponential) 
I 

component of Equation 2 component is ci. It is possible to 
devise exhaustive procedures that do not require the 
examination of every value of a test found in the data base. 
For each test, one may examine only those points that overlap 
in the H+ and H- populations. Moreover, only the smaller set 
of the two sets of points in the overlapping zone need be 
candidates for cutoffs.14 Even taking this into account, 
relatively small values of c will make the computation 
prohibitive. 

Because 
expression, 

one may allow for the repetition of a test in an 
the number of generated_ expressions mav be 

substantially greater than Equation 2. I5 For the appendicitis 
data base having a sample of 106 cases, we cqmputed an 
average of 65 expressions/second on a VAX/785.16 

Optimizing Predictive Values 

Because of the computational complexity of an exhaustive 
search, we have developed a heuristic search procedure for 
finding the optimal combination. In this section, we describe 
the procedure. While this procedure is not guaranteed to find 
an optimal solution, the expression found should almost 
always be near-optimal. In Section V, empirical evidence is 
provided to demonstrate that in numerous situations the 
optimal solution is found. In almost every real experimental 
situation,17 the logical expression found by the computer 
should be better than what a human experimenter could 
compose. 

Before specifying the heuristic procedure, a few general 
comments can be made. In an exhaustive search approach, it 
is possible to specify a procedure that needs no additional 
memory. Logical expressions are generated and they are 
compared with the current best. The heuristic procedure is 
based on an alternative strategy. A relatively small table of 
the most promising expressions is kept. Combinations of 
expressions are used to generate longer expressions. The most 
promising longer expressions in turn are stored in the table 

13The Bell number is the number of ways a set of i elements can be split 
into a set of disjoint subsets. For i=O123 3 9 , , B,=1,1,2,5 
respectively [Andrews. 19761. The Bell number is defined recursively as 

Bi+l=i (l) Bk 
14Each test would have a a distinct number of cutoffs that must be 

examined, ct. In the equations, instead of ci, the products of ct for each 
generated expression must be summed. 

IsFor example, ~50 OR (a >30 AND b ~20). 

19his is the averag e for length less than 4. Another data base mentioned 
in Section V has approximately 3000 cases, which increases the 
computations correspondingly. 

data and t2This normal form corresponds 
described in Section IV. 

to that used by the heuristic procedure t7These are situations where the experimenter 
does not know a priori the best rule. 

is analyzing new 
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and are used to generate even longer expressions. Thus 
memory is needed to store the most promising or useful 
expressions. In Equation 2, the exponential component is the 
cl. Thus, if one can reduce the number of points in c, i.e. the 
number of cutoffs for a test, the possible combinations are 
greatly reduced. Figure 6 illustrates the key steps of the 
heuristic procedure. In Section IV.A, the approach taken to 
greatly reduce the number of cutoffs is discussed. 

I SELECT I 
1 KEY CUTOFFS 1 

1 FOR EACH TEST 1 

CANDIDATES 

I OF LENGTH 

N OR LESS I 

Figure 6: Overview of Heuristic Procedure for Best Test Combination 

A. Selection of Cutoffs 

For each test in the data base, the mean is found for the cases 
satisfying the hypothesis (H+) and the cases not satisfying the 
hypothesis (H-). If the H+ has the greater mean, the ‘5” 
ooerator is used. If H+ has the smaller mean, the “c” 
oberator is used. l8 

The next task is to select the test cutoffs. For a test, cutoffs 
that fall at interesting boundaries are selected. Interesting 
boundaries are those &here the predictive values (positive o? 
negative) are locally maximum. For example, if 
WBc>lOOOO has a positive predictive value of 97% and 
WBC>9900 and WBC>lOlOO each has a positive predictive 
value less than 97%, then 10000 is an interesting boundary 
for WBC. The procedure first determines the interesting 
boundaries on a coarse scale. Then it zooms in on these 
boundaries and collects all the interesting boundaries on a 

9he equality operator “=I’ may also be used for discrete tests 
corresponding to simple encodings such as multiple choice questions. A 
discrete test is considered to be a test whose values are always between 0 
and 10. 

finer sca.le.19 Finally, the boundaries are smoothened without 
changing the predictive statistics of the rule. Test cutoffs that 
have very low sensitivity or specificity are immediately 
pruned?O 

B. Expression Generation 

Logical expressions of all test variables in all combinations 
are generated in disjunctive normal form.*l This method 
avoids duplication of equivalent expressions since AND and 
also OR are symmetric. These expressions are stored in an 
expression table and longer expressions are generated 
combining shorter expressions. As each new expression is 
generated, the test variables are instantiated in all 
combinations of cutoff values. The test cutoffs were selected 
prior to expression generation. Figure 7 is a simple 
illustration of this process for 3 tests, {a, b, c) and 
expressions of length 2 or less. 

Figure 7: Example 

I I 

of Expressions with Variables (tests) 

If b has interesting cutoffs at b>lO, b>20 and c has 
interesting cutoffs at ~30, ~40, cc50, then the expression b 
AND c would lead to the possibilities of Figure 8. 

Figure 8: 

b>lO AND c<30 
b>lO AND c<40 
b>lO AND cc50 
b>20 AND c<30 
b>20 AND cc40 
b>20 AND c<50 

I I 

Example of Instantiated Expression 

Because new longer expressions are generated from shorter 
expressions that have been stored in a table, those expressions 
that have been pruned will no longer appear in any longer 
expression. During the course of instantiation of the 

19A local maximum corresponds approximately to the following 
conditions for the cutoff and its two neighbors: One neighbor of the cutoff 
has the same number of correct classifications but more errors. The other 
neighbor hasfewer correct classifications but the same number of errors. 

2cIn the current version of the program, 10 equally spaced intervals are 
used for the region where the two populations overlap. For zooming in on 
an interval, 20 Ever intervals are used between its 2 neighbors on the coarse 
scale. The minimum acceptable sensitivity or specificity for a test is 
currently set to be 10%. 

21For example, 
AND c). 

a AND (b OR c) must be written as (a AND b) OR (a 
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variables, some heuristics can be applied to prune the 
possibilities. These are discussed in Section 1V.C. 

Although the heuristic cutoff analysis limits the search space 
to the most interesting cutoffs, the search space may still 
remain relatively large. Several heuristics and some provably 
correct pruning rules are employed by the procedure. The 
first 3 pruning rules are always correct, the others are 
heuristics that attempt to consider the most promising 
candidates for combination into new longer rules. 

1. If the sensitivity and specificity values of an 
expression are both less than the constraints 
then that expression does not contribute to any 
useful rules. 

2. If an expression has less specificity than 
required, then any expression formed by ORing 
that expression with another will also have less 
specificity than required. 

3. If an expression cannot be extended to one that 
contains all the mandatory tests, while 
satisfying the length constraint, it is 
immediately pruned. 

4. If an expression has better positive and negative 
predictive values than another expression that 
differs from the first only by the constants in the 
expression, men the expression with lower 
predictive values is ignored. 

The heuristic procedure has been implemented in a computer 
program. Because of the underlying empirical nature of the 
problem, by examining hundreds of possibilities, the program 
should be able to find better logical expressions than the 
human experts when the samples are representative. This is 
particularly true when the human experimenter is examining 
new tests or performing an original experiment. Because of 
the heuristic nature of the search, one wonders about the 
optimality of the solutions. 

Several experiments were performed to test the capability 
of the program to find optimal or near optimal solutions. 
Several years after the appendicitis data used in our examples 
were reported in the medical literature, we reanalyzed the 
data. The samples consisted of 106 patients and 8 diagnostic 
tests. Because only 21 patients were normal, it is possible to 
construct an exhaustive procedure.24 In original study, the 
experimenters were interested in maximizing positive 
predictive value, subject to the constraint of 100% sensitivity. 
They cited a logical expression consisting of the disjunction 
of 3 diagnostic tests with positive predictive value of 89%. 
Using the heuristic procedure, the following results can be 
reported: 

@A superior logical expression composed of only 
2 tests can be cited. This test has nositive 
predictive value of 91%. The analysis 
minutes of cpu time on a VAX 785. 

*takes 3 

e Using exhaustive search, the optimal expression 

took 10 hours of cpu time on a VAX 78~5.~~ 

of length 3 or less is identical to the one found by 
the heuristic procedure. The exhaustive search 

5. If there are rules shorter and better than a new 
candidate rule, compute the sum of their 
lengths. If this sum, including the length of the 
current rule, exceeds the maximum length 
possible for any rule, then ignore the new 
rule.22 

Using a large data base of approximately 3000 cases, 
additional experiments were performed. These cases belong 
to a knowledge-based system that is being developed for a 
laboratory medicine application involving routine health 
screening.26 The data base consists almost exclusively of 
diagnostic laboratory tests. In several instances, there are 
relatively short, length 3 or less, rules in the knowledge base 
that reach specific conclusions. When a rule is the sole rule 
for a conclusion, we have a rule that has 100% sensitivity and 
100% positive predictive value. Because this is an expert’s 
rule, we know that the rule has a strong scientific and 
experiential support. For experimental purposes we limit our 
task to finding the expert’s rule by analyzing the case data 
base. We have a situation where the optimal solution is 
known to us before an empirical analysis. For the five rules 
that we selected that had 100% sensitivity and 100% 
predictive value, we were able to match the expert’s rule.27 

After all interesting expressions have been generated, the 
best ex ression in the expression table is offered as the 
answer. Y 3 Because all promising expressions are stored, a 
program that implements this procedure can readily 
determine its next best expression. If the constraints are made 
stricter, the expression table remains valid and the 
procedure’s new best expression should be immediately 
available. 

The results of these experiments are encouraging. While 

221n the current implementation, the maximum rule length is fried as 6. 
As the expression length increases, the number of potential combinations 
greatly increases. The objective of this heuristic is to emphasize the most 
promising shorter rules that will be combined into lengthier rules. 

23During expression g eneration, whenever- a superior expression is 
found, it is displayed. If no expression is found meeting the constraints, this 
is indicated when the search terminates. Depending on the allocated table 
space for storing intermediate expressions, the program may terminate from 
an overflow of the table. This is unlikely to occur with relatively small 
expressions. 

aIn this case, c=21 for Equation 2. 

=‘I’he result reported in the literature was WBC>10500 OR MBAP>ll% 
OR CRP>1.2. The optimal solution is NBC>8700 OR CRP>1.8. 

26Unlike the appendicitis population, in this population the 
overwhelming number of samples are normal patients. 

271n some instances, a shorter rule was found that was a subset of the 
expert’s rule. This is due to a relatively small number of cases in the H+ 
population. 



the optimal solution to the problem is clearly the goal, near- 
optimal solutions in reasonable times are also extremely 
valuable. In many practical situations, humans cannot solve 
this problem. For example, while combination tests are often 
cited in the diagnostic medical literature, in almost aJ.l 
instances the logical expression is found on the basis of 
previous experience, intuition, and trial and error analysis. 
We believe that the approach cited in this paper offers an 
opportunity to analyze data and present results in an optimal 
or near-optimal fashion. 

The examples cited here were from realistic and important 
diagnostic medical applications. In future years, we can 
expect that laboratory medicine and diagnostic tests will 
assume an ever more important role in diagnostic decision- 
making. While this form of diagnostic performance analysis, 
i.e. the five measures of performance, is the standard in the 
medical diagnostic literature, there is nothing that is specific 
to medical data. 

Because medical tests have a clear physiological basis, the 
expectation of continued performance on new populations is 
great. We have presented our work as the optimal fitting of a 
logical expression to existing data. Thus we have not 
addressed the question of experimental design or validation 
of results for a specific application. Unless one derives very 
highly predictive rules, this form of data analysis is subject to 
inaccuracies based on unrepresentative samples or 
prevalences. 28 As is done in pattern recognition applications, 
estimates of future performance can be made by train and test 
experiments or jackknifing [Efron, 19821. 

In terms of knowledge base acquisition, this approach can 
prove valuable in both acquiring new knowledge, refining 
existing knowledge [Wilkins and Buchanan, 1986, Ginsberg, 
Weiss, and Politakis, 19851, and verifying correctness of old 
knowledge. Because a knowledge base of rules summarizes 
much more experiential knowledge than is usually covered by 
a data base of cases, in many instances this approach can be 
thought of as supplementary to the knowledge engineering 
approach to knowledge acquisition in rule-based systems. 

We thank Casimir Kulikowski for his critique of an early 
draft of this paper, and his clarifications of the relationship of 
our work to statistical pattern recognition. We acknowledge 
the programming support of Kevin Kern, who programmed 
and tested many of the procedures described in this paper. 

28Tbis point is alsO valid for knowledge-based reasoning 
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