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Abstract 
We present a semi-quantitative extension to the quali- 
tative value and relationship representations in Quali- 
tative Process (QP) theory. Examination of a detailed 
example reveals a number of limitations in the current 
ability of QP theory to analyze physical situations. 
The source of those limitations is traced in part to the 
qualitative mathematics used in QP theory. An exten- 
sion to this mathematics is then presented and shown 
capable of eliminating many of these limitations, at 
the price of requiring additional system specific infor- 
mation about the system being modelled. 

I. Introduction 
Qualitative Process (QP) theory [Forbus, 19841 describes 
the form and structure of naive theories [Hayes, 19791 
about the dynamics of physical systems. A key component 
of QP theory is the qualitative mathematics used to repre- 
sent values of continuous parameters and relationships be- 
tween them. A research strategy for developing this math- 
ematics has been to search for a qualitative mathematics 
capable of yielding significant results from a minimum of 
information about the situation being modelled. In the 
work described here, we ask a slightly different question: 
what kinds of information can we add to the base theory, 
and what new questions can we answer with this additional 
information? 

A. Mathematics in QP theory 
The representation for a continuous parameter in QP the- 
ory is a quantity. A quantity has four parts: 

1. The magnitude of the amount of the quantity. 

2. The sign of the amount {-, 0, +}. 

3. The magnitude of the derivative. 

4. The sign of the derivative. 

The use of the sign as a significant qualitative abstrac- 
tion is adopted from DeKleer [deKleer, 19791 [deKleer and 
Brown, 19841. Magnitudes are represented in a quantity 
spuc.e. The quantity space for a number consists of all 
those amounts to which it is potentially related in the sit- 
uation being modelled. The special value ZERO is always 
included in every quantity space, and relates the quantity 
space representation with sign information. 
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Quantities are related to one another through I&&r- 
tions, which can be either ordering relations, functional 
relations, or influences. Functional relations are a quali- 
tat ive analog of normal mathematical functions whose do- 
main and range are real numbers. The following states 
that the level of water in a container is qualitatively pro- 
portional to the amount in the container: 

level(p) &+ amount-of(p) 

These are called Qualitative Proportionalities (Qprops) . 
A Process is the mechanism of change in QP theory. A pro- 
cess acts to change a situation by i~zfluencdng some param- 
eter(s) of objects in the situation. An Influence is similar 
in information content to a qualitative proportionality, but 
affects the derivative of the range variable, rather than its 
amount. For example, the primary effect of a fluid-flow 
process is on the derivatives of the source and destination 
fluid quantities. Qprops are often referred to as indirect in- 
fluences, since they provide pathways through which direct 
influences propagate. 

Forbus’ implementation of &P theory combines this 
basic domain information with an initial system descrip- 
tion to perform measurement interpretation and envision- 
ing. The basic infeyences required are: Elaboration, View 
and process .9tructPr be determination, Influence resolution, 
and Lit& oncrl&s We will primarily be concerned with 
influence resolution in this paper. For a discussion of the 
other inferences, see [Forbus, 19841. 

e Pe 

We now analyze a hypothetical model of a typical contin- 
uous flow industrial process, in order to demonstrat 
steps and identify the capabilities and limitations 
theory. Fig. 1 shows a simplified sketch of the process. 
Reactants in granular form enter through the port at the 
top left (a material flow process), and are heated to reac- 
tion temperature within the vessel (a heat-flow process). 
When the reactants reach reaction temperature, they un- 
dergo a state change (a reaction), in which they disappear 
and a fluid product and an off-gas are created. The off-gas 
exits through the port at the upper right (another material 
flow process). As the hot off-gas flows out of the reaction 
vessel, heat is transferred to the cool incoming reactants 
(counter-current heat flow). We will ignore the processes 
by which the product is extracted from the vessel and sim- 
ply allow it to accumulate at the bottom. 

The four basic processes crucial to understanding of 
the system described above, basic heat flow, the reaction, 
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Figure 1: Reaction Vessel 

material flow, and counter-current heat flow, are described 
in detail in [D’Ambrosio, 19861. Given a suitable initial 
state description, the first two QP inferences identify three 
possible states for the situation described, (1) that nothing 
is happening, (2) that the only thing occurring is that the 
reaction vessel is being heated, or (3) that all processes 
are active. The state of interest is the one in which all 
processes are active. Using the third basic QP deduction, 
we can determine various facts about this state, such as: 

e If the heat input is increasing, 
rate will be increasing also. 

the off-gas generation 

e If the incoming reactant temperature is decreasing, 
the off-gas temp will be decreasing. 

However, we cannot determine: 
1. Is the product 

constant? 
temperature increasing, decreasing, or 

2. If the heat input is increasing, is the off-gas exit tem- 
perature increasing or decreasing? 

3. If we increase the heat input a little, how much will 
the generation rate increase? 

4. If the available observations do not uniquely identify a 
single state, which of the possible states is more likely? 
These limitations are the result of ambiguity in the 

conclusions derived using QP theory. 

I. Ambiguity in theory 
We identify two types of ambiguity in QP theory, Internal 
and Ezternd ambiguity. Internal ambiguity occurs when 
use of QP theory produces multiple descriptions of a single 
physical situation. External ambiguity is the dual of this, 
namely when a single QP theory description corresponds to 
several possible physical situations which must be distin- 
guished. Internal ambiguity is of two types. First, given a 
situation description, there may be ambiguity about which 
of several possible states a system is in (e.g., given a leaky 
bucket with water pouring in, is the water level rising or 
falling?). Second, given a specific state, there may be am- 
biguity about what state will follow it (e.g. - given a closed 
container containing water, and a heat source heating the 
container, will it explode?). 

External ambiguity is the inability to determine, on a 
scale meaningful to an external observer, the duration of a 
situation, as well as the magnitude and intra-situation evo- 
lution of the parameters of the situation (e.g., how fast is 
the water rising? How long before the container explodes?) 

These ambiguities are the result of four fundamen- 
tal limitations in QP theory representat ions and inference 
mechanisms: 

1. 

2 

3 

4. 

Inability to resolve conflicting functional dependen- 
cies. This is caused by the weak representation for 
functional form of dependencies, which captures only 
the sign but no strength information. 

Inability to order predicted state changes. This is 
caused by lack of ordering information on change 
rates, as well as lack of quantitative information on 
the magnitude of change needed for state change. 

Inability to quantify, even approximately, parameters 
significant to external observers during times between 
major state transitions. This is caused by a weak 
model of intrcGstate situation evolution. Time, quan- 
tity values, and functional dependencies are all repre- 
sented qualitatively in QP theory. 

Inability to represent non-boolean predicate and state 
possibilities. 

Solving these problems requires extending QP repre- 
sentations to capture more information about the system 
being modelled. We have studied three classes of exten- 
sions: extensions to the quantity representations, the rela- 
tionship representations, and the certainty representations. 
Specifically, we have developed an extension to QP theory 
which utilizes: 

Belief functions certainty representations - these will 
permit capture of partial or uncertain observational 
data, and estimates of state likelihood. 

Linguistic descriptions of influence sensitivities - to 
reduce undecidability during influence resolution. 

Linguistic characterizations of parameter values and 
ordering relationships - to permit capture of partial 
or uncertain observational data, and enable estimates 
of the effects of adjustments to continuous control pa- 
rameters. 

These extensions reason at the appropriate level of de- 
tail for the kinds of control actions typically needed, draw 
the needed distinctions, are computationally tractable, and 
can reason with the imprecise or uncertain data typically 
available. In this paper we concentrate on the second 
of these extensions, linguistic influence sensitivities, and 
present a way of annotationing the relationship represen- 
tation in QP theory to reduce ambiguity. Discussion of 
the integration of Dempster-Shafer belief functions with 
QP theory and the underlying ATMS can be found in 
[D’Ambrosio, 19871. Discussion of parameter value exten- 
sions can be found in [D’Ambrosio, 1986). See [Simmons, 
19871 for an alternate extended quantity representation. 

IV. Linguistic ence 
Sensitivities 

The influence resolution rule used by Forbus states that 
if opposite influences impinge on a single parameter, then 
the net influence on the parameter is unknown. In or- 
der to reduce the number of situations in which conflicting 
functional dependencies cannot be resolved, we extend 
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Figure 2: Conflict Triangle 

theory functional descriptions with a linguistic influence 
sensitivity. Intuitively, this corresponds to distinguishing 
between first order, second order, etc., dependencies. With 
this extension we can now address the second question 
unanswerable earlier: if we increase the heat input, will 
the offgas temp increase or decrease? 

Forbus claims that if actual data about relative magni- 
tudes of the influences is available, it can be used to resolve 
conflicts. We might attempt to achieve this by extending 
direct and indirect influences with a strength parameter. 
This is inadequate, however, for two reasons. First, the 
overriding influence may not be local. Information may 
have to be propagated through several influences before 
reaching the parameter at which it is combined. Second, 
various sources of strength information have varying scopes 
of validity. In the following sections we first identify two 
basic influence subgraphs responsible for the ambiguity in 
our example, and argue that the ambiguity can be elimi- 
nated by annotating the subgraphs with influence sensitiv- 
ity and adding additional situation parameters. We then 
present extensions to the influence resolution algorithm for 
utilising the sensitivity annotations, and finally describe a 
control structure for managing acquisition and use of an- 
notation information. 

. dentifying internal causes of conflict 
in influence graphs 

We have identified two basic patterns of influences which 
account for the ambiguity previously encountered. These 
are the conflict triangle (Fig. 2) and the feedback loop 
(Fig. 3). The reason, for example, that the change in of- 
fgas temp in the offtake cannot be resolved is that there 
are two conflicting paths through which a single parameter 
(offgas temp in the reaction vessel) affects the.target pa- 
rameter. But the effect on temperature-lost is in this case 
smaller than the direct effect on the offtake temp, and can 
be ignored. We can indicate this by adding to the influence 
arc an annotation indicating temp-lost in counter-current 
heat flow is relatively insensitive to offgas temp in the fur- 
nace (Fig 2b). 

Another ambiguity in the QP theory analysis of the 
furnace is in the generation rate and associated variables. 
One of the causes of this ambiguity is the set of influences 
on Product temperature shown in Fig. 3. Since both the 

Q+- (strqg) 

Temp 

Figure 3: Feedback Loops 

generation rate and heat-flow rate are positive, the qualita- 
tive derivative of the product temperature is undecidable. 
This network is similar to one Kuipers [Kuipers, 19861 
identifies as introducing a new landmark value, not in the 
original quantity space for the product temperature. This 
new value represents an equilibrium value towards which 
the temperature will tend. Recognition of the existence of 
an equilibrium value permits resolution of the effects of the 
conflicting influences on product temperature, depending 
on the assumed ordering between the actual product tem- 
perature and the equilibrium value. analysis can be taken 
one step further. Kuipers adds the equilibrium value to 
the set of fixed points in the quantity space for the origi- 
nal variable. We, however, add it as a new parameter of the 
model, subject to influences similar to those of the origi- 
nal quantity. Thus, we can represent and reason about 
change in both the actual value and the equilibrium value 
in response to active processes. For example, if the actual 
temperature is only slightly sensitive to the heat-flow rate, 
but the equilibrium temperature is very sensitive, then we 
might conclude that the system will be slow in returning 
to equilibrium once perturbed. The extended influence di- 
agram for the feedback loop is shown in Fig 3b. 

Sensitivity mnotations 
An influence is a partial function from the controlling vari- 
able to the controlled variable. In QP theory, computing 
a value for a controlled variable takes place in two phases: 

1. All of the individual influences on the controlled vari- 
able must be identified and the effect of each of these 
must be computed. 

2. The various effects must be combined to determine 
the composite effect on the controlled variable. 

This procedure relies on local propagation to perform 
influence resolution. If local propagation is to carry the 
burden of our extended influence resolution, then the prop 
agated value must somehow be extended to represent the 
sensitivity information. The value being propagated in 
influence resolution is a quantity, and the representation 
used in sign abstraction. Given our model of extended 
influences as describing the normalised sensitivity of one 
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variable to changes in another, we can simply extend the 
quantity representation for the influence quantity and use 
a discrete scale of influence magnitudes. We then repre- 
sent the actual value as a fuzzy set over this value space, 
to model the imprecision in the available sensitivity in- 
formation. While this procedure is conceptually simple, 
the question arises of how an appropriate discretization 
for this normalised change value, henceforth referred to as 
influence, can be determined. 

If we start with an n-level influence discretization and 
an m-level sensitivity discretization, then after k influence 
propagation steps we seemingly might need an nmk dis- 
cretization to avoid information loss. This worst case com- 
plexity can be substantially reduced, however, by the fol- 
lowing four observations: 

1. We are only interested in the result at a resolution 
equivalent to the original n-level discretization. 

2. Additional detail is only relevant when two annotated 
influences are being combined, to aid in influence res- 
olution if they conflict. 

3. Rather than annotating all influences in a graph, we 
will only annotate those necessary to disambiguate pa- 
rameters of interest in a specific query. 

4. The basic fuzzy relational influence algorithm can be 
designed so that failure to maintain a fully detailed 
discretization only increases the ambiguity of the re- 
sult, rather than produce incorrect results. 

Given this, we model sensitivity annotations as p& 
rameters of a standard fuzzy relational influence algorithm 
[Zadeh, 19731. We choose a fuzzy representation to allow 
simple modelling of the imprecision of these annotations2. 
We next detail the algorithms used to compute the conse- 
quences of this fuzzy algorithm. 

1. Computing individual influences 
An influence of the form: 

(Influenced-variable Q+/- Influencing-variable, 
Sensitivity) 

is taken to specify a fuzzy relation between three amounts: 
C, the amount of the influencing variable; S, the amount 
of the influence sensitivity; and Iv, the amount of the in- 
fluence on the influenced variable. The value of Iv can be 
computed as follows: 

Iv = C(min(lcc,CcsrClq)lQl,c,s(C, S)) 
C.S 

&I,C,S(cj, Sk) = 8dgn( cj * Sk) * (abs(Cj * Sk)““) 

2. Combining influences 
Sensitivity annotations provide us with a means of 

estimating influence magnitudes, which are directly com- 
parable. Below we show an algorithm for computing the 
combined effect of two influences. A rough translation is 
that an element is definitely a member of the set of possi- 
ble values for the combined influence if that element is a 

2The underlying model is of a set of independent, linear influences. 
Fuzzy eet models of sensitivities permit us to allow for the inaccu- 
racies of this model. 

member of the value sets for both input values, or if it is 
a member of the value set for one input, and a weaker ele- 
ment of the same sign is a member of the value set for the 
other input. Also, an element of the discretization may be 
an element of the result set under two conditions. First, if 
it is a member of the value set of one input, and a element 
of the same magnitude but opposite sign is a member of 
the value set for the other input. Second, if an element of 
the same sign but greater magnitude is a member of one 
value set, and an element of the opposite sign and greater 
magnitude is a member of the other value set: 

PI”(i) = (PZ"l(i') A Clrvz(i)) 

V(Vj,ljl<lil(ClIul(i) APIv2(.i))) 

v(/.m(i) A /4clluz(--i) ~unknown) 

V(Vj,j>i Vk,k<-i (hrvl(j) A pI,z(k) A unknown)) 

Subsrcipts i, j, and k are assumed to be 0 for no in- 
fluence, increasing positive for positive influence elements, 
and increasing negative for increasing negative influence 
elements (e.g., -3, -2, -1, 0, 1, 2, 3 for a seven element dis- 
crete scale, with -3 the strongest negative inlluence). The 
above is only half of the formula actually used. The actual 
relation is symmetrical in the two influences Iv1 and Iv2. 

C. Annotation Mana 
In examining the sources of ambiguity in the reaction ves- 
sel example, we note that many of the annotations which 
could resolve the ambiguities are not universally valid. In 
fact, we identify four levels of validity for an annotation. 
These validity levels are determined primarily by opportu- 
nities in the implementation: 

1. 

2. 

3. 

4. 

the 

An annotation is universally valid when it can.be in- 
corporated directly into a view or process description, 
and correctly describes the functioning of a particular 
influence in all situations in which an instance of the 
view or process participates. These are rare. 

An annotation is scenario valid when it correctly de- 
scribes the operation of a particular influence in a 
particular view or process instance, for all qualitative 
states in which the instance is active. Product tem- 
perature annotations in the example are an instance 
of this annotation type. 

An annotation is state valid when it correctly de- 
scribes the operation of a particular influence in a 
view or process instance, only for a defined subset of 
the qualitative states of a system. 

Annotation is query valid when it correctly describes 
the operation of a particular influence in a view or pro- 
cess instance, only for a particular query. The conflict 
triangle annotation for determining off-gas tempera- 
ture in the offtake is an example of this type of anno- 
tation. 

The first type of annotation can simply be part of 
basic view or process detiition. The other three are 

added to the QP description of a scenario as needed during 
problem solving. A four step algorithm extends the basic 
QP theory influence resolution algorithm: 
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1. Execute the basic influence resolution. 
2. Check results for ambiguities in parameter values of 

interest. If all’ interesting parameter values are deter- 
mined uniquely, then problem solving is complete. 

3. Otherwise, search the influence graph for instances of 
ambiguity causing subgraphs. If one is found, and the 
parameter for which it might create an ambiguity is 
ambiguous, then annotate the subgraph with influence 
sensitivity information if available. 

[Zadeh, 19731 Lofti A. Zadeh. Outline of a New Approach 
to the Analysis of Complex Systems. In IEEE Tkans- 
actions of Systems, Man, and Cybernetics, 3(1):28-44, 
1973. 

4. Re-execute the basic influence 
the now annotated graph. 

resolution algorithm on 

This algorithm assumes the extended QP reasoner is 
embedded in a larger system which has or can obtain the 
necessary problem specific information to resolve ambigui- 
ties. It provides a problem directed way of selecting aspects 
of the larger system’s problem specific knowledge relevant 
to the query being processed. 

. Summary 
We have described an extension to QP theory which in- 
creases the precision of results available, and still retains 
the inherent advantages of qualitative modelling. This 
extension derives its power from influence sensitivity an- 
notations, and a fuzzy mathematical model of influences 
which permits propagation of the effects 
ities throughout the influence chart. 

of these sensitiv- 
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