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Abstract

Graph unification is sometimes implemented as a destructive
operation, making it neccesary to copy the argument graphs
before beginning the actual unification. Previous research on
graph unification claimed that this copying is a computation
sink, and has sought to correct this.

In this paper | claim that the fundamental problem is in
designing graph unification as a destructive operation. This
forces it to both over copy and early copy. | present a
nondestructive graph unification algorithm that minimizes
over copying and eliminates early copying. This algorithm is
significantly simpler than recently published solutions to
copying problems, but maintains the essential efficiency gains
of older techniques.

I. Directed Acyclic Graphs

In this J)aper 1 will deal with unification of rooted,
connected, acyclic graphs, or "DAGs". The efficiency of
graph unification "has recently received attention
ecause of the popularity of graph-unification-based

formalisms in computational linguistics [Karttunen
86), [Shieber B;ﬁ), [Wittenburg 9 8&], [Periera
85|, [Karttunen and Kay 85]. In these parsers, the

lexical entries and grammar rules are represented as
DAGs, and graph unification is the mechanism whereby
rules are applied to sentence constituents.
Unfortunately, graph unification is an expensive
process; any attempt to build a practical parser based
on graph unification must address the issue of making it
efficient.  Past research has identified the copying
involved in graph unification as a computational sink.
This paper presents a graph unification algorithm that
does not need to copy its argument graphs because it is
nondestructive.

Figure 1: The Graph Matrix Notation

For the purposes of discussion, | will use the matrix
notation (whenever possiblef for graphs as used in
[Wittenburg 86], [Shieber 84], and which has become
somewhat of a de facto standard in the field. in this
notation, reentrant structures are indicated with a mark,
a number ?receding a subgraph, and a pointer, a
number enclosed in "<" and ">". When a pointer of the
form <n> is encountered, it should be interpreted as:
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"The followin%graph is the very same graph as the one
marked by the number n elsewhere in the graph."
Figure 1 shows a graph in the matrix notation with a
reentrant pointer, marked and pointed to by the number
1. Beside it is an equivalent picture of the same graph.

Abstractly, a DAG consists of a set of nodes, a set of
arcs, and a special node designated the root. In
practice, we implement DAGS with structures that are
analogical; there is a node structure and an arc
structure as shown in Figure 21,

Node Structure Are Structure
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| arec list | | value |
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Figure 2: The Implementation Of DAGs

Finally, in our implementation, nodes in a DAG can be
forwarded to other nodes. For instance, the DAG
raphically described in Figure 3 shows the root node
orwarded to another node; beside it is the result of
printing this ﬂra h in the matrix notation. Note that the
contents of the forwarded node are completely ignored.
For all purposes, the node being forwarded has been
discarded and replaced with node B. It is important that
all operations on graphs must honor a forwarding
pointer above all else; forwarding is the highesi priority
operation. The process of reso vin% these forwarding
Pointers (there may be chains of them) is known as
dereferencing” a node [Periera 85].
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Figure 3: Forwarding Links Override Node Definitions

10ur implementation of the destructive unification algorithm
presented in Section 3 and the structures shown in Figure 2 owes
much to the work of Shieber [Shieber 84], Karttunnen [Karttunen
84], and Wittenburg [Wittenburg 86}



il. Graph Unification

Conceptually, the algorithm for graph unification is
quite simple, and much like ordina\% term unification
used in theorem-proving programs [Warren 83], [Boyer
and Moore 72], extended to the more complex structure
of DAGs. Like term unification, graph unification both
matches the argument DAGs and builds a new DAG. If
the DAGs to be unified are somehow incompatible, then
unification produces nothing; if the DAGs are
compatible then unification returns a new DAG which is
compatible with, and more specific than, both of the
argument DAGS.

[a: [b: e] + [a: 1[b: ¢] ==> [a: 1[b: ¢

d: [e: £f]] d: <1> e: f]
g: [h: 311 d: <i>

g: [h: 311

Figure 4: The Successful Unification Of Two DAGs

For instance, Figure 4 shows two DAGs and the result
of unifying them. Figure 5 shows two pairs of
incompatible DAGs, i.e. two DAGs over which
unification would fail.

[e: d] +

[c: e] ==> Failure!

[a: 1[x:y] + [a: [c:d] ==> Failure!
a: <1>] e: [c:e]]

Figure 5: The Unsuccessful Unification of Two DAGs
. Destructive Graph Unification

The following version of the destructive unification
algorithm is taken, with modification, from [Periera 85].
It takes as input two nodes, initially the roots of the
DAGs to be unified. It recurses on the subgraphs of

each DAG until an "atomic" arc value is found?2.

Unifyl assumes the existence of two utility
functions. complementarcs (dl,d2) takes two
nodes as input and returns the arc labels that are
unique  to dl with respect to  d2.
intersectarcs (dl,d2) takes two nodes as input
and returns the arc labels that exist in both d1 and d2.
These operations are equivalent to the set complement
and set intersection, respectively, of the set of arc labels
for each node.

Unifyl modifies its argument DAGs in two ways.
First, all the nodes from one DAG are forwarded to the
other. Subsequent operations on either of these DAGs
will always dereference either node to the same
structure. Second, arcs may be added to the d2 nodes,

2In this paper, atomic cases are not considered, since they are
trival. An actual implementation of this would include a type check
for atomic DAGs and clause testing for atomic equality if so. This
has been left out for clarity.

PROCEDURE Unifyl (d1 d2)
Dereference dl and d2.
IF dl and d2 are identical THEN
success: return dl or d2.
ELSE

new = complementarcs(dl,d2).

shared = intersectarcs(dil,d2).

Forward dil to d2.

FOR each arc in shared DO
Find the corresponding arc in d2.
Recursively unifyl the arc-values.
IF unifyl failed THEN

Return failure
ELSE
Replace the d2 arc value
with the result.
ENDIF

FOR all arcs in new DO
Add this arc to d2.

Return d2 or dl arbitrarily.
ENDIF
ENDPROCEDURE

as in the arc labelled g in Figure 4. Finally, note that the
order in which shared arcs are unified is a
nondeterministic choice.

Since Unify1l ravages its argument DAGs, they must
be copied before it is invoked if the argument DAGs
need to be preserved. For instance, if a grammar rule
is represented as a DAG, then it surely should not be
permanently changed during the application of the rule
to a DAG representing a sentence constituent. Thus
me rulle DAG must be copied before the application of

e rule.

IV. lIssues in Graph Unification

Previous research [Karttunen and Kay 85], [Periera
85] has identified DA cop¥ing as significant overhead.
However, some amount of copying must be done to
create the result DAG. Exactly when is copying wrong,
then? The answer is: when the algorithm copies too
much or copies too soon. Destructive unification makes
both of these mistakes. They are named:

o Over Copying. Copies are made of both
DAGs, and then these copies are ravaged
by the unification algorithm to build a result
DAG. This would appear to require the raw
materials for two DAGSs in order to create
just one new DAG. A better algorithm
would only allocate enough memory for the
resulting DAG.

o Early Copying. The argument DAGs are
copied before unification is started. If the
unification fails, then some of the copying is
wasted effort. A better algorithm would
copy incrementally, so that if a failure
occurred, only the minimal copying would
be done before the failure was detected.

The important point here is that these are two distinct
features of a unification algorithm, and have no
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neccesary connection. Previous attempts to improve
unification have not acknowledged their independence,
and are perhaps more complicated than they need to be
because of that. On the other hand, the algorithm
presented in the next section deals completely with
early copying but only partially with over copying; they
are treated as independent problems.

V. Nondestructive Graph Unification
:

In this section, | present a nondestructive graph
unification algorithm that incrementally copies its
argument graphs. It avoids, whenever possible, over
copying, and completely eliminates early copying. The
price to be paid for this is a slightly more complicated
algorithm and graph representation.

Intuitively, unification could be nondestructive if it
were to build the result DAG as it proceeds, making all
changes in this new DAG, and leaving the argument
DAGs untouched. This means that we will have to
associate with each component of the argument DAGCs,
its copy. If, at each step during unification, we return
the co?y structure as the result of the unification, then
we will finally be left with a pointer to the root of the
newly constructed DAG, or a failure-indicator.

A. Incremental Copying Means More
Bookkeeping

For this algorithm, we will extend the representation of
nodes somewhat as shown in Figure 6. This is
essentially the same as shown in Figure 2 except that a
copy and status field have been added. We will use
the copy field to associate a node with it's copy. We
will use the status field to indicate whether or not a
given node is part of a copy or part of the original graph;
it will hold one of two possible values: "copy" or
"not-copy".

e ———————————— +
| forward |
o ———— +
| arc list |
e ——————————————— +
! copy |
o ————————————— +
| status |
e ————————————— +

Figure 6: Nondestructive Unification Node

B. Graph Unification With Incremental Copying

The procedure Unify2 takes as input two nodes,
initially the roots of the DAGs to be unified. It recurses
on the subgraphs of each DAG until an "atomic" arc
value is found. It differs from the algorithm Unify1 in
that it never alters d1 or d2; rather it puts these
modifications in the new node being created, named
copy.

Note that when a copy already exists for one graph or
the other, but not both, this algorithm will perform an
operation very much like unify1, but no forwarding will
be done since the changes can all be safely recorded in
the copy. This is what is meant by the line marked with
an asterisk.
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PROCEDURE Unify2 (dl d2)
Dereference dl, dz2.
IF neither dl nor d2 have copies THEN
copy = a new node.
copy.status = "copy".
dl.copy, d2.copy = copy.
newdl = complementarcs(dl,d2).
newd2 = complementarcs(d2,di).
shared = intersectarcs(dl,d2).
FOR all arcs in shared DO
Find the corresponding arc in d2.
Recursively unify2 the arc values.
IF unify2 failed THEN
Return failure.
ELSE
Add a new arc in copy.
ENDIF
FOR arc in union (newdl, newd2) DO
Copy the arc-value of each arc,
honoring existing copies within,
and place this wvalue in copy.
Return Copy.
ELSE if dl xor d2 has a copy THEN
Without loss of generality, assume
dl has the copy.
* unifyl (dl.copy,d2) preserving d2.
Return dl.copy.
ELSE if both dl and d2 have copies THEN
Unifyl (dl.copy, d2.copy).
ENDIF
ENDPROCEDURE

C. An Example Of Nondestructive Unification

In this section, we will partially walk through the
unification of the graphs shown in Figure 4 using the
procedure Unify2. In the following series of figures,
dashed lines indicate the contents of the copy field,
darkened circles represent "non-copy" nodes, and
hollow circles represent nodes which are copies.

Figure 7 shows the state of unification after the path
(a,b) has been followed during unification. Unify2

has recursed twice and returned to the top node; three
néw nodes have been created, one a copy of the root,
one a copy of the node on the path (a) and the last a
copy of the node on the path (a,b). The copy field of
the appropriate nodes in DAG1 and DAG2 have been
f_illed with the copy nodes, as indicated by the dashed
ines.

Figure 7: Nondestructive Unification: Snapshot 1



in Figure 8, Unify2 has foilowed the path (d) on the
argument DAGs. But notice that the nodes at the end
of path (a) and at the end of path (d) in DAG2 are the
same; a copy of this node was previously made when
traversing the path (a,b), and so this copy is reused
rather than aliocating a new node. Subsequentiy, an
arc labelled e is added to this reused copy. Finally,
Unify2 recursion unwinds back to the root node of
both DAGs.

Figure 8: Nondestructive Unification: Snapshot 2

In Figure 9, Unify2 has added the arc labeled gin
DAG2 to the resuit graph, making a copy of the
subgraph at the end of that arc and placing it in the
resuit graph. Notice that the subgraph [h: 3] of
DAG2 was copied even though there existed no
corresponding subgraph in DAG1. Later we will see
that this leads to possible over copying on the part of
Unify2 in some special cases.

The result graph is shown in completed form in Figure
9. Notice that DAG1 and DAG2 have been left
unchanged except for their copy fields. The new DAG
can be returned, with a total o? 6 new nodes created,
and 6 new arcs created. To unify these DAGSs
nondestructively with procedure Unifyi, 10 nodes and
9 arcs would have been created, i.e. a copy of both
argument DAGs.

Figure 9: Nondestructive Unification: Final Result

D. Advantages of Incremental Copying

Incrementaﬁ’y copying graphs during unification
means over copying is avoided and early copying is
eliminated. This incremental copying schame has the
potential for being more efficient” than destructive
unification (including the preceding copying) both in
space and speed. Even if the unification can be
guaranteed to succeed, Unify2 potentially uses less
space and time copying than Unify1, because it avoids
over-copying.

E. Disadvantages of Incremental Copying
Onify2 is not a perfect algorithm. It can, in some

cases, over copy. Such a case is illustrated in the

unification of the DAGs in Figure 10. If the top level

arcs are unified in the order » then + then = douhle

e QAIT UE e LiIT G sy UVUUIY

copying occurs during the unification of the z subgraph.

DAG1 DAG2 RESULT
[x: [a:Db] [x:1[a:b] [x:1[a:b
y:[e:d] y:2[c:d] ==> e:f
z:[p:l1[e:f] z: [p:<1> c:d]
q:<1>]] q:<2>]] y:<1>
z: [p:<1>
q:<1>]]

Figure 10: Two DAGs That Force Double Copying

To understand this, notice that when the X and ¥
subgraphs are unified, a new copy of the graphs
fa: b] and [c: d] was made and associated with
the original nodes in DAG1 and DAG2. When
unification takes place along the path (z,p) a new
arc/value of [e: £] is combined with the existin chy
of [a: bl to make the result graph look like
[a:b e:£]. Finally, the reentrant structure in DAG1
forces the values at the ends of the paths (z,p) and
{z,q) to be unified. But in this case, there is now a
copied graph already associated with each of these
paths!

The correct result can be obtained by invoking the
destructive unification routine Unifyl on both copies,
as is done in the final conditional clause of Unify2.
This provides the correct result DAG, but is unsatisfying
with respect to the goals of having a "perfect” unification
algorithm, because the algorithm has still over copied,
even though it produces the correct result. | have been
unable to discover a way to retain the incremental
copying scheme but still completely avoid this sort of
over copying, although somehow combining "reversible
unification” (discussed in the next section) with this
algorithm seems to be a promising approach.

VI. Comparing Other Approaches

Several other graph unification algorithms that avoid
early copying and over copKing have been proposed
and implemented. Each of them have emphasized the
importance of dealing with copying efficiently. In this
section | will compare the nondestructive unification
algorithm presented here with these previous
techniques.
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This comparison of aiternate approaches will proceed
along the following dimensions:

¢ Does it eliminate early copying?
» Does it eliminate over copying?

e Does it impose an overhead on DAG
operations?

elsit Iin?ted to a certain context?

A. Unification With Structure Sharing

Pereira [Periera 85] has proposed a structure-sharing
approach to graph unification, analogous to the
structure-sharing techniques used in theorem-proving
programs [Boyer and Moore 72], [Warren 83]. In this
scheme, a DAG is represented by a skeleton and an
environment. The skeleton is a simple DAG in the
same sense used above. However, it must be
interpreted along with an environment in which changes
to the graph, such as arc bindings or node forwardings,
may be added. The unification procedure in such a
system looks much like Unifyl, except that it records
changes to the argument DAG nodes in the
‘environment instead of in the nodes themselves. The
effect of this technique is to make unification
nondestructive and thus non-over and non-early
copying. Even in the cases where Unify2 would over
copy, this structure sharing algorithm would not.

Unfortunately, structure sharing has its own set of
costs. The mechanism of structure sharing itself places
a fixed-cost overhead on all node accesses; in Periera’s
implementation this overhead is Iogéd), where d is the
number of the nodes in the DAG. Any operation
manipulating a graph must suffer this log(d) overhead in
order to assemble the whole DAG from the skeleton
and the updates in the environment. Also, this
technique ties each DAG to the derivational
environment in which it was created; this appears to
have been done as a efficiency measure, in order to
sh?retthe structure of the environments to the greatest
extent.

.| found the environment/skeleton scheme hard to
implement and extend in a Lisp environment. In fact, it
was my discouraging experience when trying accelerate
unification via structure-sharing that led to the design of
the incremental copying scheme described here. In my
implementation, most of the speed-advantages of the
structure-sharing were cancelled by the speed cost of
the log(d) node access overhead. All  the
disadvantages of structure-sharing are avoided using
incremental copying. Each node in the graph can be
accessed in constant time, and the result of a unification
is not necessarily tied to the derivational context in
which the unification was done. Finally, it is significantly
easier to implement and extend than the structure-
sharing mechanism.

B. Reversible Unification

Karttunen [Karttunen 86] has implemented a
"reversible unification" scheme in which the changes to
the argument DAGs are made in a semi-permanent
way. After successful unification, a fresh graph is
copied from the two_altered argument DAGs, and the‘
argument graphs are then restored by undoing all the!
changes made during unification. If the unification fails,;
then the argument DAGs are restored and no result
graph is made. Reversible unification does not appear
to be restricted to any special context.
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The most important difference between reversible
unification and Unify2 concerns the restoration
process. Unify2 only changes the original graphs in
their copy fields. More radical unification changes are
made in the copies themselves. Thus, restoring the
argument DAGs is only a matter of invalidating the
copy fields of the argument DAGs. This can be done in
constant time by adding a mark field which indicates
the validity of the copy field iff it is equal to some global
counter; all the currently valid copy fields can be
simultaneously invalidated by incrementing the global
counter.3. This trick is not possible for reversible
unification, since it alters its argument DAGs more
radically; instead the algorithm must consider each
node separately when restoring.

Another difference between reversible unification and
Unify2 is that reversible unification does not
incrementally copy it's argument DAGs. This forces it to
add a constant-time "save" operation before all
modifications and to make a second pass over the
result DAGs to create the copy; in Unify2 this work is
traded for a copy-dereferencing operation each time a

node is examined.

A possible argument for reversible unification over
unify2 would be its simplicity, possibly making it
easier to implement, validate, and maintain. Reversible
unification also avoids the need for adding two fields
(copy, status) to each node through the use of the
restoration records. Further, reversible unification will
never over copy, even in cases where Unify2 would.

Vil. Conclusions

Graph unification is sometimes implemented as a
destructive operation, making it neccesary to copy the
argument graphs before beginning the actual
unification. ~ Previous research on graph unification
showed that this copying is a computation sink, and has
sought to correct this.

In this paper | have claimed that the fundamental
problem is in designing graph unification as a
destructive operation. This forces it to both over copy
and early copy. | have presented a nondestructive
graJ)h unification algorithm that minimizes over copying
and eliminates early copying. In retrospect, it can be
seen that earlier attempts to fix the efficiency problems
also addressed the problems of early cogying and over
copying. The new algorithm presented here is simpler
than structure-sharing, and replaces the restoration
process of reversible unification with a (small) constant
time operation.

. There are clearly some tradeoffs to be considered in
implementing graph unification. | have tried to outline
four that 1 know of: over copying, early copying, DAG
access overhead, and restrictiveness to certain
contexts. Complicating this is the surprisin%complexity
possible in the simple structure of a DAG under
unificaton; implementing any graph unification algorithm
and testing its correctness is a formidable task. One of
the problems with the algorithm presented here is that it

3Thanks to Mark Tarlton for suggesting this.



has not been proven correct (nor has any other graph
unification algorithm, to my knowledge), although we
have informally tested it and have been using it on a
daily basis for about 5 months.

Future research in this area should strive toward
understanding how various design decisions in
unification-based parsers affect design decisions for
unification. For instance, some parsers may be able to
intelligently eliminate rule applications that would fail
without invoking unification; one such system s
Astro [Wittenburg 86]. If it is known that unification will
succeed most of the times it is applied, then one would
prefer to optimize the successful case of the unification
algorithm. This would mean that early copying might
not be a bad design decision.

Another consideration is the purpose to which the
unification result will be put. Some DAGs have a short
lifespan, such as those on chart edges. Other DAGs
produced via unification might have a relatively

ermanent existence, such as lexical definition graphs.

inally, sometimes one would like to provide detailed
information about the causes of unification failure (for
debugging grammars, say) while at other times space
and time is at a premium, and debugging information is
not required. The author’'s experience suggests that the
"perfect graph unification algorithm" may not exist, and
is best thought of as a family of related algorithms
optimized for different purposes.
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