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Abstract 
Graph unification is sometimes implemented as a destructive 
operation, making it neccesary to copy the argument graphs 
before beginning the actual unification. Previous research on 
graph unification claimed that this copying is a computation 
sink, and has sought to correct this. 

In this paper I claim that the fundamental problem is in 
designing graph unification as a destructive operation. This 
forces it to both over copy and early copy I present a 
nondestructive graph unification algorithm that minimizes 
over copying and eliminates early copying. This algorithm is 
significantly simpler than recently published solutions to 
copying problems, but maintains the essential efficiency gains 
of older techniques. 

In this 
connecte 8 

aper I will deal with unification of rooted, 

% 
raph 

! acyclic graphs, or “DAGs”. The efficiency of 
unrfrcation has recently received attention 

ecause of the popularity of graph-unification-based 
formalisms in corn utational lrnguistics Karttunen 

84E), [Wittenburg 8 6 1, [Periera 
Karttunen and Kay 851. In these parsers, the 

entries and grammar rules are represented as 
DAGs, and graph unification is the mechanism whereby 
rules are applied to sentence constituents. 
Unfortunately, graph unification is an expensive 
process; any-attempt to build a practical parser based 
on graph unrfrcatron must address the issue of making it 
efficient. Past research has identified the copyrng 
involved in graph unification as a computational sink. 
Thus paper presents a graph unification algorithm that 
does not need to copy its argument graphs because it is 
nondestructive. 

[a: b 
c: 1 [d:e] 
f: <I>] 

e 

Figure 1: The Graph Matrix Notation 

For the purposes of I will use the matrjx 
notation (whenever for graphs as used in 
[Wittenburg 861, 
somewhat of a d 

which has become 
e facto standard in the field. In this 

notation, reentrant structures are indicated with a mark, 
a number receding a subgraph, and a @n&r, a 
number enc osed in <” and 5”. When a pointer of the P 
form <n> is encountered, it should be interpreted as: 
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“The followin 
Yl 

graph is the ve 
marked bv t e number n esewhere in the graph.” r 

same graph as the one 

Figure 1 shows a graph in the matrix notation with a 
reentrant pointer, marked and pointed to by the number 
1. Beside it is an equivalent picture of the same graph. 

Abstractly, a DAG consists of a set of nodes, a set of 
arcs, and a special node designated the root. In 
practice, we implement DAGS with structures that are 
analogical; there is a node structure and an arc 
structure as shown in Figure 2’. 

Msde Structure 

1 forward 

1 arc list I 

Figure 2: The Implementation Of DAGs 

Finall , in our implementation, nodes in a BAG can be 
forwar ed to other nodes. For instance, the DAG J 

? 
raphicall 

orwarde J 
described in Figure 3 shows the root node 
to another node; beside it is the result of 

printing this ra 
iv 

h in the matrix notation. ote that the 
contents of t e orwarded node are completely ignored. 
For all purposes, the node being forwarded has been 
discarded and replaced with node B. It is important that 
all operations on gra hs 
pointer above all else; P 

must honor a forwarding 
orwardin is the highest pnonty 

operation. The process of reso ving these forwarding 9 
pointers (there may be chains of them) is known as 
‘dereferencing” a node [Penera 851. 

E¶: g 
a: t3 

s 

r t 

Figure 3: Forwarding Links Override Node Definitions 

10ur imblementation of the destructive unification algorithm 
presented in Section 3 and the structures shown in Figure 2 owes 
much to the work of Shieber [Shieber 84], Karttunnen [Marttunen 
841, and Wittenburg [Wittenburg 881 
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Conceptually, the al orithm for graph unification is 
Tl quite simple, and muc like ordina 

3 
term unification 

used in theorem-proving programs [ arren 831, [Bayer 
oore 721, extended to the more complex structure 

ir” DAGs. Like term unification, graph unification both 
matches the argument DAGs and builds a new DAG. If 
the DAGs to be unified are somehow incompatible, then 
unification produces nothing; if the DAGs are 
compatible then unification returns a new DAG which is 
compatible with, and more specific than, both of the 
argument DAGS. 

[a: [b: cl Q [a: l[b: cl =-> [a: l[b: c 
d: [e: f]] a: Xl> e: f] 

g: b: jll d: <l> 
91: [h: HI 

: The Successful Unification Of Two DAGs 

For instanc;hlmgure 4shows two DAGs and theresult 
of unifyin 

Et incompatib e 
Figure 5 shows two pairs of 

DA&, i.e. two DAGs over which 
unification would fail. 

[c: cd] 9 [c: e] => Failure! 

[a: l[x:y] -I- [a: [c:d] => Failure! 
: <l>] e: [c:e]j 

: The Unsuccessful Unification of Two DAGs 

The following version of the destructive unification 
algorithm is taken, with modification, from [Periera 851. 
It takes as input two nodes, initially the roots of the 
DAGs to be unified. Bt recurses on the subgraphs of 
each DAG until an “atomic” arc value is found*. 

assumes the existence of two utility 
enta~s (dl, d2) takes two 

unique to df 
tur;; the arc labels that are 

respect to d2. 
~I-I~GOZS~C~~~CS (d%, 82) takes two nodes as input 
and returns the arc labels that exist in both dl and d2. 
These operations are equivalent to the set complement 
and set intersection, respectively, of the set of arc labels 
for each node. 

First, 
1 modifies its argument DAGs in two ways. 

all the nodes from one DAG are forwarded to the 
other. Subse 
will always 1 

uent operations on either of these DAGs 
ereference either node to the same 

structure. Second, arcs may be added to the d2 nodes, 

*In this paper, atomic cases are not considered, since they are 
trival. An actual implementation of this would include a type check 
for atomic DAGs and clause testing for atomic equality if so. This 
has been left out for clarity. 

PROCEDURE Unify1 (dl d2) 
Dereference dl and d2. 
IF dl and d2 are identical THEN 

success: return dl or d2. 
ELSE 

new = complennentarcs (Cal, d2) . 
shared = intersectarcs(dl,d2). 
Forward dl to d2. 
FOR each arc in shared DO 

Find the corresponding arc in d2. 
Recursively unify1 the arc-values. 
IF unify1 failed THEN 

Return failure 
ELSE 

Replace the d2 arc value 
with the result. 

ENDIF 
FOR all ares in new DO 

Add this arc to d2. 
Return d2 or dl arbitrarily. 
ENDIF 

ENDPROCEDWRE 

as in the arc labelled Q in Figure 4. Finally, note that the 
order in which shared arcs are unified is a 
nondeterministic choice. 

Since Unify1 ravages its argument BAGS, they must 
be copied before it is invoked if the argument DAGs 
need to be preserved. For instance, if a rammar rule 
is represented as a DAGr then it surely s 9, ould not be 
permanently changed during the application of the rule 
to a DAG representing a sentence constituent. Thus 
;:I n$ DAG must be copied before the application of 

. 

Previous research 
851 has identified DA LL 

Karttunen and Kay 851, [Periera 
cop 

However, some amount o Y 
ing as significant overhead. 
copying must be done to 

create the result DAG. Exactly when is copying wrong, 
then? The answer is: when the algorithm copies too 
much or copies too soon. Destructive unification makes 
both of these mistakes. They are named: 

e Over Copying. Copies are made of both 
DAGs, and then these copies are ravaged 
by the unification algorithm to build a result 
DAG. This would appear to require the raw 
materials for two DAGs in order to create 
just one new DAG. A better algorithm 
would only allocate enough memory for the 
resulting DAG. 

e Early Copying. The argument DAGs are 
copied before unification is started. If the 
unification fails, then some of the copying is 
wasted effort. A better algorithm would 
copy incrementally, so that if a failure 
occurred, only the minimal copying would 
be done before the failure was detected. 

The important point here is that these are two distinct 
features of a unification algorithm, and have no 
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neccesary connection. Previous attempts to improve 
unification have not acknowledged their independence, 
and are perhaps more complicated than they need to be 
because of that. On the other hand, the al orithm 

B presented in the next section deals complete y with 
early copying but only partially with over copying; they 
are treated as independent problems. 

In this section, I present a nondestructive graph 
unification algorithm that incrementally copies its 
argument graphs. It avoids, whenever possible, over 
copying, and completely eliminates early copying. The 
price to be paid for this is a slightly more complicated 
algorithm and graph representation. 

Intuitively, unification could be nondestructive if it 
were to build the result DAG as it proceeds, making all 
changes in this new DAG, and leaving the argument 
DAGs untouched. This means that we will have to 
associate with each component of the argument DAGs, 
its copy. If, at each step during unificatron, we return 
the co 
we wil P 

y structure as the result of the unification, then 
finally be left with a pointer to the root of the 

newly constructed DAG, or a failure-indicator. 

. Incremental Copying Means More 
Bookkeeping 

For this algorithm, we will extend the representT;g y; 
nodes somewhat as shown in Figure 6. 
essential1 

J 
the same as shown in Figure 2 except that a 

copy an status field have been added. We will use 
the copy field to associate a node with it’s copy. We 
will use the status field to indicate whether or not a 
given node is part of a copy or part of the original graph; 
It will hold one of two possible values: %opyvl or 
"not-copym. 

+-----------------.+ 

I forward I 
+------------------+ 

I arc list I 
+---------------...--+ 

I COPY I 
+------------------+ 

I status I 
+------------------+ 

Figure 6: Nondestructive Unification Node 

B. Graph Unification With IIncremental Copying 
The procedure Unify2 takes as input two nodes, 

initially the roots of the DAGs to be unified. It recurses 
on the subgraphs of each DAG until an “atomic” arc 
value is found. It differs from the al 
that it never alters dl or d2; i! 

orithm Unify1 in 
rat er it puts these 

modifications in the new node being created, named 
COPY. 

PROCEDURE Unify2 (dl d2) 
Dereference dl, d2. 
IF neither dl nor d2 have copies THEN 

copy = a new node. 
copy.status = **copy". 
dl.copy, d2.copy = copy. 
newdl = complementarcs(dl,d2). 
newd2 = complementarcs(d2,dl). 
shared = intersectarcs(dl,d2). 
FOR all arcs in shared DO 

Find the corresponding arc in d2. 
Recursively unify2 the arc values. 
IF unify2 failed THEN 

Return failure. 
ELSE 

Add a new arc in copy. 
ENDIF 

FOR arc in union(newdl,newd2) DO 
Copy the arc-value of each arc, 
honoring existing copies within, 
and place this value in copy. 

Return Copy. 
ELSE if dl xor d2 has a copy THEN 

Without loss of generality, assume 
dl has the copy. 

* unifyl(dl.copy,d2) preserving d2. 
Return dl.copy. 

ELSE if both dl and 82 have copies TREN 
Unifyl(dl.copy, d2.copy). 

ENDIF 
ENDPROCEDURE 

@~t~~~t~ve ~~~f~~ati~~ 
, we will partially walk through the 

unification of the graphs shown in Figure 4 using the 
procedure Unify2. 
dashed lines 

In the following series of figures, 
indicate the contents of the copy field, 

darkened circles represent “non-copy” nodes, and 
hollow circles represent nodes which are copies. 

Figure 7 shows the state of unification after the path 
(a,b) has been followed during unification. Unify2 
has recursed twice and returned to the top node; three 
new nodes have been created, one a copy of the root, 
one a copy of the node on the path (a) and the last a 
copy of the node on the path (a, b). The copy field of 
the appropriate nodes in DAG! and DAG2 have been 
fiir;lli with the copy nodes, as Indicated by the dashed 

. 

e h 

Note that when a copy alread 
Y 

exists for one 
the other, but not both, this agorithm will pe 4 

raph or 
orm an 

operation ve..ry much like unifyl, but no forwarding will 
be done since the changes can all be safely recorded in 
the copy. -This is what IS meant by the line marked with 
an asterisk. 

ure 7: Nondestructive Unification: Snapshot 1 
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In Figure 8, Unify2 has followed the path (d) on the 
argument DAGs. Rut notice that the nodes at the end 
of path (a) and at the end of path (d) in DAG2 are the 
same; a co 
traversing t R 

y of this node was previously made when 
e path (a, b) , and so this copy is reused 

rather than allocating a new node. Subsequently, an 
arc labelled e is added to this reused copy. Finally, 
Unify2 recursion unwinds back to the root node of 
both DAGs. 

e 
h 

Figure 8: Nondestructive Unification: Snapshot 2 

In Figure 9, Unify2 has added the arc labeled g in 
DAG2 to the result gra h, 
subgraph at the end of t R 

makin 
at arc an 

result graph. 
tl 

a copy of the 
placing it in the 

Notice that the subgraph [h: j] of 
DA62 was copied even though there existed no 
correspondin subgraph in DAGl. Later we will see 
that this -lea 0s s to possible over copying on the part of 
Unify2 in some special cases. 

The result graph is shown in corn 
Notice that DAGl and 

leted form in Figure 
DA 2 have been left 8 

&changed except for their COPY fields The new DAG 
can be returned, with a total of 6 new nodes created 
and 6 new arcs created. 
nondestructively with 

To unify these DAGs 
procedure thifyl, 10 nodes and 

9 arcs would have been created, i.e. a copy of both 
argument DAGs. 

e 

ID. Advanta es of heremental Copyl 
incrementa y copying graphs w dunn 

means over copying is avoided and ear y copying is B 
unification 

eliminated. This incremental copying scheme has the 
potential for being more efficient than destructive 
unification (including the preceding copying) both in 
space and speed. Even if the unification can be 
guaranteed to succeed, Unify2 potentially uses less 
space and time copying than Unifyl, because it avoids 
over-copying. 

sadvantages of lneremental Co 
fy2 is not a perfect algorithm. It can, In some 

cases, -over copy. Such a case is illustrated in the 
unrfrcation of the DAGs in Figure 10. If the top level 
arcs are unified in the order x then y then Z, double 
copying occurs during the unification of the z subgraph. 

DAGl DAG2 RESULT 
[x:[a:b] [x:l[a:b] [x:l[a:b 
y:[c:dJ y:2[c:d] => e:f 
z:[p:l[e:f] 2: [p:<l> c:d] 

q:<l>]] q:<2>]] y:<l> 
z:[p:<l> 

q:<l>]] 

Figure IQ: Two DAGs That Force Double Copying 

To understand this, notice that when the X and ‘JI 
subgraphs are unified, a new copy of the graphs 
[a: b] and [c: d] was made and associated with 
the original nodes in DAGl and DAG2. When 
unification takes place along the path (z, p) a new 
arc/value of [e : f] is combined with the existin 
of [a: b] to make the result graph 1 R loo 

c; ey 

[a:b e:f]. Finally, the reentrant structure in DAGl 
forces the values at the ends of the paths (2,~) and 
(z, q) to be unified. But in this case, there is now a 
copied graph already associated with each of these 
paths! 

The correct result can be obtained by invoking the 
destructive unification routine Unify1 on both copies, 
as is done in the final conditional clause of Unify:!. 
This provides the correct result DAG, but is unsatisfying 
with respect to the goals of having a “perfect” unification 
algorithm, because the algorithm has still over co led, 
even though it produces the correct result. I have ii een 
unable to discover a way to retain the incremental 
copying scheme but still completely avoid this sort of 
over copying, although somehow combining “reversible 
unification” (discussed in the next section) with this 
algorithm seems to be a promising approach. 

Several other graph unification algorithms that avoid 
early co 

P 
ying and over cop ing 

and imp emented. Each of t t 
have been proposed 

em have emphasized the 
importance of dealing with copying efficiently. In this 
section I will compare the nondestructive unification 
.algorithm presented here with these previous 
techniques. 

Figure 9: Nondestructive Unification: Final Result 
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This comparison of alternate approaches will proceed 
along the following dimensions: 

0 Does it eliminate early copying? 

e Does it eliminate over copying? 

m Does it impose an overhead on DAG 
operations? 

e is it linjted to a certain 
. 
context? 

Unification structur aring 
‘Pereira [Periera 851 has proposed a structure-sharing 

approach to graph unification, analogous to the 
structure-sharing techniques used in theorem-proving 
programs [Boyer and Moore 721, [Warren 831. In this 
scheme, a DAG is represented by a skeleton and an 
environment. The skeleton is a simple DAG in the 
same sense used above. However, it must be 
interpreted along with an environment in which changes 
to the graph, such as arc bindings or node forwardings, 
may be added. The unification procedure in such a 
system looks much like Unifyl, except that it records 
changes to the ar ument DAG nodes in the 
“environment instead d 9 in the nodes themselves. The 
effect of this technique is to make unification 
nondestructive and thus non-over and non-early 
copying. Even in the cases where Unify2 would over 
copy, this structure sharing algorithm would not. 

Unfortunately, structure sharing has its own set of 
costs. The mechanism of structure sharing itself places 
a fixed-cost overhead on all node accesses; in Periera’s 
implementation this overhead is log d), 
number of the nodes in the DA d 

where d is the 
. Any operation 

manipulating a graph must suffer this log(d) overhead in 
order to assemble the whole DAG from the skeleton 
and the updates in the environment. Also, this 
technique ties each DAG to the derivational 
environment in which it was created; this appears to 
have been done as a efficievcy measure, in order to 
;t$ztthe structure of the environments to the greatest 

. 

I found the environment/skeleton scheme hard to 
implement and extend in a Lisp environment. In fact, it 
was my discouraging experience when trying accelerate 
unification via structure-sharing that led to the design of 
the incremental copying scheme described here. In my 
implementation, most of the speed-advantages of the 
structure-sharing were cancelled by the speedArs;;i 
the log(d) node access overhead. 
disadvanta es of structure-sharing are avoided using 
incrementa copying. B Each node in the graph can be 
accessed in constant time, and the result of a unification 
is not necessarily tied to the derivational context in 
which the unification was done. Finally, it is significantly 
easier to implement and extend than the structure- 
sharing mechanism. 

B. Reversible Unifie 
Karttunen [Karttunen 861 has implemented a 

“reversible unification“ scheme in which the changes to 
the argumeht DAGs are made in a semi-permanent 
way. .After successful unification, a fresh graph is 
copied from the two. altered argument DAGs, and the 
argument graphs are then restored by undoing all the 
changes made durin unification. If the unification fails, 
,then the argument % AGs are restored and no result 
graph is made. Reversible unification does not appear 
to be restricted to any special context. 

The most important difference between reversible 
unification and unify2 concerns the restoration 
process. ~nify2 only changes the original graphs in 
their copy fields. More radical unification changes are 
made in the copies themselves. Thus, restor!ng the 
argument DAGs is only a matter of InvalidatIng the 
copy fields of the ar ument DAGs. This can be done in 
constant time by a 8 din 

B 
a mark field which indicates 

the validity of the copy leid iff it is equal to some global 
counter; ail the currently valid copy fields can be 
simultaneously invalidated by incrementing the global 
counter.3. This trick is not possible for reversible 
unification, since it alters its argument DAGs more 
radically; instead the algorithm must consider each 
node separately when restoring. 

Another difference between reversible unification and 
uni%y2 is that reversible unification does not 
incrementally copy it’s argument DAGs. This forces it to 
add a constant-time ‘save” operation before all 
modifications and to make a second pass over the 
result DAGs to create the copy; in Unify2 this work is 
traded for a copy-dereferencing operation each time a 
node is examined. 

A possible ar ument for reversible unification. over 
wnify%l would % e its simplicity, possibly making it 
easier to implement, validate, and maintain. Reversible 
unification also avoids the need for adding two fields 
(COPY, status) to each node through the use of th.e 
restoration records. Further, reversible unification will 
never over copy, even in cases where Unify2 would. 

Graph unification is sometimes implemented as a 
destructive operation, making it neccesary to copy the 
argument graphs 
unification. 

before beginning the actual 
Previous research on graph unification 

showed that this copying is a computation sink, and has 
sought to correct this. 

In this paper I have claimed that the fundamental 
problem is in designing graph unification as a 
destructive operation. 
and early copy. I 

This forces it to both over copy 
have presented a nondestructive 

gra h unification algorithm that minimizes over copying 
an a eliminates early copying. In retrospect, it can be 
seen that earlier attempts to fix the efficiency problems 
also addressed the problems of early co 

R 
ying and over 

copying. The new algorithm presented ere is simpler 
than structure-sharing, and replaces the restoration 
process of reversible unification with a (small) constant 
time operation. 

There are clearly some tradeoffs to be considered in 
implementing graph unification. I have tried to outline 
four that I know of: over copying, early copying, DAG 
access overhead, and restrictiveness to certain 
contexts. Complicating this is the surprisin 
possible in the simple structure of a % 

complexity 
AG under 

unificaton; implementing any graph unification algorithm 
and testing its correctness is a formidable task. One of 
the problems with the algorithm presented here is that it 

3Thanks to Mark Tarlton for suggesting this. 
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has not been proven correct (nor has any other 
unification al orithm, to my knowledge), althoug ii 

raph 

B 
we 

have informa ly tested it and have been using it on a 
daily basis for about 5 months. 

Future research in this area should strive toward 
understanding how various design decisions in 
unification-based parsers affect design decisions for 
unification. For instance, some parsers may be able to 
intelligently eliminate rule applications that would fail 
without invoking unification; one such system is 
Astro [Wittenbur 
succeed most o 9 

861. If it is known that unification will 
the times it is applied, then one would 

prefer to optimize the successful case of the unification 
algorithm. This would mean that early copying might 
not be a bad design decision. 

Another consideration is the pur ose to which the 
unification result will be put. Some El AGs have a short 
lifes an, such as those on chart edges. Other DAGs 
pro uced via unification CP mi ht have a relatively 

ermanent existence, such as exical definition 
F 

B 
inally, sometimes one would like to provide 3 

raphs. 
etailed 

information about the causes of unification failure (for 
debugging grammars, say) while at other times space 
and time IS at a premium, and debugging information is 
not required. The author’s experience suggests that the 
“perfect raph unification algorithm” may not exist, and 
is best t ought 3, of as a family of related algorithms 
optimized for different purposes. 

This paper has been greatly improved by the 
thoughtful comments of Elaine Rich and Kent 
Wittenburg. I am also indebted to Elaine, Kent and the 
rest of the MCC Lingo group for many interesting 
discussions on this topic, and to MCC for providing the 
computational and intellectual environment in which this 
work took place. 

[Boyer and Moore 721 R. Boyer and J. Moore. The 
Sharing of Structure in Theorem-Proving Programs. In 
Machine Intelligence 7. John Wiley and Sons, New 

[Karttunen 841 Lauri Karttunen. Features and 
Values. In Proceedings of Colinga4, pages 28-33. 
1984. 

[Karttunen 861 Lauri Karttunen. D-PAT/?: A 
Development Environment For Unification-Based 
Grammars. Technical Report CSLI-86-61, Center for 
the Study of Language and Information, August, 1986. 

[Karttunen and Kay 851 L. Karttunen and M. Kay. 

[Periera 851 Fernando C. N. Periera. A Structure- 
Sharing Representation for Unification-Based Grammar 
Formalisms. In Proceedings of the 23rdAnnual 
Meeting of the Association for Computational 
Linguistics, pages 4 37-l 44. 1985. 

[Shieber 841 S. Shieber. The Design of a 
Computer Language for Linguistic Information. In 
Proceedings of Coling84, pages 362-366. 1984. 

[Warren 831 David H. D. Warren. Applied Logic - 
Its Use And Implementation As A Programming Tool. 
Technical Report 290, SRI International, June, 4983. 

[Wittenburg 861 Kent B. Wittenburg. Natural 
Language Parsing With Combinatory Categorial 
%rammar In A Graph-Unification-Based Formalism. 
PhD thesis, University Of Texas-Austin, August, 1986. 

Sharing Structure With Binary Trees. In Proceedings of 
the 23rd Annual Meeting of the Association for 
Computational Linguistics, pages 133-l 36a. 1985. 

Wroblewski 587 


