
David A. Wroblews
htlcc

3500 West Balcones Center Drive
Austin, Texas 78759

Abstract
Graph unification is sometimes implemented as a destructive
operation, making it neccesary to copy the argument graphs
before beginning the actual unification. Previous research on
graph unification claimed that this copying is a computation
sink, and has sought to correct this.

In this paper I claim that the fundamental problem is in
designing graph unification as a destructive operation. This
forces it to both over copy and early copy I present a
nondestructive graph unification algorithm that minimizes
over copying and eliminates early copying. This algorithm is
significantly simpler than recently published solutions to
copying problems, but maintains the essential efficiency gains
of older techniques.

In this
connecte 8

aper I will deal with unification of rooted,

%
raph

! acyclic graphs, or “DAGs”. The efficiency of
unrfrcation has recently received attention

ecause of the popularity of graph-unification-based
formalisms in corn utational lrnguistics Karttunen

84E), [Wittenburg 8 6 1, [Periera
Karttunen and Kay 851. In these parsers, the

entries and grammar rules are represented as
DAGs, and graph unification is the mechanism whereby
rules are applied to sentence constituents.
Unfortunately, graph unification is an expensive
process; any-attempt to build a practical parser based
on graph unrfrcatron must address the issue of making it
efficient. Past research has identified the copyrng
involved in graph unification as a computational sink.
Thus paper presents a graph unification algorithm that
does not need to copy its argument graphs because it is
nondestructive.

[a: b
c: 1 [d:e]
f: <I>]

e

Figure 1: The Graph Matrix Notation

For the purposes of I will use the matrjx
notation (whenever for graphs as used in
[Wittenburg 861,
somewhat of a d

which has become
e facto standard in the field. In this

notation, reentrant structures are indicated with a mark,
a number receding a subgraph, and a @n&r, a
number enc osed in <” and 5”. When a pointer of the P
form <n> is encountered, it should be interpreted as:

582 Natural language

“The followin
Yl

graph is the ve
marked bv t e number n esewhere in the graph.” r

same graph as the one

Figure 1 shows a graph in the matrix notation with a
reentrant pointer, marked and pointed to by the number
1. Beside it is an equivalent picture of the same graph.

Abstractly, a DAG consists of a set of nodes, a set of
arcs, and a special node designated the root. In
practice, we implement DAGS with structures that are
analogical; there is a node structure and an arc
structure as shown in Figure 2’.

Msde Structure

1 forward

1 arc list I

Figure 2: The Implementation Of DAGs

Finall , in our implementation, nodes in a BAG can be
forwar ed to other nodes. For instance, the DAG J

?
raphicall

orwarde J
described in Figure 3 shows the root node
to another node; beside it is the result of

printing this ra
iv

h in the matrix notation. ote that the
contents of t e orwarded node are completely ignored.
For all purposes, the node being forwarded has been
discarded and replaced with node B. It is important that
all operations on gra hs
pointer above all else; P

must honor a forwarding
orwardin is the highest pnonty

operation. The process of reso ving these forwarding 9
pointers (there may be chains of them) is known as
‘dereferencing” a node [Penera 851.

E¶: g
a: t3

s

r t

Figure 3: Forwarding Links Override Node Definitions

10ur imblementation of the destructive unification algorithm
presented in Section 3 and the structures shown in Figure 2 owes
much to the work of Shieber [Shieber 84], Karttunnen [Marttunen
841, and Wittenburg [Wittenburg 881

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

Conceptually, the al orithm for graph unification is
Tl quite simple, and muc like ordina

3
term unification

used in theorem-proving programs [arren 831, [Bayer
oore 721, extended to the more complex structure

ir” DAGs. Like term unification, graph unification both
matches the argument DAGs and builds a new DAG. If
the DAGs to be unified are somehow incompatible, then
unification produces nothing; if the DAGs are
compatible then unification returns a new DAG which is
compatible with, and more specific than, both of the
argument DAGS.

[a: [b: cl Q [a: l[b: cl =-> [a: l[b: c
d: [e: f]] a: Xl> e: f]

g: b: jll d: <l>
91: [h: HI

: The Successful Unification Of Two DAGs

For instanc;hlmgure 4shows two DAGs and theresult
of unifyin

Et incompatib e
Figure 5 shows two pairs of

DA&, i.e. two DAGs over which
unification would fail.

[c: cd] 9 [c: e] => Failure!

[a: l[x:y] -I- [a: [c:d] => Failure!
: <l>] e: [c:e]j

: The Unsuccessful Unification of Two DAGs

The following version of the destructive unification
algorithm is taken, with modification, from [Periera 851.
It takes as input two nodes, initially the roots of the
DAGs to be unified. Bt recurses on the subgraphs of
each DAG until an “atomic” arc value is found*.

assumes the existence of two utility
enta~s (dl, d2) takes two

unique to df
tur;; the arc labels that are

respect to d2.
~I-I~GOZS~C~~~CS (d%, 82) takes two nodes as input
and returns the arc labels that exist in both dl and d2.
These operations are equivalent to the set complement
and set intersection, respectively, of the set of arc labels
for each node.

First,
1 modifies its argument DAGs in two ways.

all the nodes from one DAG are forwarded to the
other. Subse
will always 1

uent operations on either of these DAGs
ereference either node to the same

structure. Second, arcs may be added to the d2 nodes,

*In this paper, atomic cases are not considered, since they are
trival. An actual implementation of this would include a type check
for atomic DAGs and clause testing for atomic equality if so. This
has been left out for clarity.

PROCEDURE Unify1 (dl d2)
Dereference dl and d2.
IF dl and d2 are identical THEN

success: return dl or d2.
ELSE

new = complennentarcs (Cal, d2) .
shared = intersectarcs(dl,d2).
Forward dl to d2.
FOR each arc in shared DO

Find the corresponding arc in d2.
Recursively unify1 the arc-values.
IF unify1 failed THEN

Return failure
ELSE

Replace the d2 arc value
with the result.

ENDIF
FOR all ares in new DO

Add this arc to d2.
Return d2 or dl arbitrarily.
ENDIF

ENDPROCEDWRE

as in the arc labelled Q in Figure 4. Finally, note that the
order in which shared arcs are unified is a
nondeterministic choice.

Since Unify1 ravages its argument BAGS, they must
be copied before it is invoked if the argument DAGs
need to be preserved. For instance, if a rammar rule
is represented as a DAGr then it surely s 9, ould not be
permanently changed during the application of the rule
to a DAG representing a sentence constituent. Thus
;:I n$ DAG must be copied before the application of

.

Previous research
851 has identified DA LL

Karttunen and Kay 851, [Periera
cop

However, some amount o Y
ing as significant overhead.
copying must be done to

create the result DAG. Exactly when is copying wrong,
then? The answer is: when the algorithm copies too
much or copies too soon. Destructive unification makes
both of these mistakes. They are named:

e Over Copying. Copies are made of both
DAGs, and then these copies are ravaged
by the unification algorithm to build a result
DAG. This would appear to require the raw
materials for two DAGs in order to create
just one new DAG. A better algorithm
would only allocate enough memory for the
resulting DAG.

e Early Copying. The argument DAGs are
copied before unification is started. If the
unification fails, then some of the copying is
wasted effort. A better algorithm would
copy incrementally, so that if a failure
occurred, only the minimal copying would
be done before the failure was detected.

The important point here is that these are two distinct
features of a unification algorithm, and have no

Wroblewski 5%3

neccesary connection. Previous attempts to improve
unification have not acknowledged their independence,
and are perhaps more complicated than they need to be
because of that. On the other hand, the al orithm

B presented in the next section deals complete y with
early copying but only partially with over copying; they
are treated as independent problems.

In this section, I present a nondestructive graph
unification algorithm that incrementally copies its
argument graphs. It avoids, whenever possible, over
copying, and completely eliminates early copying. The
price to be paid for this is a slightly more complicated
algorithm and graph representation.

Intuitively, unification could be nondestructive if it
were to build the result DAG as it proceeds, making all
changes in this new DAG, and leaving the argument
DAGs untouched. This means that we will have to
associate with each component of the argument DAGs,
its copy. If, at each step during unificatron, we return
the co
we wil P

y structure as the result of the unification, then
finally be left with a pointer to the root of the

newly constructed DAG, or a failure-indicator.

. Incremental Copying Means More
Bookkeeping

For this algorithm, we will extend the representT;g y;
nodes somewhat as shown in Figure 6.
essential1

J
the same as shown in Figure 2 except that a

copy an status field have been added. We will use
the copy field to associate a node with it’s copy. We
will use the status field to indicate whether or not a
given node is part of a copy or part of the original graph;
It will hold one of two possible values: %opyvl or
"not-copym.

+-----------------.+

I forward I
+------------------+

I arc list I
+---------------...--+

I COPY I
+------------------+

I status I
+------------------+

Figure 6: Nondestructive Unification Node

B. Graph Unification With IIncremental Copying
The procedure Unify2 takes as input two nodes,

initially the roots of the DAGs to be unified. It recurses
on the subgraphs of each DAG until an “atomic” arc
value is found. It differs from the al
that it never alters dl or d2; i!

orithm Unify1 in
rat er it puts these

modifications in the new node being created, named
COPY.

PROCEDURE Unify2 (dl d2)
Dereference dl, d2.
IF neither dl nor d2 have copies THEN

copy = a new node.
copy.status = **copy".
dl.copy, d2.copy = copy.
newdl = complementarcs(dl,d2).
newd2 = complementarcs(d2,dl).
shared = intersectarcs(dl,d2).
FOR all arcs in shared DO

Find the corresponding arc in d2.
Recursively unify2 the arc values.
IF unify2 failed THEN

Return failure.
ELSE

Add a new arc in copy.
ENDIF

FOR arc in union(newdl,newd2) DO
Copy the arc-value of each arc,
honoring existing copies within,
and place this value in copy.

Return Copy.
ELSE if dl xor d2 has a copy THEN

Without loss of generality, assume
dl has the copy.

* unifyl(dl.copy,d2) preserving d2.
Return dl.copy.

ELSE if both dl and 82 have copies TREN
Unifyl(dl.copy, d2.copy).

ENDIF
ENDPROCEDURE

@~t~~~t~ve ~~~f~~ati~~
, we will partially walk through the

unification of the graphs shown in Figure 4 using the
procedure Unify2.
dashed lines

In the following series of figures,
indicate the contents of the copy field,

darkened circles represent “non-copy” nodes, and
hollow circles represent nodes which are copies.

Figure 7 shows the state of unification after the path
(a,b) has been followed during unification. Unify2
has recursed twice and returned to the top node; three
new nodes have been created, one a copy of the root,
one a copy of the node on the path (a) and the last a
copy of the node on the path (a, b). The copy field of
the appropriate nodes in DAG! and DAG2 have been
fiir;lli with the copy nodes, as Indicated by the dashed

.

e h

Note that when a copy alread
Y

exists for one
the other, but not both, this agorithm will pe 4

raph or
orm an

operation ve..ry much like unifyl, but no forwarding will
be done since the changes can all be safely recorded in
the copy. -This is what IS meant by the line marked with
an asterisk.

ure 7: Nondestructive Unification: Snapshot 1

584 Natural Language

In Figure 8, Unify2 has followed the path (d) on the
argument DAGs. Rut notice that the nodes at the end
of path (a) and at the end of path (d) in DAG2 are the
same; a co
traversing t R

y of this node was previously made when
e path (a, b) , and so this copy is reused

rather than allocating a new node. Subsequently, an
arc labelled e is added to this reused copy. Finally,
Unify2 recursion unwinds back to the root node of
both DAGs.

e
h

Figure 8: Nondestructive Unification: Snapshot 2

In Figure 9, Unify2 has added the arc labeled g in
DAG2 to the result gra h,
subgraph at the end of t R

makin
at arc an

result graph.
tl

a copy of the
placing it in the

Notice that the subgraph [h: j] of
DA62 was copied even though there existed no
correspondin subgraph in DAGl. Later we will see
that this -lea 0s s to possible over copying on the part of
Unify2 in some special cases.

The result graph is shown in corn
Notice that DAGl and

leted form in Figure
DA 2 have been left 8

&changed except for their COPY fields The new DAG
can be returned, with a total of 6 new nodes created
and 6 new arcs created.
nondestructively with

To unify these DAGs
procedure thifyl, 10 nodes and

9 arcs would have been created, i.e. a copy of both
argument DAGs.

e

ID. Advanta es of heremental Copyl
incrementa y copying graphs w dunn

means over copying is avoided and ear y copying is B
unification

eliminated. This incremental copying scheme has the
potential for being more efficient than destructive
unification (including the preceding copying) both in
space and speed. Even if the unification can be
guaranteed to succeed, Unify2 potentially uses less
space and time copying than Unifyl, because it avoids
over-copying.

sadvantages of lneremental Co
fy2 is not a perfect algorithm. It can, In some

cases, -over copy. Such a case is illustrated in the
unrfrcation of the DAGs in Figure 10. If the top level
arcs are unified in the order x then y then Z, double
copying occurs during the unification of the z subgraph.

DAGl DAG2 RESULT
[x:[a:b] [x:l[a:b] [x:l[a:b
y:[c:dJ y:2[c:d] => e:f
z:[p:l[e:f] 2: [p:<l> c:d]

q:<l>]] q:<2>]] y:<l>
z:[p:<l>

q:<l>]]

Figure IQ: Two DAGs That Force Double Copying

To understand this, notice that when the X and ‘JI
subgraphs are unified, a new copy of the graphs
[a: b] and [c: d] was made and associated with
the original nodes in DAGl and DAG2. When
unification takes place along the path (z, p) a new
arc/value of [e : f] is combined with the existin
of [a: b] to make the result graph 1 R loo

c; ey

[a:b e:f]. Finally, the reentrant structure in DAGl
forces the values at the ends of the paths (2,~) and
(z, q) to be unified. But in this case, there is now a
copied graph already associated with each of these
paths!

The correct result can be obtained by invoking the
destructive unification routine Unify1 on both copies,
as is done in the final conditional clause of Unify:!.
This provides the correct result DAG, but is unsatisfying
with respect to the goals of having a “perfect” unification
algorithm, because the algorithm has still over co led,
even though it produces the correct result. I have ii een
unable to discover a way to retain the incremental
copying scheme but still completely avoid this sort of
over copying, although somehow combining “reversible
unification” (discussed in the next section) with this
algorithm seems to be a promising approach.

Several other graph unification algorithms that avoid
early co

P
ying and over cop ing

and imp emented. Each of t t
have been proposed

em have emphasized the
importance of dealing with copying efficiently. In this
section I will compare the nondestructive unification
.algorithm presented here with these previous
techniques.

Figure 9: Nondestructive Unification: Final Result

Wroblewski 585

This comparison of alternate approaches will proceed
along the following dimensions:

0 Does it eliminate early copying?

e Does it eliminate over copying?

m Does it impose an overhead on DAG
operations?

e is it linjted to a certain
.
context?

Unification structur aring
‘Pereira [Periera 851 has proposed a structure-sharing

approach to graph unification, analogous to the
structure-sharing techniques used in theorem-proving
programs [Boyer and Moore 721, [Warren 831. In this
scheme, a DAG is represented by a skeleton and an
environment. The skeleton is a simple DAG in the
same sense used above. However, it must be
interpreted along with an environment in which changes
to the graph, such as arc bindings or node forwardings,
may be added. The unification procedure in such a
system looks much like Unifyl, except that it records
changes to the ar ument DAG nodes in the
“environment instead d 9 in the nodes themselves. The
effect of this technique is to make unification
nondestructive and thus non-over and non-early
copying. Even in the cases where Unify2 would over
copy, this structure sharing algorithm would not.

Unfortunately, structure sharing has its own set of
costs. The mechanism of structure sharing itself places
a fixed-cost overhead on all node accesses; in Periera’s
implementation this overhead is log d),
number of the nodes in the DA d

where d is the
. Any operation

manipulating a graph must suffer this log(d) overhead in
order to assemble the whole DAG from the skeleton
and the updates in the environment. Also, this
technique ties each DAG to the derivational
environment in which it was created; this appears to
have been done as a efficievcy measure, in order to
;t$ztthe structure of the environments to the greatest

.

I found the environment/skeleton scheme hard to
implement and extend in a Lisp environment. In fact, it
was my discouraging experience when trying accelerate
unification via structure-sharing that led to the design of
the incremental copying scheme described here. In my
implementation, most of the speed-advantages of the
structure-sharing were cancelled by the speedArs;;i
the log(d) node access overhead.
disadvanta es of structure-sharing are avoided using
incrementa copying. B Each node in the graph can be
accessed in constant time, and the result of a unification
is not necessarily tied to the derivational context in
which the unification was done. Finally, it is significantly
easier to implement and extend than the structure-
sharing mechanism.

B. Reversible Unifie
Karttunen [Karttunen 861 has implemented a

“reversible unification“ scheme in which the changes to
the argumeht DAGs are made in a semi-permanent
way. .After successful unification, a fresh graph is
copied from the two. altered argument DAGs, and the
argument graphs are then restored by undoing all the
changes made durin unification. If the unification fails,
,then the argument % AGs are restored and no result
graph is made. Reversible unification does not appear
to be restricted to any special context.

The most important difference between reversible
unification and unify2 concerns the restoration
process. ~nify2 only changes the original graphs in
their copy fields. More radical unification changes are
made in the copies themselves. Thus, restor!ng the
argument DAGs is only a matter of InvalidatIng the
copy fields of the ar ument DAGs. This can be done in
constant time by a 8 din

B
a mark field which indicates

the validity of the copy leid iff it is equal to some global
counter; ail the currently valid copy fields can be
simultaneously invalidated by incrementing the global
counter.3. This trick is not possible for reversible
unification, since it alters its argument DAGs more
radically; instead the algorithm must consider each
node separately when restoring.

Another difference between reversible unification and
uni%y2 is that reversible unification does not
incrementally copy it’s argument DAGs. This forces it to
add a constant-time ‘save” operation before all
modifications and to make a second pass over the
result DAGs to create the copy; in Unify2 this work is
traded for a copy-dereferencing operation each time a
node is examined.

A possible ar ument for reversible unification. over
wnify%l would % e its simplicity, possibly making it
easier to implement, validate, and maintain. Reversible
unification also avoids the need for adding two fields
(COPY, status) to each node through the use of th.e
restoration records. Further, reversible unification will
never over copy, even in cases where Unify2 would.

Graph unification is sometimes implemented as a
destructive operation, making it neccesary to copy the
argument graphs
unification.

before beginning the actual
Previous research on graph unification

showed that this copying is a computation sink, and has
sought to correct this.

In this paper I have claimed that the fundamental
problem is in designing graph unification as a
destructive operation.
and early copy. I

This forces it to both over copy
have presented a nondestructive

gra h unification algorithm that minimizes over copying
an a eliminates early copying. In retrospect, it can be
seen that earlier attempts to fix the efficiency problems
also addressed the problems of early co

R
ying and over

copying. The new algorithm presented ere is simpler
than structure-sharing, and replaces the restoration
process of reversible unification with a (small) constant
time operation.

There are clearly some tradeoffs to be considered in
implementing graph unification. I have tried to outline
four that I know of: over copying, early copying, DAG
access overhead, and restrictiveness to certain
contexts. Complicating this is the surprisin
possible in the simple structure of a %

complexity
AG under

unificaton; implementing any graph unification algorithm
and testing its correctness is a formidable task. One of
the problems with the algorithm presented here is that it

3Thanks to Mark Tarlton for suggesting this.

586 Natural banguage

has not been proven correct (nor has any other
unification al orithm, to my knowledge), althoug ii

raph

B
we

have informa ly tested it and have been using it on a
daily basis for about 5 months.

Future research in this area should strive toward
understanding how various design decisions in
unification-based parsers affect design decisions for
unification. For instance, some parsers may be able to
intelligently eliminate rule applications that would fail
without invoking unification; one such system is
Astro [Wittenbur
succeed most o 9

861. If it is known that unification will
the times it is applied, then one would

prefer to optimize the successful case of the unification
algorithm. This would mean that early copying might
not be a bad design decision.

Another consideration is the pur ose to which the
unification result will be put. Some El AGs have a short
lifes an, such as those on chart edges. Other DAGs
pro uced via unification CP mi ht have a relatively

ermanent existence, such as exical definition
F

B
inally, sometimes one would like to provide 3

raphs.
etailed

information about the causes of unification failure (for
debugging grammars, say) while at other times space
and time IS at a premium, and debugging information is
not required. The author’s experience suggests that the
“perfect raph unification algorithm” may not exist, and
is best t ought 3, of as a family of related algorithms
optimized for different purposes.

This paper has been greatly improved by the
thoughtful comments of Elaine Rich and Kent
Wittenburg. I am also indebted to Elaine, Kent and the
rest of the MCC Lingo group for many interesting
discussions on this topic, and to MCC for providing the
computational and intellectual environment in which this
work took place.

[Boyer and Moore 721 R. Boyer and J. Moore. The
Sharing of Structure in Theorem-Proving Programs. In
Machine Intelligence 7. John Wiley and Sons, New

[Karttunen 841 Lauri Karttunen. Features and
Values. In Proceedings of Colinga4, pages 28-33.
1984.

[Karttunen 861 Lauri Karttunen. D-PAT/?: A
Development Environment For Unification-Based
Grammars. Technical Report CSLI-86-61, Center for
the Study of Language and Information, August, 1986.

[Karttunen and Kay 851 L. Karttunen and M. Kay.

[Periera 851 Fernando C. N. Periera. A Structure-
Sharing Representation for Unification-Based Grammar
Formalisms. In Proceedings of the 23rdAnnual
Meeting of the Association for Computational
Linguistics, pages 4 37-l 44. 1985.

[Shieber 841 S. Shieber. The Design of a
Computer Language for Linguistic Information. In
Proceedings of Coling84, pages 362-366. 1984.

[Warren 831 David H. D. Warren. Applied Logic -
Its Use And Implementation As A Programming Tool.
Technical Report 290, SRI International, June, 4983.

[Wittenburg 861 Kent B. Wittenburg. Natural
Language Parsing With Combinatory Categorial
%rammar In A Graph-Unification-Based Formalism.
PhD thesis, University Of Texas-Austin, August, 1986.

Sharing Structure With Binary Trees. In Proceedings of
the 23rd Annual Meeting of the Association for
Computational Linguistics, pages 133-l 36a. 1985.

Wroblewski 587

