
1 Burlington Rd. 
Bedford, Mass;echusetts Ql.730 

ail Stop A040 

Abstract 
The KING KONG Ilngulstlc lnnterface was 

developed at MPTRE to be a portable natural Ian- 
guage interface for expert systems. It is possible 
to port KING KONG from one expert system to 
another without writing more than a modest 
amount of code, regardless of backend architec- 
ture. We describe porting it from its original ex- 
pert system backend to another expert system 
which was radically different in domain and rep- 
resentation. 

I. Introduction 
The KING KONG linguistic interface was devel- 

oped at MlTRE to be a portable natural language inter- 
face for expert systems. KING KONG has two character- 
istics that make it portable: it has a modular architec- 
ture, including domain-independent syntactic and mor- 
phological components, and a knowledge representation 
scheme which strongly adheres to the principle of de- 
clarative representation. Because of these two character- 
istics, it is possible to port KING KONG from one expert 
system to another without writing more that a modest 
amount of code, regardless of backend architecture, in a 
matter of months. In this paper we describe what makes 
KING KONG portable and how we ported it from its 
original expert system backend to another expert system 
which was radically different in domain and in knowl- 
edge representation. 

II. Background 
In 1985 MITE began development of a natural 

language interface for task-oriented expert systems that 
would have the following properties: it would make no 
assumptions about either the domain or the architecture 
of the backend, it would require no changes in the de- 
sign of the backend, it would minimize coding require 
ments on the programmer doing the port, and it would 
be easily extensible. KING KONG, the interface devel- 
oped to achieve these goals, was first implemented as 

This research was sponsored,by Rome Air Force Develop- 
ment Center under contract F19628-86-C-0001. 

the front end to KRS, an air mission planning program 
also developed at MITE. In 1986, KONG developers 
selected ISFI, an automatic programming system with a 
radically different architecture from KRS, to serve as the 
testbed backend in an experiment designed to demon- 
strate KONG’S portability. Within six months, one mem- 
ber of the group was able to port the interface to ISFI 
without having to write more than a small number of 
ISFI-specific accessing functions. KING KONG now 
serves as an interface to these two expert systems; we 
anticipate porting it to other systems in the future. 

II, The two expert system backends 

KlNG KONG has been used as an interface to the 
KRS air mission planning program for one year. The 
user interacts with KRS by typing to a Lisp window at 
the top of which is a picture of a mission template. As 
KRS fills in slots in response to the user’s commands, 
the mission template on the screen is also filled in. The 
KRS database stores information about the domain as 
FRL frames; KRS plans using a generate and test algo- 
rithm in which all possible plans are generated and 
checked by constraints. For details about KING KONG 
as it runs on KRS see Zweben86. 

1II.B. HSFI 

A programmer using the ISFI system is required 
to specify the constraints between the significant vari- 
ables in a problem. The ISFI system then performs the 
problem solving necessary to derive a computation and 
write the corresponding computer program in a chosen 
target language. Lisp, C, and ADA are supported at pre- 
sent. A problem specification in the ISFI system consists 
of a network of structures representing objects and con- 
straints, with the system relying on a knowledge base 
containing information about certain classes of objects 
and types of constraints. An ISFI user specifies a net- 
work using the available object classes and constraint 
types, and ISFI derives a computational path through the 
network by propagating along constraints. In propagating 
through a network, the ISFI system makes use of a num- 
ber of problem solving devices, among them inheritance 

556 Natural Language 

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved. 



of network structure stored with the object classes in the 
knowledge base, and application of network transforma- 
tion rules. The ISFI system has so far succeeded in pro- 
ducing computer programs in the domains of numerical 
computation, graphics display and databases (see Cleve- 
land86, Brown85). 

User interactions with the ISFI system generally 
fall into one of two categories: specifying a problem in a 
way that will allow the ISFI system to derive a computa- 
tion, and, less frequently, adding to ISFI’s knowledge 
base so that it can write programs in a new domain. 
The ISFI system has a graphics interface which displays 
sections of a network and provides menu driven inspec- 
tion and editing facilities. Two major problems with this 
interface are its inability to display a network of signifi- 
cant size, and its forcing the user inspecting a network to 
work through several levels of menu displays before 
finding needed information. These considerations made 
ISFI a good candidate for a natural language interface. 

As noted in the introduction, KONG has a 
modular architecture which aids p ity. By main- 
taining independent syntactic, morphological, semantic, 
and contextual components and explicitly specifying the 
interactions between them, KONG allows most of the 
information required in porting to be specified declara- 
tively, both speeding and easing the porting task. 

ponent of KONG 
employs a simple affix-stripping model. Its syntactic 
component is a modified Marcus parser, enhanced with 
strategies to handle grammatical relations. These com- 
ponents need not be modified during the port, since they 
embody information about English rather than the do- 
main of the target backend. KONG’s knowledge of lin- 
guistics means that a small amount of declarative infor- 
mation is enough to specify the morphosyntactic behav- 
ior of a given word. 

antics 

definition identifies a word with some con- 
cept in KONG’s model of the backend: either an object, 
which is located in a simple AK0 hierarchy, or a rela- 
tion, which may be located in a matrix of relation types, 
such as EXTENT or INTERVAL, or relation families, 
such as SPACE or TIME (see Bayer86). A word identi- 
fied with a relation must further specify the correspon- 
dence between its semantic arguments (derived via pars- 
ing the arguments of the chosen relation. Relations 
for include speed, size, operationality, range, carry- 
ing ability, etc. Relations for 133 include scope, loca- 

tion, complexity and other concepts that apply to auto- 
matic programming. KONG achieves its independence 
from particular backend architectures by building this 
model of the domain and filtering all interactions with 
the backend through it. 

.C. Context 
Contexts are captured using data structures called 

scenes. A scene in the KONG interface is a stereotypical 
context which records the kinds of objects expected to 
be in prominence at a given point in an expert system 
user’s interaction with the system, along with the user’s 
expected action at that point. During a discourse, in- 
stances of a scene are used to record the objects men- 
tioned in the ‘discourse, to perform basic focus tracking 
for anaphora resolution and to constrain inferencing on 
the user’s goals in the interaction. For example, as part 
of the KONG interface to the mission planner, 
there is a “CHOOSE-TARGET” scene, with prominent 
objects (known as scene roles) being a friendly airbase, 
am aircraft and a hostile airbase, and with the expected 
action being the filling of the target airbase slot in a KRS 
mission template. 

In order to derive actions and queries from lin- 
guistic input, KING KONG performs syntactic and se- 
mantic analysis and maps objects from the arguments 
and modifiers of the resulting case frame to arguments 
of relations and to the roles of a scene. 

v. osting tas 
In porting KING KONG from one backend to an- 

other, one must do the following: 
1. Define scenes to represent contexts for the new 
domain 
2. Define objects and relations for the domain 
3. Define new vocabulary for the new backend 
4. “Glue” the interface to the backend by writing 
the code that invokes backend commands or data 
base searches. This is the only task in porting that 
requires the writing of code. 

Since the first three tasks involve only declarative 
information, it is possible to enter it via menu-driven 
facilities. KONG currently supports facilities for word 
and scene definitions; other facilities are being planned. 

Scenes model a user’s interaction with the target 
system. The user thinks of KRS as a tool to fill in slots 
on a mission template, and KONG thus contains scenes 
for filling in each slot. The user of ISFI, on the other 
hand, regards ISFI as a tool for representing information 
about a programming problem, using the structures - 
nodes, constraints and so on - which ISFI makes avail- 

i Kalish and Cox 557 



able. The port of KONG to ISFI includes scenes model- 
ing the user’s actions in specifying nodes and constraints 
in a network, and in testing the ability of ISFI to write a 
program from the resulting network. 

One must also specify the roles of a scene, the 
parts that various prominent objects play in the current 
context. In ISFI, a scene for transformation would have 
a role for %he transformation itself, and for the network 
fragment matched and transformed. 

Finally, one must locate the scenes in a hierarchy 
with respect to each other. There may be links between 
scehes such as parent, child, or likely successor. The 
degree of structure this hierarchy exhibits corresponds 
to the strictness of the task structure of the target sys- 
tem. As noted above, the ISFI user typically either builds 
and updates a network representing some problem, or 
adds to the system’s knowledge base. The user’s pro- 
gress in these tasks will vary dramatically, depending on 
the difficulty of the problem to be solved and the 
amount of problem’solving information ISFI is able to 
bring to bear in the domain. The structure of the scene 
hierarchy for ISFI is correspondingly much more flexible 
than that for KRS. 

An example of a scene definition from the auto- 
matic programming system is: 

(def-scene isfi-node 
:goal :fill-central-role 
:lexical-triggers isfi-node-mapping 
:inferiors (isfi-obj-class connect-to-constraint 

isfi-node-state) 
:superior in-problem-network 
:prominent-roles (obj-class constraint 

constraint-terminal node)) 

This scene represents the context of talking about 
a node in the network. It may have inferior contexts in 
which a user talks about constraint connections to the 
node, the state in which the node resides, or the object 
class of the object inside the node. In the node context, 
prominent roles are likely to be constraints, object 
classes, the node itself, and the constraint terminals that 
connect nodes to constraints. It is not necessary to write 
this definition by hand; the menu-driven scene defini- 
tion tool provides facilities for specifying all these op- 
tions and produces the definition. 

It is possible to perform a partial port by defining 
vocabulary but by not defining scenes. In fact, the initial 
port to ISFI was carried out this way. Users were still 
able to ask questions about the automatic programming 
system in English, but they did not have the benefits of 
the context and discourse tracking. This meant that they 
could not use pronouns or most forms of paraphrase in 
referring to objects, nor was KONG able to make any 
inferences about their goals in asking questions. The re- 
sult was a “dumb” interface which processed individual 

sentences, but not discourse segments. As scenes were 
added to the system, KONG was able to make limited 
inferences and understand various forms of context de- 
pendent reference. 

‘or, definitions 
We will now offer two examples of word defini- 

tions and how they were performed for KIXS and for 
ISFI. We shall show the actual code, even though some 
of its details may be a little obscure, because we wish to 
prove that KING KONG’s knowledge representations are 

Here is an example of how the verb “destroy” 
was defined for both expert sytems. First, the mor- 
phosyntactic definition which applies to both domains: 

(defkong destroy 
(make-word newform 'destroy 

features (copytree *VERB-DEFAULT*) 

subcategorization '(:direct-object) 
semantics (make-kernel part-of-speech 'v))) 

KONG has extensive knowledge about syntax so 
the definition can take advantage of information about 
defaults. All one has to tell the system is that “destroy” 
is a verb and it subcategorizes for a direct object. All of 
this is accomplished through the menu-driven word defi- 
nition tool. 

We wish KM to respond to an input such as “De- 
stroy Mermin” by filling in a slot on a mission template 
that corresponds to the target. We specify this by defin- 
ing a mapping from this sense of -“destroy” to the two 
backend goals “fill-slot” and “change-slot.” This, also, 
is done through a menu which contains choices for all 
the backend goals possible for KRS. KING KONG then 
writes the following code: 

(defmapping destroy-target-mapping 
((obj . target) 
(instr . aircraft));destroy the target with a plane 

nil 
(:fill-slot :change-slot)) 

The action to achieve this goal is associated with 
a particular scene, such as CHOOSE-TARGET, through 
another declarative definition. This action is now avail- 
able for all verbs in this context, and does not need to be 
defined again. 

55% Natural Language 



(defbackend-action fill-slot choose-target 
:backend-goals (:fill-slot :change-slot) 
:discourse-goals (:act) 
:role-names ((mission :optional (roles)) 

(target :present (clause)) 
(airbase :absent (clause)) 
(aircraft :absent (clause)) 
(ordnance :absent (clause)) 
(td :absent (clause)) 
(tot :absent (clause)) 
(unit :absent (clause)) 
(ac-num :absent (clause)) 
(pd :absent (clause)))) 

(defmethod (backend-action-delete :execute) 
(things-to-destroy) 

(loop for isfi-object in things-to-destroy 
for object-window = 

(loop for window in 
(send (get-right-graphics-window) 

:exposed-inferiors) 
if (eq isfi-object 

(send window :displayed-object)) 
return window) 

if object-window 
do (send object-window :erase) 

(selectq (typep isfi-object) 
(isfi:node 

The actual execution of this backend action is one 
of the only aspects of the port which involves program- 
ming. A stripped down version of “‘fill-slot” follows: 

(defmethod (backend-action-fill :execute) (scene) 
(send self :select-window scene nil) 
(let* ((actual-roles 

(get-roles-with-values 
(remove (send self :mission-type scene) 

(send scene :prominent-roles)) 
roles-to-use)) 

(mission 
(get-role-value 

(get-role (send self :mission-type scene)) 
roles-to-use)) 

(backend-mission (get-backend-object mission))) 
(loop for role in actual-roles 

for slot-name = 
(get-backend-object (get-role-name role)) 

and backend-role-value = 
(get-backend-object (get-role-value role)) 

do (user:dump-mission-values baokend-mission 
(list (cons slot-name backend-role-value))) 

finally (send scene :set-goal-filled t) 
(return :success)))) 

This code matches the arguments of the verb to 
the roles of the current scene, locates the actual slot 
item by accessing KRS’s database, and puts it into the 
mission template. It is included only to show readers ex- 
actly what must be written by hand as part of the do- 
main specific interface “glue.” 

V. SF1 

In ISFI, an input containing “destroy” is likely to 
be “destroy node x in the network.” To interpret sen- 
tences like this, one defines the mapping to backend 
goals through a menu to produce: 

(defmapping destroy 
isfi-node-mapping 
((obj . node)) 
nil 
(delete)) 

The action to achieve the :delete goal is declared 
as follows: 

(defbaokend-action backend-action-delete isfi-node 
:baokend-goals (:delete) 
:discourse-goals (:act) 
:role-names ((network :present (roles)) 

(node :present (clause)) 
(transformation :absent (clause roles)))) 

Now one must write domain specific code for de- 
fining the action “delete:” 

(isfi:destroy isfi-object 'isfi:node)) 
(isfi:constraint 
(isfi:destroy isfi-object 'isfi:constraint))) 

finally (return :success))) 

series 

The second example is the preposition “in”, a 
word whose basic meaning applies to both the KRS and 
ISFI domains. We start by showing the definition for the 
word’s morphosyntactic behavior: 

(defkong in (make-word newform 'in 
semantics (make-kernel part-of-speech 'p))) 

All this definition does is specify that the word is 
a preposition; since prepositions, unlike nouns and 
verbs, do not exhibit complex morphosyntactic behavior 
such as declension, there is no need to specify more. 

Now, to add meaning to this preposition, one 
needs to tie it in to KONG’s relational model of seman- 
tics. First, one must define a relation LGCATION with 
which the word will be associated. The definition for this 
relation is: 

(def-db-relation location (object position) 
:type position 
:family space 
:default-relation-p t) 

This definition says that LOCATION relates two 
concepts, an object and a position, and locates this rela- 
tion in the type-family matrix. 

Both these definitions are general across do- 
mains. But one needs domain specific code to tie the 
interpretation of a sentence like “the runway at Halfort” 
to the actual database objects it designates. To do this, 
one defines what is called a “relation-action” which as- 
sociates a relation and its arguments with a set of object 
messages to send to the relation in order to extract the 
relevant information from the backend database. Below 
are several examples of such messages. The first 
“:country-of-airport” associates an airport’s position 
with its home country. These messages are the only part 
of the port which requires programming. 

Kalish and Cox 559 



(def-relation-action location 
'(((airport country) . 

((position . :country-of-airport))) 
((airport lat//long) . 
((position . :lat-of-airport))) 
((object lat//long) . 
((position . :lat-of-object))))) 

(defmethod (location :country-of-airport) (obj ignore) 
(car (user:mget (kong-instance-backend-object obj) 

'user:apo)))) 

(defmethod (location :lat-of-airport) (obj ignore) 
(car (user:mget (kong-instance-backend-object obj) 

'user:lat//long))) 

(defmethod (location :lat-of-object) (obj ignore) 
(car (user:mget (kong-instance-backend-object obj) 

'user:lat//long nil '(user:,apo)))) 

Here is the domain specific code for the auto- 
matic programming system’s interpretation of “in”. 

(def-relation-action location 
'(((inherit node) . ((object . :inherit-event) 

(position . :inherited-on)))) 

(defmethod (location :inherit-event) (ignore node) 
(mapcar #'get-accessor-from-backend-name 
(loop with node-ref = (get-referent node) 

with net = (isfi:node-network node-ref) 
for creator-record in 
(union (mapcar #'get-creation-record 

(everything-created-in-network net))) 
when (and (typep creator-record 

'isfi:inherit-creator) 
(eq node-ref 

(send creator-record :node))) 
collect creator-record))) 

(defmethod (location :inherited-on) (to-inherit ignore) 
(send (get-referent to-inherit) :node))) 

As with backend actions,. the code for these data- 
base accesses need only be written once; as soon as they 
are defined, reference- to them is possible through ail 
relevant menu-driven definition facilities, and they are 
available for all subsequent definitions. 

VI. conclusions 

Clearly, we have made some assumptions about 
expert systems and how they are used. We believe that 
in most cases, there is a limited enough number ) of 
things a user will want to do, so that one can capture the 
contexts he is likely to enter by defining a small number 
of scenes. For both KRS and ISFI this has, in fact, been 
true. Expert systems are usually designed to carry out a 
few specific tasks; if we encountered a system in which 
we could not identify a clearly defined, fairly small set 
of such tasks, we would find ‘our scene mechanism in- 
adequate to capture context or so bulky that it would be 
impossible to use. We do not believe that this is likely, 
but it is a good reason for believing that our system 
would be incapable of understanding narrative, for ex- 
ample. Similar reasoning applies to our use of a rela- 
tional model of the backend; if we were faced with a 

huge array of relations including extensive overlap in the 
meaning of some relations we would find word defini- 
tion to be prohibitively difficult. 

When defining words one is still forced to think 
about the specific sentences in which they will be used. 
This is unfortunate since it introduces ad hoc, domain 
specific reasoning into the definition process; it also 
means that word definitions are rather simplistic. KING 
KONG has no ability to reason about word meaning in 
any sophisticated way, lacking the abilities of CD based 
systems to reason about consequence, for example. This 
is a serious weakness, but one that expert systems inter- 
faces can, by and large, live with for the reasons de- 
scribed above. There is nothing to prevent an extension 
of King KONG to a richer semantics; however, we are 
not comfortable with the semantic models available to- 
day because they are all, even CD’s, difficult to repre- 
sent declaratively. We hope to have shown that the port- 
ability of KING KONG follows directly from its modular- 
ity and declarativeness. 

References 
Bayer, S., Kalish C. E., and Joseph, L. E. (1986) 

“Grammatical Relations as the Basis for Lan- 
guage Parsing and Text Understanding,” pre- 
sented IJCAI-85, August 1985 Los Angeles. Pro- 
ceedings AAAI-86, pp.788-790. 

Bayer, S. (1986) “A Relational Representation of Modi- 
fication,” Proceedings AAAI-86, pp. 1074-1077. 

Brown, R. II. (1985) “Automation of Programming: -The 
ISFI Experiments,” M85-21, June 1985. Pre- 
sented at the Expert Systems in Government 
Symposium, October 1985, McLean VA. 

Cleveland, G. A. (1986) “Mechanisms in ISFI A Tech- 
nical Overview,” M86-17, April 1986. Presented 
to the Canadian Society for Computational Stud- 
ies of Intelligence-1986 Conference Proceedings, 
Montreal Canada. 

Zweben, M., Chase, M. P. and Kalish, C. E., (1986) 
“Tracking Discourse & Context for an Expert 
System Interface,” Proceedings of the Second 
Aerospace Applications of Artificial Intelligence 
Conference, 1986, pp. 200-209. 

560 Natural Language 


