
Explanation-Based Faillure

Ajay Gupta
Hewlett-Packard Laboratories

Filton Road, Bristol BS12 6&Z, UK.
email: ag@hplb.csnet

Abstract
Interactions are inherent in design-type problem-
solving tasks where only partially compiled opera-
tors are available. Failures arising from such inter-
actions can best be recovered by explaining them
in the underlying domain models. In this paper we
explain how Explanation-Based Learning provides a
framework for recovering in this manner. This ap-
proach also alleviates some of the problems associated
with the least-commitment approach to design-type
problem-solving.

I. Introduction
In the ‘expert-system’ literature, the need for declara-
tively represented ‘causal’ models along with compiled
‘association’-based rules has been argued for reasons such
as explanation, teaching and flexibility. In this paper
we illustrate how compiled goal-oriented rules need to
be supported by uncompiled domain principles when the
problem-solver runs into failure. In this process, we also
justify an observation made by Clancey [Clancey, 19831,
which we believe to be true for most expert problem-
solving:

Brinciples are good for summarizing arguments,
and gooa to fall back on when l~ou’ve lost grasp
on the problem, but they don’t drive the process
of [medical) reasoning.

Failures are particularly acute in synthesis tasks such
as planning, design or control. These tasks usually require
a problem-solving approach that involves construction of
a solution in contrast to the classification approach which
uses a pre-enumerated solution space. In these tasks, the
problem-solver is given a set of goals and the operators
that suggest how certain goals can be achieved or refined.
These goals are hierarchically refined by applying suitable
operators to generate new subgoals until the desired level
of detail is reached. Most real design-type problems have
some non-independent goals which lead to interactions.

Interactions can be avoided by writing operators in
such a way that no unwanted relationship between the sub-
modules is established while problem-solving. Compiling
out all the interactions amounts to mapping the problem
into one of classification . . In
sible to compile out all the

general, however, it is infea-
interact ions as they increase

exponentially with the number of modules.

Another way of avoiding interactions is to anticipate
them by placing constraints on the choices where incom-
patibility is likely to occur. By sufficiently constraining a
choice point the interactions can be obviated. For instance,

MOLGEN [Stefik, 1980] uses the least-commitment strat-
egy by employing such constraint-posting. But in order
to use this technique the problem-solver needs to know all
conceivable interactions and the constraints to pre-empt
them.

In most domains, the operators used for planning or
design are only partial models of real-world actions - in
particular not all postconditions of an action are known
statically. This is particularly so for complex actions whose
consequences will depend upon the situation in which they
are employed. For instance, such operators are required in
order to build plans involving simultaneous actions. Here
the traditional STRIPS model of operator representation
breaks down because the factors that can affect the global
consequences of an operator become very large, and record-
ing all of them will make the operator unwieldy to use.
Thus the local description of operators, required for flexi-
bility and efficiency, necessitates only partial compilation
of its consequences. Interactions arise during problem-
solving because of using such partially compiled operators.

Furthermore, in any real-life design task it is ex-
tremely difficult to have all requirements identified in the
initial specification. Design and prototype-evaluation is a
cyclical process during which the specifications are mod-
ified several times. Thus a realistic design-type problem-
solver must have the capability to deal with failures as they
arise during problem-solving.

Backtracking - chronological or dependency-directed
- is the last resort of recovery from problem-solving fail-
ures. As we will demonstrate on some examples in the
sections that follow, both of these approaches suffer from
the problem of thrashing, i.e. running into identical fail-
ures repeatedly.

An alternative approach that addresses some of the
above issues employs partially-compiled operators that will
‘normally’ produce the desired goal without interactions,
but in some unusual cases when they do fail the problem-
solver attempts to recover gracefully by attempting to ex-
plain it in the domain model. The technique of explain-

606 Engineering Problem Solving

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

ing a failure is very similar in spirit to that employed
in other Explanation-Based Learning (EBL) work [deJong
and Mooney, 19861, [Mitchell et.al., 19861. First we sum-
marise the basic ideas of EBL and then illustrate using
an example how it provides a useful framework for failure-
recovery. Later section discuss relationships, advantages
and issues for further research. This architecture has been
implemented in a PROLOG-based planning system called
TRAP [Gupta 19853. The following diagram is the top-
level architecture of the implemented system:

Simulator

+

proof-trace

+

constraints

Recovery-Module .

Figure 1: TRAP Architecture

I, Explanation-Based Learning
Explanation-based genera.lisa.tion (EBG) is a technique for
learning new concepts and rules from single examples.
EBG and more generally EBL have been surveyed com-
prehensively in [deJong and Mooney 19861, [Mitchell etal.
19861. In brief, for EBG the following information is re-
quired:

Goal Concept: A definition of the concept to be learned.

Training example: A specific example.

omain Theory: Axioms for verifying if an example has

a property.

Operationality Criteria: Specifications on representa-

tion of the concepts.

EBG attempts to construct an explanation of why the
training example satisfies the goal concept. This explana-
tion takes the form of a proof tree composed of domain-
theory inference rules which proves that the training ex-
ample is a member of the concept. This explanation is
then generalised to obtain a set of sufficient conditions for
which this explanation structure holds in general. The de-
sired general preconditions are obtained by regressing the
goal concept through the explanation structure.

13[1[, Example
Consider a robot apprentice in a metallurgy workshop
where its task is to plan the production of objects

with some specified properties. The
which encode metallurgical processes

pla.maing
such as

operators,
hot-rolling

and heat-treatment, constitute compiled information for
achieving typical goals. The apprentice also has some op-
erators for transporting the objects around the workspace,
fixing them in machines etc. An example operator for fix-
ing an Object in a Machine is:

op(f?xin(Machine,Object), % name
[gripped(Object)], % Usewhen preconditions
[on_side(Hand)], % Whenuse condition

[I, % subgoals - if any
[traverses(Object ,Machine,Hand)])% postconditions

Furthermore, the apprentice has domain knowledge
about the basic properties of materials, machines and phys-
ical process. This knowledge constitutes the domain theory
and also includes certain domain requirements, e.g. tools
shouldn’t be damaged, and accidents should be avoided:

8 melting_point(gripper,50).

0 melts(X) & tool(X) + “fail”.

e traverses(Object,Machine,Side) &

shielded(Machine,Side) -+ collision(Object,Machine).

Consider a. scenario where the apprentice has been
given the task of makin g a, hot-rolled ba.r out of a steel
block. This requires heating up the block to 400 degreeC,
and then fixing it on a rolling machine. Using the compiled
operators the planner reduces the goal in following manner:

make badblock) -

Ag mc block)
heat(block,400)

ti
pick up(block, -, -1 - 1 f ix-idrolling-mc, block)

navigate-to(rolling-mc)

Figure 2: Hierarchical Plan

In this refinement the apprentice has the choice of
holding the Object on its left- or right-hand-side, and also
of different means for picking up an object that include
using its grippers, polymer gloves or steel prongs. Because
at this stage the apprentice lacks any knowledge to dis-
criminate between the choices, it chooses to use its gripper
on the right-hand-side for picking up the block leading to
the following plan:

1. heat(block, 400)
2. pick-up(block,gripper,rhs)
3. navigate-to(rollingmc)
4. fixin(roller,block)

Gupta 607

Before this plan is approved for ‘execution’ in the real

world, it needs to be tested by simulation. In this process
it is noticed that while picking up the heated block, the
gripper will melt because its surface has a melting-point
lower than the temperature of the block being picked up.
This forces the plan to be rejected because it leads to a
violation of the domain requirement that the tools should
not damaged. Under dependency-directed backtracking,

the problem-solver can revisit the choice of how to pick up

the block and instead of picking it up directly with its grip-
per, it can use some tool. But this time it can try to pick

up the hot block using polymer gloves, which will again
give rise to the same failure of a melting tool. Thus back-
tracking does not prevent the problem-solver from making
a choice that would lead to an identical failure, and hence
thrash over a particular failure. Even in an assumption-
based TMS [deI<l eer, 19861 the problem remains because
it only records the instantiated nogood set.

IV. Recovery by EBG
In order to avoid this thrashing we need to note the reason
behind the particular instance of failure so that the same
kind of mistake is not repeated. In the above example the
recovery mechanism should infer that there is a danger of
damaging a tool if its melting-point is lower than the tem-
perature of the object it is picking-up. The replacement
technique that operationalises this behavior involves infer-
ring sufficient conditions for the failure using EBG. These

sufficient conditions are then rewritten into a constraint
using assumptions about the tenacity of various types of
choices. Negation of this condition will give the necessary
conditions to avoid that failure.

In terms of EBG each instance of a failure constitutes
a training example. The goal concept to be learnt is “fail”.
A simulation of the plan results in a proof under the do-
main theory. For instance, the proof tree of the failure in
the example above is:

pick-up(block,gripper,rhs)

melting-point(grippef ,501

+fy~I:I””

tool(gripper1 ieltdgfipped

\/
“fail”

Figure 3: Proof Tree

The derivation of the above failure included the fol-
lowing axioms:

1. pick-up(Object, Tool, Side) =+ touches(Object, Tool).

2. touches(Object, Tool) & meltingpoint(Too1, Mp)
& temperature(Object, Temp) & Temp < Mp +
melts{ Tool).

3. tool(Too1) & melts(Too1) + “fail”.

On regressing the goal condition, we can obtain the
initial premises which have to be satisfied for the proof

to go through. In this process, we are identifying those
properties of the objects that contributed to derivation of
the failures; and it is this set of properties that must be
avoided to prevent another similar failure. The above proof
can be summarized as an implication of the form:

if pick-up(Object, Tool, Side) SL melting-point(Tool, Mp)

& temperature(Object, Temp) & Temp > Mp 8~
tool(Tool)

then “fail”.

In order that this failure can be avoided in future the
planner needs to be able to test for its satisfaction when-
ever a choice is to be made. To make this test more ef-
ficient, the sufficient conditions for the failure need to be
further transformed to get a constraint that can act as
a guard at selected choice points. The constraint must
obviously be evaluable at the time the choice is being con-
sidered. Additional principles used in this transformation
(essentially blame-assignment) record the tenacity of dif-
ferent conditions. An example of such a principle would be
the fact that aborting a goal (negation of goal condition)
is more difficult than changing the operator to achieve it.
The order in which we would be willing to give up a choice
is:

1. Variable instantiation (e.g. use gripper)

2. Operator to achieve a goal (e.g. pick-up the Object)

3. Problem-solving goal (e.g. move from A to B)

4. Domain-requirements

aged 1

(e.g. tool should not be dam-

This ordering is largely pragmatic. It is reasonable
to expect that a problem-solver should not be allowed to
change domain laws simply because some choices conflict
with them. However, it is conceivable that in certain situ-
ations one might be more keen on giving up the goal rather
than resatisfying it (e.g. in time-critical planning), or that
certain domain requirements can be waived to meet a criti-
cal goal. In our implementation these choices, which in the
framework of EBG form the operationality criteria, have
been hardwired so that goal regression stops at the op-
erators. But in general a flexible control strategy can be
used to dynamically compute this operationality criteria
[deJong & Mooney, 19861.

In the above example, after applying the simplifica-
tion suggested above, we get the following constraint that
records the necessary conditions for avoiding the failure:

action: pick-up(Object, Tool, Side)

608 Engineering Problem Solving

constraint: if melting-point(Too1, Mp) &.L tempera-
ture(Object, Temp) then not(Mp < Temp).

This constraint is added as another field in the op-
erator definition and used as a guard over the choices to
prevent all the instantiations of this derivation of the fail-
ure.

v. Compilation
In the above example the derived constraint did not depend
upon any condition other than those that were present in
the state in which the failure occurred. In general a fail-
ure may depend upon choices that have been ma.de by
past actions. Continuing in the above pla.n, the action
pick up(block, steel prongs, rhs) is to be followed by the
action fix in(rolling me, block). If the apprentice knows
that shielded(rolling-mc,rhs) then the plan would fail be-
cause of collision(rolling-mc, block) which is recognised as
a violation of a domain requirement.

1.

2.

3.

4.

5.

the

pick-up(Object,Tool,Side) + onhand(Object,Side).

fixin(Machine,Object) & onhand(Object,Side) +
traverses(Object,Machine,Side).

shielded(rollingmc,rhs).

traverses(Object,Machine,Side) &
shielded(MachineSide) -+ collision(Machine,Object).

collision(Machine,Object) & machine(Machine) --)
“fail” .

In this case the derived constraint would be placed on
action pick-up(), b ecause that is where the only rele-

vant variable instantiation choice was made, but it depends
upon the action fix-&() that comes later in the plan. The
scenario is illustrated in figure 4.

In general such a constraint will not be evaluable at
the action pickup because there is no a priori knowledge
that it would be followed by the action fix-in in a par-
ticular problem. Further, the action pick-up need not be
immediately followed by the action fix-in for this failure
to occur. So long as the culprit condition, in this case
on-side(block,rhs), is not disturbed by intermediate actions
the same failure can be derived (essentially a consequence
of the frame assumption).

In our current implementation we have t=aken the re-
stricted generalisation approach [Mitchell et.al., 19863. We
compile, in the form of an abstract operator, the subtree
of the goal-refinement tree (generated while planning) that

would include all the actions used in the proof of the fail-
ure. In the above example, from the goal-refinement tree
shown, it is clear that the subtree subtended at roll0 COV-

ers all the actions participating in the above fa.ilure condi-

tion. A new operator roll’(‘) is created with its subgoals as
the actions on the frontier of the subtree. As this new op-
erator ensures that the sufficient condition for the failure
would hold, we attach the derived constraint to this new
operator. As has been recognised in [de Jong & Mooney,
19861, this approach leads to under-generalisation because
now the constraint would be applicable only if a specific
sequence of actions are executed. In general, not only is
it difficult to describe the above predicate, that represents
if a condition is carried from one action to another action
unchanged by intermediate actions, it is also impossible to
evaluate such a condition while planning.

In the process of generating these constraints we are
generalising from a failure instance. Compilation of these
constraints into operators results in specialisat ion of the
operators. Increasing compilation leads to increased effi-
ciency, but in our implementa.tion the general versions of
the operators are retained for the purposes of flexibility.

0

For explanation-based failure recovery to be useful the gen-
erated sufficient conditions for failure need to be more gen-
era1 than the actual sequence which led to the failure: oth-
erwise the technique degenerates into dependency-directed
backtracking. Non-trivial constraints can be inferred only
if the domain model has been represented intensionally.
For instance, if the problem-solver stored only the fact that
touching the hot block with the gripper damages it, with-
out recording underlying reasons, it can only infer that
the gripper should not be used for picking hot blocks.
Backtracking makes the assumption that alternatives at
a choice-point are ‘independent’, i.e. they have no rela-
tion with one another, which need not be the case. We
have noted that by using a domain model - sufficiently
deep that these relationships can be inferred, a more. gen-
era1 condition than that encoded in the nogood sets can
be rejected after failure.

One of the outstanding problems with EBG, as
pointed out in [Mitchell et.al., 19861, is generating an ex-
planation in an incomplete or undecidable domain model.
In the discussion above the simulation needs to be exhaus-

tive enough to detect every failure derivable under the do-
main theory. It is clear that complete simulation of a sce-

\1
{choice here)

\1
(failure here}

Figure 4: Complex Failure

Gupta 609

. conclusions
nario is computationally prohibitive. We need some mech-
anisms for guiding the search for the failures. In practice
there are two approaches:

a. simulation can be localised to look for certain
problems that are more likely to occur.

kinds of

b. in situations where it is safe, the plan can be executed

in the real-world and its results explained if they turn
out to be different to expectation.

In the context of EBL, [deJong & Mooney, 19861 have
noted the first alternative as learning under external guid-
ance, and the second as learning by observation. In terms
of plan-time failure-recovery the techniques of partial sim-
ulation and execution monitoring are being actively pur-
sued. But how a proof is arrived at is independent of the
techniques used in the recovery module.

The generalisation procedure currently used in TRAP
is similar that in [deJong & Mooney, 19861. The simulator
generates the SPECIFIC instance of the proof-tree, and
records the axioms that were used in the process. Using
this proof-tree and the recorded dependencies, the recov-
ery mechanism generates the GENERAL version of the
explanation structure.

VIP, Relationships
In MOLGEN [Stefik, 19801, where the least-commitment
strategy is used for object-selection, backtracking has been
replaced by the forward-reasoning involved in constraint-
propagation. It is well known that this forward reasoning
can be equally computationally expensive if there are a
sufficient number of applicable but irrelevant constraints
in a situation. The problem is identification of relevant
constraints. Risk-and-recover contrasts with the very cau-
tious approach of least-commitment which saves the cost
of failure-recovery but trades it off for the cost of making
sure that a step is right. We have suggested how the con-
straints can be generated dynamically to cover failures as
they are encountered. In fact, if in the absence of some
constraints the plan fails due to interactions, the resulting
failure can be used to infer the constraints which would
avoid it in future. In this manner, the problem-solver be-
comes more careful after encountering a failure, and avoids
being an ‘pessimist’ that tests for everything that can go
wrong before taking a step.

Opportunistic planning, suggested as a model for hu-
man planning [Hayes-Roth, 19831, emphasises the need of
data-directed reasoning along with goal-directed reason-
ing. The architecture presented in this paper is a restricted
interpretation of the opportunistic model where detailed
refinements can suggest modifications to previously taken
abstract decisions, but only when the problem-solver runs
into failures. By thus restricting the ‘data-directed’ guid-
ance to be invoked only when the goal-directed approach
does not quite work, we can get a computationally realistic
control strategy. The idea of using sufficient conditions for
a failure has been proposed as the avoidance method in
[Hayes-Roth, 19831.

We have presented a framework based on explanation-
based learning that illustrates the role of a domain-model
in supporting the compiled goal-oriented operators in the
design-type problem-solving tasks. This support is re-
quired in an evolving system, because at any point in
time, although the domain model can be expected to be
complete, compilation of the goal-oriented operators would
be necessarily incomplete. This framework alleviates the
three difficulties mentioned in the introduction: compiling
out all the interactions, identifying applicable constraints
in order to use least-commitment and the thrashing inher-
ent in backtracking.

We are currently investigating further into reason-
ing about temporally ordered actions in generalised failure
constraints and integrating this technique with other re-
covery techniques such as goal-reordering [Tate, 19771 for
dealing with failures due to interacting sub-goals.

Acknowledgements

John Lumley and Stefek Zaba provided extensive com-
ments on the presentation of this paper. The Author

was financially supported by Inlaks Foundation Scholar-
ship while at the University of Edinburgh.

eferences
[Clancey, 19831 W .J. Clancey. An Epistemology of a Rule-

Based Expert-Systems: A Framework for Explana-
tion. Artificial Intelligence, 20(3):215-251, (1983).

[deJong and M ooney, 19861 6. deJong and R. Mooney.
Explanation-Based Learning: An alternative view
Machine Learning, 1(2):145-176, 1986.

[deKleer, 19861 J. deKleer An Assumption-Based TMS.
Artificial Intelligence, 28(2):127-162, (1986).

[Gupta, 19851 Ajay Gupta. Failure Recovery Using a Do-
main Model. MPhil Thesis, Dept. of AI, University of
Edinburgh 1985.

[Hayes-Roth, 19831 F. Hayes-Roth. Using Proofs & Refu-
tation to learn from Experience. In Machine Learning:
an Artificial Intelligence Approach, Michalski, R.S.,
et. al. (eds.), Tioga, Palo Alto, CA 1983.

[Mitchell et. aZ., 19861 T. M. Mitchell, et. al. Explanation-
Based Generalisation: A Unifying View. Machine
Leaning, l(1):47-80, 1986.

[Stefik, 19801 Mark Stefik. Planning with Constraints.
PhD Thesis, Dept. of Computer Science, Stanford
University 1980.

[Tate, 19773 Austin Tate. Generating Project Networks.

In Proceedings IJCAI-77, pp 888-893, MIT, Cam-
bridge, International Joint Conference on Artificial
Intelligence, 1977.

610 Engineering Problem Solving

