
Memory-Based Reasoning 
Applied to English Pronunciation 

Craig W. Stanfill 
Thinking Machines Corporation 

245 First Street 
Cambridge, MA 02142 

Abstract 
Memory-based Reasoning is a paradigm for AI in 
which best-match recall from memory is the primary 
inference mechanism. Iu its simplest form, it is a 
method of solving the inductive inference (learning) 
problem. The primary topics of this paper are a sim- 
ple memory-based reasoning algorithm, the problem 
of pronouncing english words, and MBRtalk, a pro- 
gram which uses memory-based reasoning to solve the 
pronunciation problem. Experimental results demon- 
strate the properties of the algorithm as training-set 
size is varied, as distracting information is added, and 
as noise is added to the data. 

The principle operation of memory-based reasoning is 
retrieving “the most relevant item” from memory’. This 
requires an exhaustive search which, on a sequential ma- 
chines, is prohibitively expensive for large databases. The 
only alternative is to index the database in a clever way 
(e.g. [Kolodner, 19801). No truly general indexing scheme 
has yet been devised, so the intensive use of memory in rea- 
soning has not been extensively studied. The recent devel- 
opment of the Connection Machine2 System [Hillis, 19851 
has changed this situation: a CMS is capable of applying 
an arbitrary measure of relevance to a large database and 
retrieving the most relevant items in a few milliseconds. 

lA computatio nal measure of relevance is the essence of imple- 
menting MBR. 

2Connection Machine is a registered trademark of Thinking Ma- 
chines Corporation. 

The first use of memory-based reasoning has been for 
the inductive inference task. Given a collection of data 
which has been partitioned into a set of disjoint classes (the 
training data) and a second collection of data which has not 
been classified (the test data), the task is to classify the test 
data according to patterns observed in the training data. 
To date, this task has been worked on in the connectionist 
paradigm (e.g. backpropagation learning [Sejnowski and 
Rosenberg, 19861,) the rule-based paradigm (e.g. building 
decision trees [Quinlan, 1979]), and the classifier-system 
paradigm (e.g. genetic algorithms [Holland et al., 19861). 

Experiments conducted over the last year now solidly 
confirm the applicability of memory-based reasoning to in- 
ductive inference. A program called MBRtalk, operating 
within the memory-based reasoning paradigm, has demon- 
s trat ed strong performance on the task of inferring the pro- 
nunciation of english words from a relatively small sample. 
MBRtalk infers the pronunciation of novel words, given 
only a dictionary of 18,098 words. On a phoneme-by- 
phoneme basis, it is correct approximately 88% of the, time. 
Furthermore, performance degrades gracefully, so that the 
pronunciation it generates is almost always plausible. 

The most intensively studied setting of the inductive in- 
ference mode problem occurs in the rule-based systems 
paradigm, where it goes under the name “similarity-based 
learning3 .” Here it takes the form of learning a set of rules 
from a collection of training data. For a recent survey, see 
[Carbonell et al., 19831. F 
[Michalski et al., 19831 

or more in-depth treatments, see 
and [Michalski et al., 19861. 

There is a closely related line of research which goes 
under the name case-based reasoning (see, e.g. [Kolodner, 
19851 [Lehnert, 19871). It is similar to memory-based rea- 
soning in that recall from memory plays a role in learning, 
but different in that it presupposes substantial knowlqdge 

3There is also “model-based” learning, which depends on the 
learner having a substantial amount of knowledge about the problem 
at hand. 
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about the target domain in the form of a deductive pro- 
cedure. In addition, case-based reasoning operates within 
the rule-based paradigm, so that whatever knowledge is 
extracted from cases is stored in a rule-like form. 

Inductive inference has also been studied in the con- 
nectionist paradigm. Specifically, in backpropagation 

learning [Sejnowski and Rosenberg, 19861, classification is 
accomplished by a three-layer network, with weighted links 
connecting adjacent layers. Learning is accomplished by 

running the network against the training data, generating 
an error signal, and adjusting link weights. 

A Classifier System [Holland et al., 19861 is a collec- 
tion of primitive classification rules, each consisting of a 
condition-action pair. Initially, the system contains ran- 

dom classifiers. Learning takes place through an evolu- 

tionary process, typically including genetic crossover and 

mutation operations; the right to reproduce is governed by 
the success of the classifier in correctly classifying the data. 

III. Pronunciation as a Test 
Domain 

Memory-based reasoning has been tested on the pronun- 
ciation problem: given the spelling of a word, determine 
its pronunciation. The training data for this problem is a 
dictionary, and the test data is a set of words not in that 
dictionary. There are a number of advantages to working in 
this domain. First, training data is available in large quan- 
tities. Second, the domain is rich and complex, so that any 
inductive algorithm is sure to be tested rigorously. 

Unfortunately, perfect performance is fundamentally 
impossible. First, there are irregularities in english pro- 
nunciation, so that some words must always be learned by 
rote. Second, some words have different pronunciations, 
depending on whether they are used as nouns or verbs:4 

live = “liv” or “liv” 

object = “bbfjekt” or “eb jekt!” 

Third, many words have several allowable pronuncia- 
tions regardless of how they are used: 

amenity = “e menl e tZ” or “e mZl ne tZ” 

Fourth, many words of foreign origin have retained 
foreign pronunciations: 

pizza = “pi?tIs~” vs fizzy = “fi?zZ?’ 
montage = m&n tizh! vs. frontage = “fruntlej” 

The pronunciation task has been studied within the 
connection&t paradigm [Sejnowski and Rosenberg, 19861. 

Backpropagation learning was applied to a transcription 
of speech by a child and to a subset (1000 words) of Web- 
ster’s dictionary [Webster, 19741. In each case, both a text 
and a phonetic transcription of that text was repeatedly 
presented to a network. The experiment was primarily 
evaluated according to how well it could reproduce the 
phonetic transcription given only the text - no novel text 
was introduced. Thus, although this experiment provides 
important insight into the properties of backpropagation 
learning as a form of self organizing system, the results are 
not directly comparable to those from MBRtalk. 

The pronunciation task has also been studied in the 
case-based reasoning paradigm [Lehnert, 19871, with re- 
sults similar to those reported below. 

In order to apply memory-based reasoning to pronuncia- 
tion, it is necessary to devise a representation for the words 
in the dictionary. The representation used in MBRtalk is 
identical to that used in NETtalk5. For every letter of 
every word in the database, we create a “frame,” which 
consists of the letter, the previous four letters, the suc- 
ceeding four letters, the phoneme corresponding to that 
letter, and the stress assigned to that letter. 

Certain difficulties are associated with this represen- 
tation, primarily due to the fact that the correspondence 
between letters and phonemes is not one-to-one. First, two 
letters sometimes produce a single phoneme, as the double 
‘s’ in ‘kiss’ (kis-). This is handled by using the letter ‘-’ as 
a silent place holder. Second, the existence of diphthongs 
and glides may cause one letter to yield several phonemes, 
as the first ‘u’ in ‘future’ (fyZch”r). This problem is solved 
by treating dipthongs as if they were single phonemes, so 
that the ‘u’ in ‘future’ becomes ‘~00’. Finally, stress is 
not indicated by an accent mark, but by a separate stress 
field, which can contain the ‘0’ for unstressed vowels, ‘1’ 
for primary stress, ‘2’ for secondary stress, and ‘+’ or ‘-’ 
for consonants (rising and falling stress). Applying these 
principles, we get the following transcription for ‘future’: 

Text f u ture 
Phonemes f ~00 ch - ‘r - 
Stress +1 --o- 

As noted above, each letter of each word yields a frame 
consisting of the letter, the four preceding letters, the four 
succeeding letters, plus the phoneme code and the stress 
code corresponding to the letter. These fields are called 
n-4 through n-l (the preceeding four letters); n (the letter 
itself); n+l through n+4 (the suceeding four letters); p 

4The phonological symbols used below correspond to common us- 
age in dictionaries. Due to font limitations, the symbol ‘8 is used to 
stand for the unstressed vowel sound usually represented by a schwa. 

5With the ex ce p tion that 
we use a g-letter window. 

NETtalk used a 7-letter window, while 
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(the phoneme); and s (the stress). Thus, the word ‘future’ 
yields the following 6 frames: 

f utur f + 
f u ture ~00 I 
fu t ure ch - 

fut u re - - 
futu r 8 'r 0 
utur B 

To implement memory-based reasoning, we need a com- 
putational measure of similarity. This section will first 
explain some notation, then present two different metrics 
which have been used in pronunciation experiments. 

A record is a structured object containing a fixed set 
of fields. A field may be empty, or it may contain a value. 
A database is a collection of records’. 

A target is a record containing some empty fields. The 
empty fields are called goals, and the non-empty fields are 
called predictors. 

A metric is a function giving the dissimilarity of two 
records. The number of possible metrics is immense, and 
no claim is being made that the following two metrics are 
optimal. 

We compute the dissimilarity between two records by 
assigning a penalty for each field in which they differ. For 
example, if we have the following two frames: 

f u ture ~00 f 
n u turs 00 i 

we would compute their dissimilarity by assessing a 
penalty for the field n-l. 

The penalty function we are using is based on how 
tightly a single field-value pair in a predictor field con- 
strains the value of the goal field. For example, the field- 
value pair [n= ‘ b ‘1 gets a high weight because, if field n 
contains a ‘b’, the the phoneme field can only con+ain ‘b’ 
or ‘-‘. On the other hand, the field-value pair [n-$=‘a’] 
gets a low weight because, if field n-4 (the fourth previous 
letter) contains a ‘a’, the phoneme field might contain al- 
most anything. The exact form of this penalty function is 
contained in [Stanfill and Waltz, 19861. 

There are two variations on this metric: we can use the 
penalty function based on the contents of the target record 
or of the data record’. In the example above, we might 

‘Duplicates may be present. 

‘A third alternative is to use a penalty function depending on 
both values. 

Figure 1: Database Size 

use the penalty function associated with [n - 1 = 'f '1 or 
with.[n - 1 = ‘n’]. If the penalty function depends on 

the target record we have a uniform metric. If the pepalty 
function depends on the data record we have a variabZe 
metric. 

These two metrics were applied to the pronunciation task, 
and their sensitivity to database size, distraction, and noise 
was determined. 

The first task was to determine how the quality of the 
pronunciation varied as size of the database changed. The 
raw databases consisted of frames generated from ‘Web- 
ster’s dictionary [Webster, 19741. First, 1024 frames were 
extracted and set aside as test data. Second, various quan- 
tities of training data were extracted; the smallest sample 
was 4096 frames and the largest was 131,072. Memory- 
based reasoning, using the two different metrics noted 
above, was applied to the test data. The value MBR pre- 
dicted for the phoneme slot was then compared with the 
value already stored there. With the largest database, us- 
ing the uniform metric, the accuracy rate was 88%. Using 
the variable metric, the best accuracy was 83%. The per- 
formance of both algorithms degraded gracefully as the size 
of the database was reduced. With a sample of only 4K 
frames (approximately 700 words), MBR s&l1 managed to 
get the correct answer 76% of the time (Figure 1). 

The next task was to determine how well the two al- 
gorithms rejected spurious information (distraction). This 
was done by adding between 1 and 7 fields contal?ning 
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Figure 2: Distraction 

random values to each frame in a 64K-frame training 
database. The uniform metric’s performance degraded 
slightly, from 88% down to 83% correct. The variable met- 
ric’s performance did not change at all (Figure 2). 

The third task was to determine how well the metrics 
performed in the presence of noise. Two different types of 
noise must be considered: predictor noise and goal noise. 
N-% noise is added to a field by randomly choosing N- 
% of the records, then giving them a randomly selected 
value.8 In the predictor-noise test, a fixed percentage of 
noise was added to every predictor field in a 64K-record 
training database, and the results tabulated. The uniform 
metric was relatively unaffected: with 90% noise, perfor- 
mance declined from 88% to 79%, after which it quickly 
dropped to chance. The variable metric was somewhat sur- 
prising: performance was actually better with 10% - 50% 
noise than with none (Figure 3).’ 

When noise was added to goal fields, both algorithms’ 
performances dropped off more-or-less linearly (Figure 4). 

In summary, for the pronunciation task the uniform 
metric is always more accurate than the variable metric. 
It has fairly good resistance to distraction, and extremely 
good resistance to predictor noise. It does not resist goal 
noise particularly well. The variable metric does, however 
have some useful properties: it seems immune to distrac- 

8These values were uniformly distributed. An alternative exper- 
iment would have been to select a random value having the same 
distribution as the data occuring in the field. 

eFor a discussion of the effect of noise on concept learning, see 
[Quinlan, 19861. 
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tion, and has even better resistance to predictor noise. The 
anomalous improvement in performance as predictor noise 
increases up to 50% needs to be understood. 

iscussion 

Substantial work remains to be done on the mechanics of 
memory-based reasoning. First, a variety of metrics need 
to be studied. Second, MBR needs to be extended to work 
in domains with continuous variables. Third, tasks other 
than pronunciation need to be attacked. Fourth, there is 
a need for research into the effects of representation on 
learnability. Finally, a rigorous head-to-head comparison 
between MBR and other methods of inductive inference is 
needed. 

The most striking aspect of this experiment is high 
performance on a difficult problem with a very simple 
mechanism. There are no rules, and neither complex algo- 
rithms nor complex data structures. If simplicity is a good 
indicator of the plausibility of a paradigm, then memory- 
based reasoning has a lot going for it. 

The ultimate goal of Memory-based Reasoning re- 
mains to build intelligent systems based on memory. This 
experiment is an important first step in that direction. 
What has been demonstrated is that it is possible to use 
memory as an inference engine; that if an agency can store 
up experiences and then recall them on a best-match basis, 
it can learn to perform a complex action. Much remains 
to be done, but the memory-based reasoning paradigm has 
passed a crucial first test. 

Many thanks to Dave Waltz, who is the co-originator of 
the Memory-based reasoning paradigm; to George Robert- 
son who got learning research going at Thinking Machines 
Corporation; to Donna Fritesche and Robert Thau for as- 
sisting with software; to Danny Hillis for designing a very 
nice machine; and to Thinking Machines Corporation for 
supporting this research. 

[Carbonell et al., 19831 J aime Carbonell, Ryszard Michal- 
ski, and Tom Mitchell. Machine Learning: A His- 
torical and Methodological Analysis. AI Magazine 
4(3):69-79, 1983. 

[Hillis, 19851 Danny H 11 i is. The Connection Machine. MIT 
Press, Cambridge Massachusetts, 1985. 

[Holland et al., 19861 John Holland, Keith Holyoak, 
Richard Nisbett, and Paul Thagard. Induction: Pro- 
cesses of Inference, Learning, and Discovery. MIT 
Press, Cambridge Massachusetts, 1986. 

[Kolodner, 19801 Janet Kolodner. “Retrieval and Organi- 
zational Strategies in Conceptual Memory: A Com- 
puter Model.” Technical Report 187, Yale Univer- 
sity, Department of Computer Science, 1980 (Ph.D. 
Dissertation). 

[Kolodner, 19851 J anet Kolodner and Robert Simpson. “A 
Process Model of Case-Based Reasoning in Prob- 
lem Solving.” In P roceedings IJCAI-85, Los Angeles, 
California, International Joint Committee for Artifi- 
cial Intelligence, August 1985. 

[Lehnert, 19871 Wendy Lehnert. Case-Based Problem 
Solving with a Large Knowledge Base of Learned 
Cases. In Proceedings AAAI-87, Seatle, Washing- 
ton, American Association for Artificial Intelligence, 
1987. 

[Michalski et al., 19831 Ryszard Michalski, Jaime Car- 
bone& and Tom Mitchell, editors. Muchine Learn- 
ing. Morgan Kaufman, Los Altos, California, 1983. 

[Michalski et al., 19861 Ryszard Michalski, Jaime Car- 
bonell, and Tom Mitchell, editors. Machine Learn- 
ing, Volume 2. Morgan Kaufman, Los Altos, Cali- 

fornai, 1986. 

[Qu,inlan, 19791 Ross Quinlan. “Discovering Rules from 
Large Collections of Examples: A Case Study.” In 
Expert Systems in the Micro Electronic Age. Don- 
ald Michie, editor. Edinburgh University Press, Ed- 
inburgh, 1979. 

[Quinlan, 19861 Ross Quinlan. “The Effect of Noise on 
Concept Learning.” in Machine Learning, Volume 2. 
Ryszard Michalski et. al., editors. Morgan Kaufman, 
Los Altos, Californai, 1986. 

[Sejnowski and Rosenberg, 19861 Terry Se- 
jnowski and Charley Rosenberg. “NETtalk: A Par- 
allel Network that Learns to Read Aloud.” Techni- 
cal Report JHU/EECS-86, The Johns Hopkins Uni- 
versity Electrical Engineering and Computer Science 
Department. 

[Stanfill and Waltz, 19861 Craig S tanfill, and 
David Waltz. “Toward Memory-Based Reasoning.” 
Communications of the ACM 29( 12):1213-1228, De- 
cember 1986. 

[Webster, 19741 M erriam Webster’s Pocket Dictionary, 
1974. 

Stanfill 581 


