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Abstract 
Interactions are inherent in design-type problem- 
solving tasks where only partially compiled opera- 
tors are available. Failures arising from such inter- 
actions can best be recovered by explaining them 
in the underlying domain models. In this paper we 
explain how Explanation-Based Learning provides a 
framework for recovering in this manner. This ap- 
proach also alleviates some of the problems associated 
with the least-commitment approach to design-type 
problem-solving. 

I. Introduction 
In the ‘expert-system’ literature, the need for declara- 
tively represented ‘causal’ models along with compiled 
‘association’-based rules has been argued for reasons such 
as explanation, teaching and flexibility. In this paper 
we illustrate how compiled goal-oriented rules need to 
be supported by uncompiled domain principles when the 
problem-solver runs into failure. In this process, we also 
justify an observation made by Clancey [Clancey, 19831, 
which we believe to be true for most expert problem- 
solving: 

Brinciples are good for summarizing arguments, 
and gooa to fall back on when l~ou’ve lost grasp 
on the problem, but they don’t drive the process 
of [medical) reasoning. 

Failures are particularly acute in synthesis tasks such 
as planning, design or control. These tasks usually require 
a problem-solving approach that involves construction of 
a solution in contrast to the classification approach which 
uses a pre-enumerated solution space. In these tasks, the 
problem-solver is given a set of goals and the operators 
that suggest how certain goals can be achieved or refined. 
These goals are hierarchically refined by applying suitable 
operators to generate new subgoals until the desired level 
of detail is reached. Most real design-type problems have 
some non-independent goals which lead to interactions. 

Interactions can be avoided by writing operators in 
such a way that no unwanted relationship between the sub- 
modules is established while problem-solving. Compiling 
out all the interactions amounts to mapping the problem 
into one of classification . . In 
sible to compile out all the 

general, however, it is infea- 
interact ions as they increase 

exponentially with the number of modules. 

Another way of avoiding interactions is to anticipate 
them by placing constraints on the choices where incom- 
patibility is likely to occur. By sufficiently constraining a 
choice point the interactions can be obviated. For instance, 

MOLGEN [Stefik, 1980] uses the least-commitment strat- 
egy by employing such constraint-posting. But in order 
to use this technique the problem-solver needs to know all 
conceivable interactions and the constraints to pre-empt 
them. 

In most domains, the operators used for planning or 
design are only partial models of real-world actions - in 
particular not all postconditions of an action are known 
statically. This is particularly so for complex actions whose 
consequences will depend upon the situation in which they 
are employed. For instance, such operators are required in 
order to build plans involving simultaneous actions. Here 
the traditional STRIPS model of operator representation 
breaks down because the factors that can affect the global 
consequences of an operator become very large, and record- 
ing all of them will make the operator unwieldy to use. 
Thus the local description of operators, required for flexi- 
bility and efficiency, necessitates only partial compilation 
of its consequences. Interactions arise during problem- 
solving because of using such partially compiled operators. 

Furthermore, in any real-life design task it is ex- 
tremely difficult to have all requirements identified in the 
initial specification. Design and prototype-evaluation is a 
cyclical process during which the specifications are mod- 
ified several times. Thus a realistic design-type problem- 
solver must have the capability to deal with failures as they 
arise during problem-solving. 

Backtracking - chronological or dependency-directed 
- is the last resort of recovery from problem-solving fail- 
ures. As we will demonstrate on some examples in the 
sections that follow, both of these approaches suffer from 
the problem of thrashing, i.e. running into identical fail- 
ures repeatedly. 

An alternative approach that addresses some of the 
above issues employs partially-compiled operators that will 
‘normally’ produce the desired goal without interactions, 
but in some unusual cases when they do fail the problem- 
solver attempts to recover gracefully by attempting to ex- 
plain it in the domain model. The technique of explain- 
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ing a failure is very similar in spirit to that employed 
in other Explanation-Based Learning (EBL) work [deJong 
and Mooney, 19861, [Mitchell et.al., 19861. First we sum- 
marise the basic ideas of EBL and then illustrate using 
an example how it provides a useful framework for failure- 
recovery. Later section discuss relationships, advantages 
and issues for further research. This architecture has been 
implemented in a PROLOG-based planning system called 
TRAP [Gupta 19853. The following diagram is the top- 
level architecture of the implemented system: 

Simulator 

+ 

proof-trace 

+ 

constraints 

Recovery-Module . 

Figure 1: TRAP Architecture 

I, Explanation-Based Learning 
Explanation-based genera.lisa.tion (EBG) is a technique for 
learning new concepts and rules from single examples. 
EBG and more generally EBL have been surveyed com- 
prehensively in [deJong and Mooney 19861, [Mitchell etal. 
19861. In brief, for EBG the following information is re- 
quired: 

Goal Concept: A definition of the concept to be learned. 

Training example: A specific example. 

omain Theory: Axioms for verifying if an example has 

a property. 

Operationality Criteria: Specifications on representa- 

tion of the concepts. 

EBG attempts to construct an explanation of why the 
training example satisfies the goal concept. This explana- 
tion takes the form of a proof tree composed of domain- 
theory inference rules which proves that the training ex- 
ample is a member of the concept. This explanation is 
then generalised to obtain a set of sufficient conditions for 
which this explanation structure holds in general. The de- 
sired general preconditions are obtained by regressing the 
goal concept through the explanation structure. 

13[1[, Example 
Consider a robot apprentice in a metallurgy workshop 
where its task is to plan the production of objects 

with some specified properties. The 
which encode metallurgical processes 

pla.maing 
such as 

operators, 
hot-rolling 

and heat-treatment, constitute compiled information for 
achieving typical goals. The apprentice also has some op- 
erators for transporting the objects around the workspace, 
fixing them in machines etc. An example operator for fix- 
ing an Object in a Machine is: 

op( f?xin(Machine,Object), % name 
[gripped( Object)], % Usewhen preconditions 
[on_side( Hand)], % Whenuse condition 

[ I, % subgoals - if any 
[traverses( Object ,Machine,Hand)])% postconditions 

Furthermore, the apprentice has domain knowledge 
about the basic properties of materials, machines and phys- 
ical process. This knowledge constitutes the domain theory 
and also includes certain domain requirements, e.g. tools 
shouldn’t be damaged, and accidents should be avoided: 

8 melting_point(gripper,50). 

0 melts(X) & tool(X) + “fail”. 

e traverses(Object,Machine,Side) & 

shielded( Machine,Side) -+ collision( Object,Machine). 

Consider a. scenario where the apprentice has been 
given the task of makin g a, hot-rolled ba.r out of a steel 
block. This requires heating up the block to 400 degreeC, 
and then fixing it on a rolling machine. Using the compiled 
operators the planner reduces the goal in following manner: 

make badblock) - 

Ag mc block) 
heat(block,400) 

ti 
pick up(block, -, -1 - 1 f ix-idrolling-mc, block) 

navigate-to(rolling-mc) 

Figure 2: Hierarchical Plan 

In this refinement the apprentice has the choice of 
holding the Object on its left- or right-hand-side, and also 
of different means for picking up an object that include 
using its grippers, polymer gloves or steel prongs. Because 
at this stage the apprentice lacks any knowledge to dis- 
criminate between the choices, it chooses to use its gripper 
on the right-hand-side for picking up the block leading to 
the following plan: 

1. heat(block, 400) 
2. pick-up( block,gripper,rhs) 
3. navigate-to( rollingmc) 
4. fixin(roller,block) 
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Before this plan is approved for ‘execution’ in the real 

world, it needs to be tested by simulation. In this process 
it is noticed that while picking up the heated block, the 
gripper will melt because its surface has a melting-point 
lower than the temperature of the block being picked up. 
This forces the plan to be rejected because it leads to a 
violation of the domain requirement that the tools should 
not damaged. Under dependency-directed backtracking, 

the problem-solver can revisit the choice of how to pick up 

the block and instead of picking it up directly with its grip- 
per, it can use some tool. But this time it can try to pick 

up the hot block using polymer gloves, which will again 
give rise to the same failure of a melting tool. Thus back- 
tracking does not prevent the problem-solver from making 
a choice that would lead to an identical failure, and hence 
thrash over a particular failure. Even in an assumption- 
based TMS [deI<l eer, 19861 the problem remains because 
it only records the instantiated nogood set. 

IV. Recovery by EBG 
In order to avoid this thrashing we need to note the reason 
behind the particular instance of failure so that the same 
kind of mistake is not repeated. In the above example the 
recovery mechanism should infer that there is a danger of 
damaging a tool if its melting-point is lower than the tem- 
perature of the object it is picking-up. The replacement 
technique that operationalises this behavior involves infer- 
ring sufficient conditions for the failure using EBG. These 

sufficient conditions are then rewritten into a constraint 
using assumptions about the tenacity of various types of 
choices. Negation of this condition will give the necessary 
conditions to avoid that failure. 

In terms of EBG each instance of a failure constitutes 
a training example. The goal concept to be learnt is “fail”. 
A simulation of the plan results in a proof under the do- 
main theory. For instance, the proof tree of the failure in 
the example above is: 

pick-up(block,gripper,rhs) 

melting-point(grippef ,501 

+fy~I:I”” 

tool(gripper1 ieltdgfipped 

\/ 
“fail” 

Figure 3: Proof Tree 

The derivation of the above failure included the fol- 
lowing axioms: 

1. pick-up(Object, Tool, Side) =+ touches(Object, Tool). 

2. touches(Object, Tool) & meltingpoint(Too1, Mp) 
& temperature(Object, Temp) & Temp < Mp + 
melts{ Tool). 

3. tool(Too1) & melts(Too1) + “fail”. 

On regressing the goal condition, we can obtain the 
initial premises which have to be satisfied for the proof 

to go through. In this process, we are identifying those 
properties of the objects that contributed to derivation of 
the failures; and it is this set of properties that must be 
avoided to prevent another similar failure. The above proof 
can be summarized as an implication of the form: 

if pick-up(Object, Tool, Side) SL melting-point(Tool, Mp) 

& temperature( Object, Temp) & Temp > Mp 8~ 
tool( Tool) 

then “fail”. 

In order that this failure can be avoided in future the 
planner needs to be able to test for its satisfaction when- 
ever a choice is to be made. To make this test more ef- 
ficient, the sufficient conditions for the failure need to be 
further transformed to get a constraint that can act as 
a guard at selected choice points. The constraint must 
obviously be evaluable at the time the choice is being con- 
sidered. Additional principles used in this transformation 
(essentially blame-assignment) record the tenacity of dif- 
ferent conditions. An example of such a principle would be 
the fact that aborting a goal (negation of goal condition) 
is more difficult than changing the operator to achieve it. 
The order in which we would be willing to give up a choice 
is: 

1. Variable instantiation (e.g. use gripper ) 

2. Operator to achieve a goal (e.g. pick-up the Object) 

3. Problem-solving goal (e.g. move from A to B ) 

4. Domain-requirements 

aged 1 

(e.g. tool should not be dam- 

This ordering is largely pragmatic. It is reasonable 
to expect that a problem-solver should not be allowed to 
change domain laws simply because some choices conflict 
with them. However, it is conceivable that in certain situ- 
ations one might be more keen on giving up the goal rather 
than resatisfying it (e.g. in time-critical planning), or that 
certain domain requirements can be waived to meet a criti- 
cal goal. In our implementation these choices, which in the 
framework of EBG form the operationality criteria, have 
been hardwired so that goal regression stops at the op- 
erators. But in general a flexible control strategy can be 
used to dynamically compute this operationality criteria 
[deJong & Mooney, 19861. 

In the above example, after applying the simplifica- 
tion suggested above, we get the following constraint that 
records the necessary conditions for avoiding the failure: 

action: pick-up(Object, Tool, Side) 
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constraint: if melting-point(Too1, Mp) &.L tempera- 
ture(Object, Temp) then not(Mp < Temp). 

This constraint is added as another field in the op- 
erator definition and used as a guard over the choices to 
prevent all the instantiations of this derivation of the fail- 
ure. 

v. Compilation 
In the above example the derived constraint did not depend 
upon any condition other than those that were present in 
the state in which the failure occurred. In general a fail- 
ure may depend upon choices that have been ma.de by 
past actions. Continuing in the above pla.n, the action 
pick up(block, steel prongs, rhs) is to be followed by the 
action fix in(rolling me, block). If the apprentice knows 
that shielded(rolling-mc,rhs) then the plan would fail be- 
cause of collision(rolling-mc, block) which is recognised as 
a violation of a domain requirement. 

1. 

2. 

3. 

4. 

5. 

the 

pick-up(Object,Tool,Side) + onhand(Object,Side). 

fixin(Machine,Object) & onhand(Object,Side) + 
traverses(Object,Machine,Side). 

shielded( rollingmc,rhs). 

traverses(Object,Machine,Side) & 
shielded( MachineSide) -+ collision(Machine,Object). 

collision(Machine,Object) & machine(Machine) --) 
“fail” . 

In this case the derived constraint would be placed on 
action pick-up(), b ecause that is where the only rele- 

vant variable instantiation choice was made, but it depends 
upon the action fix-&() that comes later in the plan. The 
scenario is illustrated in figure 4. 

In general such a constraint will not be evaluable at 
the action pickup because there is no a priori knowledge 
that it would be followed by the action fix-in in a par- 
ticular problem. Further, the action pick-up need not be 
immediately followed by the action fix-in for this failure 
to occur. So long as the culprit condition, in this case 
on-side(block,rhs), is not disturbed by intermediate actions 
the same failure can be derived (essentially a consequence 
of the frame assumption). 

In our current implementation we have t=aken the re- 
stricted generalisation approach [Mitchell et.al., 19863. We 
compile, in the form of an abstract operator, the subtree 
of the goal-refinement tree (generated while planning) that 

would include all the actions used in the proof of the fail- 
ure. In the above example, from the goal-refinement tree 
shown, it is clear that the subtree subtended at roll0 COV- 

ers all the actions participating in the above fa.ilure condi- 

tion. A new operator roll’(‘) is created with its subgoals as 
the actions on the frontier of the subtree. As this new op- 
erator ensures that the sufficient condition for the failure 
would hold, we attach the derived constraint to this new 
operator. As has been recognised in [de Jong & Mooney, 
19861, this approach leads to under-generalisation because 
now the constraint would be applicable only if a specific 
sequence of actions are executed. In general, not only is 
it difficult to describe the above predicate, that represents 
if a condition is carried from one action to another action 
unchanged by intermediate actions, it is also impossible to 
evaluate such a condition while planning. 

In the process of generating these constraints we are 
generalising from a failure instance. Compilation of these 
constraints into operators results in specialisat ion of the 
operators. Increasing compilation leads to increased effi- 
ciency, but in our implementa.tion the general versions of 
the operators are retained for the purposes of flexibility. 

0 

For explanation-based failure recovery to be useful the gen- 
erated sufficient conditions for failure need to be more gen- 
era1 than the actual sequence which led to the failure: oth- 
erwise the technique degenerates into dependency-directed 
backtracking. Non-trivial constraints can be inferred only 
if the domain model has been represented intensionally. 
For instance, if the problem-solver stored only the fact that 
touching the hot block with the gripper damages it, with- 
out recording underlying reasons, it can only infer that 
the gripper should not be used for picking hot blocks. 
Backtracking makes the assumption that alternatives at 
a choice-point are ‘independent’, i.e. they have no rela- 
tion with one another, which need not be the case. We 
have noted that by using a domain model - sufficiently 
deep that these relationships can be inferred, a more. gen- 
era1 condition than that encoded in the nogood sets can 
be rejected after failure. 

One of the outstanding problems with EBG, as 
pointed out in [Mitchell et.al., 19861, is generating an ex- 
planation in an incomplete or undecidable domain model. 
In the discussion above the simulation needs to be exhaus- 

tive enough to detect every failure derivable under the do- 
main theory. It is clear that complete simulation of a sce- 

\1 
{choice here) 

\1 
(failure here} 

Figure 4: Complex Failure 
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. conclusions 
nario is computationally prohibitive. We need some mech- 
anisms for guiding the search for the failures. In practice 
there are two approaches: 

a. simulation can be localised to look for certain 
problems that are more likely to occur. 

kinds of 

b. in situations where it is safe, the plan can be executed 

in the real-world and its results explained if they turn 
out to be different to expectation. 

In the context of EBL, [deJong & Mooney, 19861 have 
noted the first alternative as learning under external guid- 
ance, and the second as learning by observation. In terms 
of plan-time failure-recovery the techniques of partial sim- 
ulation and execution monitoring are being actively pur- 
sued. But how a proof is arrived at is independent of the 
techniques used in the recovery module. 

The generalisation procedure currently used in TRAP 
is similar that in [deJong & Mooney, 19861. The simulator 
generates the SPECIFIC instance of the proof-tree, and 
records the axioms that were used in the process. Using 
this proof-tree and the recorded dependencies, the recov- 
ery mechanism generates the GENERAL version of the 
explanation structure. 

VIP, Relationships 
In MOLGEN [Stefik, 19801, where the least-commitment 
strategy is used for object-selection, backtracking has been 
replaced by the forward-reasoning involved in constraint- 
propagation. It is well known that this forward reasoning 
can be equally computationally expensive if there are a 
sufficient number of applicable but irrelevant constraints 
in a situation. The problem is identification of relevant 
constraints. Risk-and-recover contrasts with the very cau- 
tious approach of least-commitment which saves the cost 
of failure-recovery but trades it off for the cost of making 
sure that a step is right. We have suggested how the con- 
straints can be generated dynamically to cover failures as 
they are encountered. In fact, if in the absence of some 
constraints the plan fails due to interactions, the resulting 
failure can be used to infer the constraints which would 
avoid it in future. In this manner, the problem-solver be- 
comes more careful after encountering a failure, and avoids 
being an ‘pessimist’ that tests for everything that can go 
wrong before taking a step. 

Opportunistic planning, suggested as a model for hu- 
man planning [Hayes-Roth, 19831, emphasises the need of 
data-directed reasoning along with goal-directed reason- 
ing. The architecture presented in this paper is a restricted 
interpretation of the opportunistic model where detailed 
refinements can suggest modifications to previously taken 
abstract decisions, but only when the problem-solver runs 
into failures. By thus restricting the ‘data-directed’ guid- 
ance to be invoked only when the goal-directed approach 
does not quite work, we can get a computationally realistic 
control strategy. The idea of using sufficient conditions for 
a failure has been proposed as the avoidance method in 
[Hayes-Roth, 19831. 

We have presented a framework based on explanation- 
based learning that illustrates the role of a domain-model 
in supporting the compiled goal-oriented operators in the 
design-type problem-solving tasks. This support is re- 
quired in an evolving system, because at any point in 
time, although the domain model can be expected to be 
complete, compilation of the goal-oriented operators would 
be necessarily incomplete. This framework alleviates the 
three difficulties mentioned in the introduction: compiling 
out all the interactions, identifying applicable constraints 
in order to use least-commitment and the thrashing inher- 
ent in backtracking. 

We are currently investigating further into reason- 
ing about temporally ordered actions in generalised failure 
constraints and integrating this technique with other re- 
covery techniques such as goal-reordering [Tate, 19771 for 
dealing with failures due to interacting sub-goals. 
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