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ABSTRACT1 

Qualitative reasoning about physical processes is 
based on the notion of "quantity space" [Forbus, 
1984a, 1984b]. The question is how to construct a 
quantity space for a particular physical process. 
One line of research is to establish a set of so 
called "landmark points" by selecting some values 
of the continuous physical parameters 
characterizing the physical process under 
consideration [Kuip'ers, 1985a, 1985b]. The 
landmark points are to delimit operating regions 
of qualitative processes. In most practical 
situations it is impossible to find a finite set 
of such points. This is because the operating 
regions of physical processes are delimited not by 
some specific values of physical parameters but by 
some hypersurfaces in the cross-product of the 
parameters, they are called here "critical 
hypersurfaces". The paper presents a relatively 
complete methodology for establishing critical 
hypersurfaces. 

1. INTRODUCTION 

Qualitative reasoning about physical processes 
gained much of attention in the last several 
years. Not only this reflects a general spirit of 
AI, which is symbolic reasoning, but it 
complements the existing methodology of modelling 
and simulation of physical processes, which was 
limited to quantitative analysis of numerical 
models. Experience shows us that in many cases 
quantitative simulations are not feasible because 
of a very high complexity of the quantitative 
models. Qualitative simulation can then come to 
the rescue with methods that generate some less 
specific results, but which are feasible. This is 
not the only reason for using qualitative 
simulations. In many situations quantitative 
simulations are feasible, but not necessary. If we 
are interested whether a particular physical 
parameter is going to stay within its allowable 
range following some changes in the controls, then 
we should try to answer just this question and not 
try to calculate the exact value of this 
parameter. This exact value would be discarded 
anyway and only the qualitative information that 

"the parameter will (or will not) stay within the 
range It will be utilized to make a control 
decision. In such a case why should we perform the 
full quantitative analysis when several simple 
logical operations might do it. 

On the other hand, one should not go into 
another extreme and try to solve all the problems 
with qualitative methods only. Trying to resolve 
all inequalities in predicting behavior of a 
physical process would inevitably lead to 
simulations of differential equations and real 
numbers. And this would definitely lead into 
higher complexity problems than when using 
classical quantitative methods, even though 
defining a quantitative parameter requires a 
measurement method that is defined in terms of 
qualitative operations. Ultimately, there is a 
need for understanding relations between 
qualitative and quantitative methodologies. 
Integration of quantitative and qualitative 
methodologies is one of the key issues of this 
paper. 

In the qualitative simulation methodology 
states of processes are characterized by some 
parameters which can take on a limited number of 
nominal values. These values are usually related 
to some quantitative parameters. The relationships 
among the qualitative parameters are described in 
terms of "quantity space" [Forbus, 1984a, 1984b], 
When the relations among these parameters change, 
some nprocessesn are started or stopped. Kuippers 
[Kuipers, 19851 uses terms like "critical points", 
"landmark points", or "characteristic points" to 
describe some specific values of physical 
parameters. Qualitative simulation methodology 
involves moving from one qualitative state to 
another, or from one set of critical points 
characterizing a given physical system to another. 
The question is, however, how do we establish such 
a quantity space. In the literature on qualitative 
simulations the critical points are selected on 
the base of some semantics related to the values 
of physical parameters. The examples of those are 
boiling temperature, melting temperature, etc. The 
qualitative processes start or stop when the 
inequalities between the physical parameters, like 
temperature, and those critical points, change 
their signs. In fact, this is a very restricted 
approach. These processes usually depend not only 
on the particular physical parameters but on the 
relationships among them. For instance the water 
temperature 100 C does not necessarily mean the 
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water is boiling, it depends what is the pressure, 
too. Therefore, to be able to predict the behavior 
of a process we need to know not the critical 
points of the physical parameters, but the sets of 

points fulfilling a specific constraint. We will 
call these sets "critical hypersurfaces". A more 
precise definition of critical hypersurface will 
be given in Section 2. Intuitively, a critical 
hypersurface will be understood as a subset in a 
cross-product of continuous physical parameters. A 
critical hypersurface constitutes a "distributed 
landmark". The position of a particular state with 
respect to such hypersurfaces determines whether a 
particular process is active or not. 

Given a description of a physical process and 
a semantics for qualitative reasoning, one can 
establish critical hypersurfaces in many ways. For 
instance, one can use differential equations for 
this purpose (provided such models are available). 
Another possibilty is to try finding the critical 
hypersurfaces experimentally. This would involve 
an amount of effort far beyond the advantages from 
the qualitative simulation. This paper presents a 
methodology for finding critical hypersurfaces 
which does not require such strong models as 
differential equations. This methodology is based 
on the theory of dimensional analysis. 

Critical hypersurfaces can be utilized in a 
similar way critical points are used in 
qualitative simulations. This problem is beyond 
the scope of this paper. 

2. CRITICAL HYPERSURFACES vs. CRITICAL, POINTS 

In this section we show an example of a physical 
process in which the notion of critical 
hypersurfaces plays a significant role. Then we 
formally define this notion. 

As the example we consider the process of 
viscous fluid flow in a pipe. It is a known fact 
in fluid mechanics ([Young, 19641, [Monin and 
Yaglom, 19731) that the flow can be in one of at 
least three different qualitative states: laminar, 
turbulent, or transitional (unstable). In each of 
these states the process of fluid flow is 
described by qualitatively different mathematical 
models. Intuitively, the flow is laminar for small 
velocities, turbulent for large, and transitional 
for some interval of velocity in between. 
Therefore, one could try to find two critical 
velocities, vl, and v2, delimiting the three flow 
regions. Unfortunately, this can work only for a 
very limited range of situations, namely when the 
pipe diameter D, fluid density p, and fluid 
viscosity q, are constant. For instance, for 
water in room temperature in a l-cm-diameter pipe, 
turbulent flow occurs above about 0.2 m/s, while 
for air the critical speed is of the order of 4.0 
m/s [Young, 19641. Thus the critical velocity in 

the latter case is 20 times higher than in the 
former one. This clearly shows that to reason 
about qualitative states of physical processes one 
cannot restrict the set of notions to critical 
points only. 

In hydromechanics the transition from laminar 
to turbulent flow is characterized in terms of so 
called "Reynolds number". Reynolds number (usually 
described as R) is defined as a function of the 
above referenced parameters of density p, 
average velocity v, pipe diameter D, and viscosity 
q as: 

R = p-v-D/~. 
It is found experimentally that laminar flow 

occurs whenever R is less than about 2000. When R 
is greater than about 3000, the flow is nearly 
always turbulent, and in the region between 2000 
and 3000 the flaw is unstable, changing from one 
form of flow to the other (here we call it 
"transitional"). 

The relationships 
R = 2000 

and 
R - 3000 

describe two hypersurfaces in the space 
defined by the cross-product of the continuous 
parameters p, v, D, and 7. The two 
hypersurfaces divide the space into three 
operational regions: laminar, turbulent and 
transitional. 

This example shows that critical 
hypersurfaces play an important role in 
qualitative reasoning about physical processes. 
There are however three major problems with this 
approach: 

- how to know which physical parameters 
should be considered in the search for 
critical hypersurfaces, 

- how to know what kind of relationships 
should be taken into account in the search 
for critical hypersurfaces, 

- how to determine what are the critical 
points of the function that describes 
critical hypersurfaces (for instance, how 
do we know that the critical values of R 
are 2000 and 3000). 

These three problems will be referenced to as 
the complete relevance problem, the relationship 
problem, and the semantics problem respectively. 
They are discussed in the following sections. 

3. SEMANTICS OF CRITICAL HYPERSURFACES 

In this section we concentrate on the third of the 
problems listed in Section 2. Assume for a while 

that we know both the parameters and the form of 
the relationship that describes the hypersurfaces. 
We need to find a set of critical points of the 
function describing the relationship. 

In the literature on qualitative reasoning 
there are known several semanics rules: sign 
semantics, derivatives semantics [deKleer and 
Brown, 19821, [Forbus, 1984a, 1984b], Kuipers' 
QSIM semantics [Kuipers, 1985a, 1985b], order of 
magnitude semantics [Raiman, 19861. For the 
example presented in the previous section none of 
these seem to be right. Neither Reynolds number R 
or its derivative change their directions of 
growth but flow changes from laminar to turbulent. 
Therefore some other approach is required. 
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One possibility is to find a relationship 
between a parameter, like Reynolds number, and 
some observable qualitative parameter for which 
the semantics of qualitative states is explicit. 
In our example the character of flow (laminar, 
turbulent, or transitional) can be determined by 
directly observing the profile of the speed of 
flow. As a matter of fact, that is how the 
relationship defining Reynolds number has been 
discovered. The bad side of this approach is that 
the semantics is specific to a particular physical 
process. It is hard to apply this approach as a 
general method. 

Another approach would be to find a 
continuous physical parameter functionally 
dependent on the value of the function defining 
the hypersurfaces, for which we can utilize one of 
the general semantics for qualitative states 
(signs, derivatives, or orders of magnitudes). 
Once critical points have been established for the 
new parameter we can transform them to the 
critical points of the value of the function 
defining the hypersurfaces. In the case of 
critical points of Reynolds number we could 
utilize the dependency of the rate of heat 
transfer on Reynolds number. It is a known fact 
that the rate of heat transfer from/to the liquid 
in a pipe to/from the outside strongly depends on 
Reynolds number, it is much more intensive for R > 
3000 than for R < 2000. If we take the heat 
exchange rate as an indicator then we can utilize, 
for instance, the semantics of sign of derivative, 
or we can apply Kuipers' semantics to the 
derivative of the heat transfer rate. 

In all of these cases we suggested to use a 
parameter which depends on the value of function 
characterizing hypersurfaces. The choice of the 
parameter depends on which process we are 
interested in. When we were interested in fluid 
flow, we took the speed profile. In the second 
example our attention was concentrated on heat 
transfer, or more precisely, on the rate of heat 
transfer. Therefore we selected the characteristic 
parameter for this process. This seems to be a 
reasonable methodology. 

Mathematically, we are looking for a 
hypersurface in the cross-product of some 
parameters xl, . . . . xm, described as 

f(x1, . ..) xm) = c. 
A critical hypersurface is defined by fixing 

the value of C. If we are interested in a 
parameter 2, which depends on C, i.e., Z - g(C), 
and if we have some semantics (critical points) 
for Z, then we can determine critical points for c 
by applying the inverse of the-dependency g to the 
critical points. In our example, Z represents the 
heat transfer rate and C represents Reynolds 
number. If we are able to determine some critical 
points for the heat exchange rate, then we can 
transfer them onto Reynolds number. 

4. THE RELATIONSHIP PROBLEM 

In this section we concentrate on the forms of the 
relationships that describe critical 
hypersurfaces. We assume now that all the relevant 
physical parameters are known, the question is bow 
to combine them into a formula that defines a 

critical hypersurface in the cross-product of the 
parameters. 

The interpretation of critical hypersurfaces 
is such that they describe boundaries between two 
regions of qualitatively different behaviors of a 
physical system. In other words, the physical 
system behaves similarly within the region, even 
though the quantitative parameters characterizing 
the system take on different values for different 
points within the region. 

Similar behaviors of physical systems are the 
subject of the similarity (or similitude) theory 
(eg., EBirkhoff, 19601, [Drobot, 19531). The 
similarity theory gives rules for combining 
physical parameters into monomials called 
similarity numbers (similarity modules, 
dimensionless numbers). A physical system is 
characterized by one or more similarity numbers. 
Iwo States Of a system are called similar if all 
the similarity numbers for the two states are 
equal. The Reynolds number referenced in previous 
sections is one example of such a similarity 
number. It characterizes the process of flow of 
liquids. A set of states for which all the 
similarity numbers are equal is a hypersurface. 
The cross-product of physical parameters 
describing a particular process is subdivided by 
the relation of similarity into classes 
(hypersurfaces). We are concerned only with some 
special of the classes, the ones that we call 
critical hypersurfaces. 

In this paper we present a method for 
determining similarity numbers from only the 
knowledge of physical parameters Uniquely 
characterizing the process, and their dimensions. 
Ihe rules for doing this are given by the theory 
of dimensional analysis ([Birkhoff, 19601, 
[Drobot, 19531, [Whitney, 19681). 

In order to figure out the forms of 
similarity numbers one needs to analyze dimensions 
of all physical parameters involved. Dimensions 
are expressed in terms of units of measure and 
exponents, eg., 5kglm2sm2. A number of physical 
parameters from the set of relevant parameters for 
the particular process are chosen as SO called 
"dimensional base". A dimensional base can consist 
of at most as many parameters as many units of 
measure are used (mostly three). A set of 
parameters can constitute a dimensional base if 
the determinant of the exponents' matrix for these 
parameters is not null. Usually several subsets of 
the parameters involved satisfy this condition. 
After selecting a base we take each parameter and 
combine it with the base by multiplying or 
dividing it by elements of the base raised to a 
real-number-power. Those powers are selected in 
such a way that the resulting monomial is 
dimensionless. This procedure is repeated for each 
parameter not in the dimensional base, which means 
that we can generate as many similarity numbers as 
many parameters remain in the set after removing 
from it the ones that constitute the base. 

In our example the relevant parameters are 
expressed in terms of units ofomTssl(kg), length 

and time (s) as: v-xvkgms' , ol= 
~~;lm-ls-l P = xpkglm-3s0, D - xDkgOmlSO. 
T!e numbers'x,, x0, x 

R' 
and XD represent 

numerical scales of t e particular parameters. 
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Suppose P, rl, and D have been selected as 
dimensional base. It can be done because the 
determinant of the following matrix of exponents 
is not null: 

1 -3 0 
1 -1 -1 
010 

The remaining parameter, v, can be combined 
with the base into a dimensionless monomial in the 
following way: 

~.pl.&~+ 
Note that this is the only possible 

combination of the exponents, given a dimensional 
base. This is how we derive the functional formula 
that represents Reynolds number. Selecting a 
different dimensional base would result in a 

little different formula. Fortunately, for the 
purpose of similarity it does not really matter 
which base has been chosen. The states that are 
similar in one dimensional base remain similar in 
any other base that we choose. More formally it is 
expressed as: similarity of the states of a 
physical process is invariant with respect to the 
choice of dimensional base. 

5. THE COHS?LETE RELEVANCE I'ROBLEM 

The last main problem with establishing a set of 
critical hypersurfaces is how to determine all 
relevant physical parameters characterizing a 
given physical phenomenon. This seems to be the 
most difficult problem. This problem is beyond the 
scope of qualttative simulations. But it is 
closely related to qualitative reasoning as it is 
one of the steps that lead to establishing 
operating regions for qualitative processes. This 
problem has been intensively investigated in 
modelling and simulation, in systems science, and 
in the area of artificial intelligence as well. 

In any approach to this problem one must 
accept some kind of a "closed world assumption". 
In this paper we take a goal-oriented approach in 
which the closed world assumption is closely 
related to the goal of the process under 
consideration. This is manifested in the way of 
selecting the relevant parameters: only those 
parameters are selected which can uniquely 
determine the value of the parameter that 
characterizes behavior of the system. 
Mathematically, we are looking for a functional 
dependency between a parameter explicitly chosen 
as a characteristic of the behavior of the system 
and a set of the arguments of this function. The 
set of parameters that satisfy the requirement of 
functionality will be complete set of relevant 
parameters. 

Essentially, there are three main ways of 
determining what are the relevant parameters for a 
given physical process. One of them is the 
existing knowledge of the process being modelled. 
In many cases this knowledge is available, all the 
relevant parameters can be listed by experts in 
the given field, the only problem is the 
qualitative analysis of the possible behaviors of 
the process. 

In more difficult cases the list of the 
relevant parameters is not readily available, or 
at least the experts in the given field cannot 
come to a cosensus on this. The approach in such 
cases consists of listing all the suspected 
hypothetical parameters as the candidates, 

6. A RR MIR ESTABLISHING 
HYIXRSURFACES 

cltITIcAL 

In this section we summarize the results of the 
previous three sections by descrllbing several 
steps in which critical hypersurfaces can be 
established. 

1. 

2. 

3. 

4. 

Determine the characteristic parameter 
(goal parameter, output parameter, 
dependent parameter) of the process which 
is to be modelled. 
Determine what are the parameters known to 
be relevant to this particular 
characteristic parameter. Use some expert 
knowledge to this aim. 
Collect some experimental data - 
measurements of the characteristic 
parameter for a number of combinations of 
values of the relevant parameters. 

Analyze completeness of the set of 
relevant parameters. If the completeness 
condition is fulfilled then analyze 
redundancy of some of the parameters. 
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5. 

6. 

7. 

8. 

If the set of parameters is not complete 
then use one of the methods for generating 
descriptions of relevant parameters. 
Using methods of dimensional analysis 
derive a set of similarity numbers as 
functions of the physical parameters. 
Using one of the available semantics 
(e.g., signs of derivatives) determine 
critical values of the derived functions. 
The expressions equating the monomials 
representing the similarity numbers with 
the critical values constitute 
descriptions of the critical 
hypersurfaces. 

7. CONCLUSIONS 

One of the most important problems in qualitative 
reasoning is how to establish an appropriate 
quantity space to conduct the simulations in, or 
in other words, how to establish operating regions 
for qualitative processes. One possible way is to 
apply some semantics to quantitative parameters 
characterizing the physical system under 
consideration, resulting in a set of critical 
points for every physical parameter involved. A 
set of critical points is applicable for some 
limited situations only, namely when some relevant 
parameters remain constant. The objective of this 
paper is to extend this approach to a wider domain 
of situations, such that would account for 
variability of all relevant parameters. The 
generalization of the methodology is achieved 
through introduction of the notion of critical 
hypersurfaces in place of critical points. These 
critical hypersurfaces delimit operating regions 
of qualitative processes. The paper presents a 
relatively complete methodology for finding 
critical hypersurfaces. The methodology is based 
on the theory of dimensional analysis. A part of 
this methodology is implemented in the system for 
discovery of physical parameters, called COPER. 
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