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diagnostic problem is described. Examples are taken from
laboratory medicine, where the problem can be stated as
finding the best combination of tests for making a diagnosis.
These tests are typically numerical with unknown decision
thresholds. Because of nnpprrmnrv in classification, the

solution is descnbed in terms of maxumzmg measures of
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example maximizing positive predictive value, subject to a
constraint of a minimum sensitivity. The resultant rules are
quite similar to classification production rules, and the
procedures described should be valid for many knowledge

acanigition and refinement tagke The colution ic found by a
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heuristic search procedure, and empirical results for several
data bases and published studies are described.!

I. Iniroduction

Rule based systems have found increasing success in
capturing experiential knowledge. While rel |velv simple in

structure, these systems have proved useful because they
capture knowledge in forms that are familiar and casy
explain, Many rule-based expert systems solve problems that
fall into the general category of classification [Clancey,
1985, Weiss and Kulikowski, 1984] problems. Diagnostic
decision making is a typical example. This type of problem

has many characterizations, and formal solutions have been

developed under various assumptions through statistical
hypothesis testing, discriminani analysis, and paiiemn
recognition [Duda and Hart, 1973]. Rule based systems can
incorporate formal decision models, if the statistical
information is available to build them, together with the
pragmatic knowledge of when to invoke them. But in general
this is not the case, and an expert system is resorted to
precisely because one needs to start with the human expert’s
best guess at what constitute good decision ruies. The
decision rules chosen by experts have to be easy to compute
and explain. They therefore tend to involve relatively small
chunks of information in their antecedent conditions, and tend

to use easy-to-understand 10g1ca1 connectives (con_]uncuon
and disjunction), rather than the more difficuli to interpret
mathematical combining functions (such as linear
combinations of finding values in linear discriminants).
While many expert systems have been built over the past

decade, there has been little progress in relating their

nerformance to more traditional decicsion-makine npnrnar‘hpc

Srzormance ¢ more radiliona: CeCision-maxing approacics,

This is tied-in with the often cited weaknesses of the

mathematics underlying many experi sysiems’ inference
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schemes for handiing uncertainty, and their related

difficulties in automatic leaming.

The AI literature has recently had numerous discussions of
the various approaches for combmmg rule scores in a valid
probabilistic manner, e.g. Dempster-Shafer [Gordon and
Shortliffe, 1985] or Bayesian approaches. The optimizing
approach that we describe in this section has a different
emphasis. Rather than worry about combining different
scores, we pose the simpler question of finding the left hand

side of a rule (with certain simplifving structural constraints)
Simpualying struClura: consiraints)

that has the best potential for yielding correct classification.
Because the rules are simpie forms of standard production
rules for classification problems; they can be analyzed quite
exactly. While the knowledge engineering approach to
building rule-based systems has been predominant in recent
years, there continues to be a strong interest in search

ctratagiag that nan natantially viald antimal cealiationg Ko
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and Kanal, 1983, Kumar, 1984, Pearl, 1984)]. In limited
contexts such solutions can be of use for certain aspects of
knowledge acquisition, e.g. optimal decision trees [Martelli
and Montanari, 1978].

In thxs paper, we show how a classical medical diagnostic
problem, subject 0 some simplifying representational
choices, can be solved in an optimal or near-optimal fashion.
This should prove a particularly powerful tool for laboratory-
based medicine, since it can help indicate what is the best set

of tests to perform. Of general interest to the AI community

ig that the solution to thig prnh]pm is an ontimal decision rule

s that the solution to this problem is an optimal decision rule
that is posed as a logical set of clauses. While an optimal
solution is stated in terms of staiisiical constraints, the
identification of a solution to the problem is described as a
heuristic search procedure.

II. Statement of the Probiem

In this discussion, examples from laboratory medicine will be

nged However the golution ig general and chonld he
usea. a0WeVET, n¢ sCiuuen 1§ goénerai and snduia o

applicable to many areas outside medicine. Let us assume
that we are deveioping a new diagnostic test whose
measurement yields a numerical result in a continuous range.
For a single test, the problem is to select a cutoff point,
known formally as a referent value, that will lead to
satisfactory decisions.  For example, a physician may
conclude that all patients having a result greater than a
specific cutoff have the disease, while others do not. There
are well-known measures to describe the performance of a
test at a specific cutoff for a sample population. These
measures are sensitivity, specificity, positive predictive value,
nppm‘lvp v and pﬁ‘“r- ncy [Galen and
Gambino, 1975] Thus, results at each cutoff can be
described in terms of these measures. Using a specific cuioff,
there are four possible outcomes for each test case in the
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sample.? This is illustrated in Figure 1.

Test Positive | Test Negative
Hypothesis Positive | True Positives | False Negatives
Hypothesis Negative | False Positives | True Negatives

Figureil: Possible Outcomes of Tests for Hypotheses

Figure 2 formally describes these measures of performance.

T+ T-

H+ | TP FN

H- |FP N
Sensitivity TP /H+
Specificity TN / H-

Predictive value (+) [ TP/ T+
Predictive value (-) | TN/ T-
(TP+TN) / TOTAL

Efficiency

Figure 2: Formal Measures of Diagnostic Performance

While all of these measures have their purpose, the one that
is typically most valuable for rule-based systems is the
positive predictive value. Positive predictive value measures
how often a decision is correct when a test result is positive.
Thus one may use a positive test that has high predictive
value in rules that confirm a diagnosis, and apply different
tests when the result is negative. Many rule based systems
may be thought of as collections of rules with very high
positive predictive values.3 We illustrate these points by
describing data taken from a published study on the
assessment of 8 laboratory tests to confirm the diagnosis of
acute appendicitis for patients admitted to an emergency
room with a tentative  diagnosis of  acute
appendicitis [Marchand, Van Lente, and Galen, 1983]. In the
example of Figure 3, the white blood cell count (WBC) is
used as the test.

T+ T-
H+ (71 14
H- |6 15
Sensitivity 83.5%
Specificity 71.4%

Predictive value (+) | 92.2%
Predictive value (-) {51.7%
81.1%

Efficiency

Figure 3: Example of the 5 Measures of Performance for WBC>10000

2For purposes of this discussion, we are eliminating the possibility of
unknowns.

3This minimizes the effect of an unknown prevalence.
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In summary, for a single test with a given cutoff and the
application of an arithmetic operanor,4 these five measures
can be determined for a population. The problem of
determining an optimal cutoff can be described as
maximizing one of these measures subject to specific
constraints on the other measures. Constraints are the
minimum required values for sensitivity, specificity,
predictive values, and efﬁciency.6 Finding the optimum
cutoff for WBC can be posed in the form illustrated in Figure
4.

MAXIMIZING Predictive value (+) of WBC

The constraints are given below:

Sensitivity > 100.00%
Specificity = 0.00%
Predictive value (-) >  0.00%
Efficiency 2 0.00%

Figure 4: Example of Problem Constraints for a Single Test

We note that this problem can be seen as a special
restriction on a statistical decision-making or pattern
recognition problem. Here the cutoff threshold is not given
and instead must be determined. For known population
statistics, the threshold for each of these measures that
corresponds to the optimal likelihood ratio choice might be
determined. However, in diagnostic testing, it is rare that
population statistics for large numbers of combinations of
tests can be established. Our form of analysis then answers
questions of optimal diagnostic performance on an empirical
basis, for a particular sample of cases.

Referent value analysis, or cutoff selection, is commonly
done for single tests. We have developed procedures that
allow for the possibility of choosing the set of constraints and
maximizing the remaining measure not only for one or two,
but for a larger number of tests.” When more than one test is
specified, combinations are formed by using logical AND or
OR operators. We formulate the problem as finding the
optimal combination of tests that will satisfy the given
constraints for the data base. An additional constraint is
added to the problem, in that the length of the expression is
limited by a chosen threshold.® In Figure 5 using the
appendicitis data base, the problem is to find an optimal
solution in the form of a logical expression whose length is

“These operators are less than or greater than.

5Sensitivity and specificity move continuously in opposite directions.
For example, a 100% sensitivity cutoff with 0% specificity can always be
found by classifying every sample as having the hypothesis. Predictive
values have no such relationship and vary all over the place.

6The interrelations among these performance parameters, limit the
possible patterns of constraints for any given set of data.

If two tests have the same value for the optimized measure, then its
conjugate measure is used to decide which test is better. Sensitivity and
specificity are treated as conjugates to one another and so are positive and
negative predictive values. When optimizing efficiency, positive predictive
value is chosen to be the next decisive function.

3This sets a limit on the number of tests that may be used in the decision
rule. Some tests may be also deliberately excluded from consideration and
some tests may be designated as mandatory. This allows for further pruning
of the search space.



no greater than 3 tests.?
MAXIMIZING Predictive value (+)

The constraints are given below:

Sensitivity 2 100.00%
Specificity 2 0.00%
Predictive value (-) 2 0.00%
Efficiency > 0.00%
Number of terms < 3

Figure 5: Example of Problem Constraints for 3 or Fewer Tests

At this point we note that the rules are just like many found
in typical classification expert systems, since, like
productions, they are described as logical combinations of
findings that are not mutually exclusive.!® Thus, they have
the intuitive appeal in explaining decisions because of their
modular nature, while being supported empirically by their
performance over the data base. In contrast to traditional
machine leaming [Mitchell, 1982, Quinlan, 1986, Michalski,
Mozetic, Hong, and Lavrac, 1986], the objective here is to
find the single best conjunctive or disjunctive rule of a fixed
size. Starting with undetermined cutoffs for continuous
variables, these rules classify under conditions of uncertainty,
where two types of classification errors, false positives and
false negatives, need not be considered of equal importance.

IIL. Complexity

In Section II, we described the problem as finding the best
logical expression of a fixed length or less that covers a
sample population. In this section, we consider the
complexity of exhaustively generating and testing all
possibilities. Except for relatively small populations or
numbers of tests,)! the exhaustive approach is not
computationally feasible.

Equation 1 is the number of expressions having only
ANDs; Equation 2 is for expressions having either ANDs or
ORs. In these equations, » is the number of tests, k is is the
maximum number of tests in the expression, ¢ is the number
of constants (cutoff values) to be examined for each test, and
¢! is ¢ raised to the ith power. While the number of distinct
values that must be examined for each test may vary, we have
have used a fixed number, c, to simplify the notation and
analysis. In Equation 2, expressions are generated in
disjunctive normal form.12

i}(;’) ¢ 0

9As noted in Section V, the optimal solution is a disjunction of 2 tests.

10An OR condition may encompass several conditions that are not
mutually exclusive. The classification may have less than 100% diagnostic
accuracy.

11 These are tests with relatively few potential cutoffs.

12This normal form corresponds to that used by the heuristic procedure
described in Section IV.

k
> (3) e @
=1
where B; is the ith Bell number.13

The most computationally expensive (exponential)
component of Equation 2 component is c’. It is possible to
devise exhaustive procedures that do not require the
examination of every value of a test found in the data base.
For each test, one may examine only those points that overlap
in the H+ and H- populations. Moreover, only the smaller set
of the two sets of points in the overlapping zone need be
candidates for cutoffs.!4 Even taking this into account,
relatively small values of ¢ will make the computation
prohibitive.

Because one may allow for the repetition of a test in an
expression, the number of generated expressions may be
substantially greater than Equation 2.15 For the appendicitis
data base having a sample of 106 cases, we computed an
average of 65 expressions/second on a VAX/785.16

IV. A Heuristic Procedure for
Optimizing Predictive Values

Because of the computational complexity of an exhaustive
search, we have developed a heuristic search procedure for
finding the optimal combination. In this section, we describe
the procedure. While this procedure is not guaranteed to find
an optimal solution, the expression found should almost
always be near-optimal. In Section V, empirical evidence is
provided to demonstrate that in numerous situations the
optimal solution is found. In almost every real experimental
situation,'’ the logical expression found by the computer
should be better than what a human experimenter could
compose.

Before specifying the heuristic procedure, a few general
comments can be made. In an exhaustive search approach, it
is possible to specify a procedure that needs no additional
memory. Logical expressions are generated and they are
compared with the current best. The heuristic procedure is
based on an alternative strategy. A relatively small table of
the most promising expressions is kept. Combinations of
expressions are used to generate longer expressions. The most
promising longer expressions in tumn are stored in the table

13The Bell number is the number of ways a set of i elements can be split
into a set of disjoint subsets. For i=0,1,23, B;=1,1,25
respectively [Andrews, 1976]. The Bell number is defined recursively as

i
B, =§ (‘)B.
1 k
“+ & k

YMEach test would have a a distinct number of cutoffs that must be
examined, c,. In the equations, instead of ¢, the products of ¢, for each
generated expression must be summed.

15For example, a>50 OR (a >30 AND b <20).
16This is the average for length less than 4. Another data base mentioned
in Section V has approximately 3000 cases, which increases the

computations correspondingly.

TThese are situations where the experimenter is analyzing new data and
does not know a priori the best rule.
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and are used to generate even longer expressions. Thus

memory is needed to store the most promising or useful
mmrpqqmnc_ In annnnn 2, the exponential component is the

ch, Thus, 1f one can reduce the number of pomts inc, i.e. the
IluIIlDt:I' Ul CUtOllb lUI a l_CbL, UIC pUb&lUlC bUlllUuldLlUub arc
greatly reduced. Figure 6 illustrates the key steps of the
heuristic procedure. In Section IV.A, the approach taken to

greatly reduce the number of cutoffs is discussed.

) —
l SELECT l
KEY CUTOFES
| R EACH TEST l

GENERATE
XPRESSIONS

i INSTANTIATE
;] EXPRESSIONS
WITH CUTOFFS

aTane pRUAE
STCRE PRUNE

USEFUL RULES CANDIDATES
! IN EXPRESSION WITH
HEURISTICS

BEST
COMBINATION
OF LENGTH
N OR LESS

Figure 6: Overview of Heuristic Procedure for Best Test Combination

A. Selection of Cutoffs

For each test in the data base, the mean 1s found for the cases
satlsfymg the hypothe51s (H+) and the ¢ not satisfying the
uypuuwam \11-; If the H+ has the greater mean, the ">"

operator is used. If H+ has the smaller mean, the "<"
operator is used.18

The next task is to select the test cutoffs. For a test, cutoffs

that fall at interesting boundaries are selectad. Interesting
that 1al al inferesting boundgries are seiecCiec. Interesing

boundaries are those where the predictive values (positive or

negative) are locally maximumi. For example, if

WBC>10000 has a positive predictive value of 97% and
WBC>9900 and WBC>10100 each has a positive predictive
value less than 97%, then 10000 is an interesting boundary
for WBC. The procedure first determines the interesting

boundaries on a coarse scale. Then it zooms in on these

boundaries and collects all the interesting boundaries on a

18The equality operator "=" may also be used for discrete tests
corresponding to simple encodings such as multiple choice questions. A
discrete test is considered to be a test whose values are always between 0
and 10.
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finer scale.19 Finally, the boundaries are smoothened without
changing the predictive statistics of the rule. Test cutoffs that

have very low sensitivity or gpecificity are immediately
fave very iow sensiivitly speciicity are immeqgiaiely

pruned.20

B. Expression Generation

Logical expressions of all test variables in all combinations
are generated in disjunctive normal form.”* This method
avoids duplication of equivalent expressions since AND and
also OR are symmemc These expressions are stored in an

ownraaginn tahla and lanosar awnroaginng ara  gonaratad

\/I\Pl\rbbl\)ll aviv aLra 1\}115\,! uij\,DDlUILD aiv 5\«uvlau,u
combining shorter expressions. As each new expression is
generated, the test variabies are instantiated in aii
combinations of cutoff values. The test cutoffs were selected
prior to expression generation. Figure 7 is a simple
illu, n of this process for 3 te {a, b, ¢} and

______ % 2

expressions of length 2 or less.

oo

OR

o doe e
>
o0

O
~
[

Figure 7: Example of Expressions with Variables (tests)

If b has interesting cutoffs at b>10, b>20 and ¢ has
interesting cutoffs at <30, c<40, ¢<50, then the expression b
AND c would lead to the possibilities of Figure 8.

b>10 AND c¢ <30
b>10 AND ¢ <40
b>10 AND ¢ <50
b>20 AND ¢ <30

h 20 AND o A0

U ALU SNy AU

b>20 AND ¢ <50

Figure 8: Exampie of Instantiated Expression

Because new longer expressions are generated from shorter
expressions that have been stored in a table, those expressions
that have been pruned will no longer appear in any longer

exnression During the course of instantiation of the

CXPICSSIOnL. 2UNRLE Cour mstaniianon e

194 local maximum corresponds approximately o the following
conditions for the cutoff and its two neighbors: One neighbor of the cutoff
has the same number of correct classifications but more errors. The other
neighbor has fewer correct classifications but the same number of errors.

20[n the current version of the program, 10 equally spaced intervals are
used for the region where the two populations overlap. For zooming in on
an interval, 20 finer intervals are used between its 2 neighbors on the coarse
scale. The minimum acceptable sensitivity or specificity for a test is
currently set to be 10%.

21Eor example, a AND (b OR c) must be written as (a AND b) OR (a
AND c).
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possibilities. These are discussed in Section IV.

g

C. Heuristics for Pruning Expressions

Although the heuristic cutoff analysis limits the search space
to the most interesting cutoffs, the search space may still
remain relatively large. Several heuristics and some provably

correct pruning rules are employed by the procedure The

memarming  milag alwave cnrract tha ntherg
first 3 prumng rucs arc aiways CorreCi, e oters are

heuristics that attempt to consider the most promising
candidates for combination into new ionger rujes.

1. If the sensitivitv and cnpmﬁmtv values of an
i. if the sensiivity and specificit values

expression are both less than the constraints
then that expression does not contribute to any
useful rules.

2. If an expression has less specificity than
required, then any expression formed by ORing
that expression wiih another will also have less
specificity than required.

3. If an expression cannot be extended to one that
contains all the mandatory tests, while
atiaferiee lanoth

Ta
Sausiying the 1CTIE TR

immediately pruned.

songtraint

H iq
LCuUiidlialii, I n

4. If an expression has better positive and negative
predictive values than another expnession that
differs from the first mﬂv by the constants in the

expression, then the expressxon with lower
predictive values is ignored.

5. If there are rules shorter and beiter than a new
candidate rule, compute the sum of their
lengths. If this sum, including the length of the

currant mila  avraade tha mavimum lanaoth
Cunmeiit ril, OCXLCCGS uid MaRIMNUIL  aChgu:

possible for any rule, then ignore the new
rule. 22

After all mterestmg expressxons have been generated, the

best expression in the expression table is offered as the
DSt expression m e SXpression {ao

answer.~> Because all promising expressions are stored, a
program that impiements this procedure can readily
determine its next best expression. If the constraints are made
stricter, the expression table remains valid and the
prnm:dnm ¢ new best p\'nmcmr\n should be lmmpdmmlv

avalable.

2215 tha imp)

In the current imp
As the expression length increases, the number of potential combinations
oreatly fmeraaces The ~bkioasies ~f dbils Loictosda Ja s asambiacien thha snaar

glcauy INCTeases. 1€ OUjeclive OI UllS NSuUrnsic i5 10 empnasize uie maost

promising shorter rules that will be combined into lengthier rules.

ation, the rule lenath is fixed as 6

e lengin ec as O,

2During expression generation, whenever a superior expression is
found, it is dispiayed. If no expression is found meeting the constraints, this
is indicated when the search terminates. Depending on the allocated table
space for storing intermediate expressions, the program may terminate from
an overflow of the table. This is unlikely to occur with relatively small
expressions.

U BDaceléq moal
Ve HREIWALS «3iill
The heuristic procedure has been implemented in a computer
program. Because of the underlying empirical nature of the
problem, by examining hundreds of possibilities, the program
cshould be ahle to find bhetter Inmr'a'l exnressions than the

human experts when the samples are representative. This is
pariicularly irue when the huiman experimenier is examining
new tests or performing an original experiment. Because of
the heuristic nature of the search, one wonders about the
optimality of the solutions.

Ca ‘usrnl synamma tS were nerformead to tact tha nan.
verai CXpermenis wert perioimica 1o st Uic \,ayauuuy

fe v

of the program to ﬁnd opumal or near optimal solutions.
Several years after the appendicitis data used in our exampies
were reported in the medical literature, we re-analyzed the
data. The samples consisted of 106 patients and 8 diagnostic
tests. Because only 21 patients were normal, it is possible to
construct an exhaustive procedure.2* In original study, the
experimenters were interested in maximizing positive
predictive value, subject to the constraint of 100% sensitivity.
They cited a logical expression consisting of the disjunction
of 3 diagnostic tests with positive predictive value of 89%.
Using the heuristic procedure, the following results can be
reporied:

o A superior logical expression composed of only
2 tests can be cited. This test has positive
predictive value of 91%. The analysis takes 3

imitac af e timeona V
mmutes o pu time ona vAA /65.

>
v
3
0
3

o Using exhaustive search, the optimal expression
of length 3 or less is identical to the one found by
the heuristic procedure. The exhaustive search

T 10 bhniang of ey timan e o VA 708
00K 1U nGuis o1 CPpu M Uil a vAA /00,

Using a large data base of approximately 3000 cases,
additional experiments were performed. These cases belong
to a knowledge-based system that is being developed for a

laboratory medicine annhr‘smnn mvnlvmu routine health

screening. 126 The data base Consists almost exclusively of
aldgnosuc iaborz dIOI'y esis. In several Il’lSIdﬂCﬁS, there are
relatively short, length 3 or less, rules in the knowledge base
that reach specific conclusions. When a rule is the sole rule
for a conclusion, we have a rule that has 100% sensitivity and
100% positive predictive value. Because this is an expert’s

mila we Lknow that tha mla hac a atrong geoiantifie and
g, wé KNOw uidl Wi e Nas & suong sCithuiil anaG

experiential support. For experimental purposes we limit our
task 10 finding the expert’s ruie by anaiyzing the case data
base. We have a situation where the optimal solution is

known to us before an empirical analysis. For the five rules
that we selected that had 100% cpmmvnv and mn%

predictive value, we were able to match the expelt s rule.?’

The results of these experiments are encouraging. While

ult reported in the Kterature was WBCS>10500 OR MBAP>
L reported in ine nterature was wol>1U500 UR MBAP>

1
OR CRP>1.2. The optimal solution is WBC>8700 OR CRP>1.8.

26Unlike the appendicitis population, in this population the
overwheliming number of sampies are normai patients.

27In some instances, a shorter rule was found that was a subset of the

expert’s rule. This is due to a relatively small number of cases in the H+
population.

Weiss, Galen, and Tadepalli
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the optimal solution to the problem is clearly the goal, near-
optimal solutions in reasonable times are also extremely
valuable. In many practical situations, humans cannot solve
this problem. For example, while combination tests are often
cited in the diagnostic medical literature, in almost all
instances the logical expression is found on the basis of
previous experience, intuition, and trial and error analysis.
We believe that the approach cited in this paper offers an
opportunity to analyze data and present results in an optimal
or near-optimal fashion.

The examples cited here were from realistic and important
diagnostic medical applications. In future years, we can
expect that laboratory medicine and diagnostic tests will
assume an ever more important role in diagnostic decision-
making. While this form of diagnostic performance analysis,
i.e. the five measures of performance, is the standard in the
medical diagnostic literature, there is nothing that is specific
to medical data.

Because medical tests have a clear physiological basis, the
expectation of continued performance on new populations is
great. We have presented our work as the optimal fitting of a
logical expression to existing data. Thus we have not
addressed the question of experimental design or validation
of results for a specific application. Unless one derives very
highly predictive rules, this form of data analysis is subject to
inaccuracies based on unrepresentative samples or
prevalences.?8 As is done in pattern recognition applications,
estimates of future performance can be made by train and test
experiments or jackknifing [Efron, 1982].

In terms of knowledge base acquisition, this approach can
prove valuable in both acquiring new knowledge, refining
existing knowledge [Wilkins and Buchanan, 1986, Ginsberg,
Weiss, and Politakis, 1985], and verifying correctness of old
knowledge. Because a knowledge base of rules summarizes
much more experiential knowledge than is usually covered by
a data base of cases, in many instances this approach can be
thought of as supplementary to the knowledge engineering
approach to knowledge acquisition in rule-based systems.
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