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Abstract 

Qualitative simulation faces an intrinsic problem of scale: 
the number of limit hypotheses grows exponentially with 
the number of parameters approaching limits. We present 
a method called Time-Scale Abstmction for structuring 
a complex system as a hierarchy of smaller, interacting 
equilibrium mechanisms. Within this hierarchy, a given 
mechanism views a slower one as being constant, and a 
faster one as being instantaneous. A perturbation to a 
fast mechanism may be seen by a slower mechanism as 
a displacement of a monotonic function constraint. We 
demonstrate the time-scale abstraction hierarchy using the 
interaction between the water and sodium balance mech- 
anisms in medical physiology, an example drawn from a 
larger, fully implemented, program. Where the structure 
of a large system permits decomposition by time-scale, this 
abstraction method permits qualitative simulation of oth- 
erwise intractibly complex systems. 

1 The Problem of Scale 

Qualitative simulation is a promising method for reasoning with 
incomplete knowledge about the structure and behavior ofphys- 
ical systems [de Kleer and Brown, 1984; Forbus, 1984; Kuipers, 
1984,1985,1986]. The structure of a system is described in terms 
of a collection of continuous parameters and constraints among 
them. Behavior is described in terms of changes to position and 
direction in qualitative quantity spaces. Such a constraint model 
may be derived from a component-connection description [deK- 
leer and Brown, 19841, from a process-view description [Forbus, 
19841, or be given as part of the problem-solver’s model of the 
domain [Kuipers, 1984; Kuipers and Kassirer, 19841. The ad- 
vantage of these qualitative reasoning methods is their ability 
to express and reason with incomplete knowledge of functional 
relationships. For example, one may say that wind resistance 
increases monotonically with velocity, without needing to know 
or assume their exact relationship: Tesistance = M+(velocity). 

*This research was supported in part by the National Science Founda- 
tion through grants DCR-8512779 and DCR-8602665, and by the National 
Library of Medicine through NIH Grants LM 04374, and LM 04515. 

A fundamental operation in qualitative simulation is limit 
analysis: when several variables are changing, and moving toward 
limiting values, the constraints are analyzed to determine which 
limits may be reached, and hence which qualitative states may 
come next. For the small to moderate-sized systems examined 
thus far in the literature, the natural constraint model is often 
sufficiently powerful to limit the possibilities to a reasonable set. 

Unfortunately, there is an intrinsic problem of scale. When 
dealing with a large system, the number of changing variables 
moving toward limits may be very large. The set of global limit 
hypotheses grows exponentially with the number of variables. 
During a period when two variables in the system do not inter- 
act, the temporal reasoning methods of Williams [1986] can iso 
late them. However, we are frequently faced with large systems 
consisting of variables that do interact, which appear intractible 
to current qualitative reasoning methods. 

Numerous examples throughout AI and computer science demon- 
strate that a powerful method for handling a complex problem 
is to impose a modular, hierarchical structure that allows it to 
be solved in pieces of a manageable size. In order to apply this 
method, we need to define a valid hierarchical structure that 
breaks a complex system into a collection of tractible mecha- 
nisms. The structure must also support a discipline for moving 
the focus of attention among the individual mechanisms in the 
hierarchy, and a mapping relation for communicating informa- 
tion meaningfully among the mechanisms. This paper presents 
one such structure. 

We have encountered this problem of scale in our studies of 
the expert physician’s knowledge of human physiology, especially 
the systems whereby the body regulates its sodium and water 
balances [Kuipers and Kassirer, 1984; Kuipers, 19851. The ex- 
amples presented in this paper will draw on our models of these 
physiological mechanisms, but the techniques have more general 
applicability to qualitative modeling and simulation of large-scale 
systems. 

2 Time-Scale Abstraction 

Looking at expert physicians for our inspiration, we observe that 
although the human regulatory systems are immensely compli- 
cated, the experts reason effectively about them by focusing on 
one aspect at a time. One important method for distinguishing 
closely related mechanisms within the same large system is the 
time-scale at which they operate. 
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Figure 1: Constraint model for the Water Balance mechanism. 

For example, two closely related mechanism in the kidney 
help regulate the body’s sodium and water balances [V&in, 19731. 

o The water balance mechanism responds to changes in plasma 
water volume by adjusting water excretion, through a hor- 
mone called antidiuretic hormone or ADH. Water volume 
is not sensed directly, but through its effect on sodium 
concentration. The water balance mechanism responds to 
changes within a period of minutes. (Figure 1) 

e The sodium balance mechanism responds to changes in the 
amount of sodium in the plasma by adjusting sodium ex- 
cretion through a hormone called aldosterone. The amount 
of sodium is not sensed directly, but through its effects on 
water volume. The sodium balance mechanism responds to 
changes over a period of hours to days. (Figure 2) 

Figures 1 and 2 give a graphical representation of the QSIM 
constraint models of the water balance and sodium balance mech- 
anisms, respectively. 

The separation in time-scales of these two mechanisms allows 
physicians to reason about them separately. For example, in dis- 
cussing the related but distinct problem of blood pressure regu- 
lation, Guyton [1981] presents graphs of the responses of eight 
different mechanisms, with time-scales ranging from seconds to 
days (Figure 3). 
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Figure 2: Constraint model for the Sodium Balance system 

These observations lead us to define the concept of time-scale 
abstraction applied to a complex system made up of interacting 
equilibrium mechanisms: 

If a complex system can be decomposed into equilib- 
rium mechanisms that operate at widely separated time- 
scales, then a particular mechanism can view a faster 
one as being instantaneous, and a slower one as being 
constant. 

When a faster mechanism views a slower one as constant, the 
slower one can simply be treated as a source of values for certain 
parameters. When a slower mechanism views a faster one as 
instantaneous, a relation among shared variables may be treated 
by the fast mechanism as the result of a process over time, and 
by the slow mechanism as a functional relationship. 
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Figure 3: Time-scales of physiological processes, from [Guyton, 
19811. 
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Consider the relationship between the (slow) sodium and (fast) 3 Communicating Across Time-Scales 
water balance mechanisms: 

a The water balance mechanism (Figure 1) includes the fol- 
lowing parameters. (P stands for the plasma compartment 
of the body fluids, and the N in ANP stands for sodium 
(W-1 

In order to use a hierarchical model linked by time-scale abstrac- 
tion for qualitative simulation of a complex system, information 
must be transmitted through shared variables among mechanisms 
operating at different time-scales. 

AWP amt(water, P) dependent 
ANP amt(sodium, P) independent 
NFWIP net flow(water,ingest + P) independent 

ANP and NFWIP are independent, or “context”, parame- 
ters of the water balance mechanism. The parameters AWP 

the sodium balance mechanism 
both dependent variables. 

and ANP are shared with 
(Figure 2), where they are 

3.1 The Pattern of Shifting Focus 

We need a discipline for shifting the focus of attention among dif- 
ferent time-scales and for making valid use of previously derived 
information in subsequent computations. The two directions of 
shift in focus from a given mechanism require different methods. 

@z3 

a From the point of view of the water balance mechanism, 
an externally given increase in sodium (ANP) results in 
the water balance moving, over some period of time, to a 
new equilibrium where the amount of water (AWP) is also 
increased (Figure 4a). 

Faster to Slower. Given an initial perturbation to its 
environment, qualitative simulation predicts the resulting 
equilibrium state of the fast mechanism, and shifts atten- 
tion to the next slower one. The final values of parameters 
that are shared with the slower mechanism can be treated 
as part of the initial state of the slower mechanism. There 
are also effects on the constraints which will be treated in 
the next section. 

o From the point of view of the sodium balance mechanism, 
the relationship between ANP and AWP is seen as instan- 
taneous, and is expressed by the monotonic function con- 
straint, AWP = A4+( ANP) (Figure 4b). 

Thus, different levels of the time-scale hierarchy view the rela- 
tion between two parameters in quite different ways. A structural 
constraint at one level is the result of an embedded process at a 
faster level. 
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Q Slower to Faster. After a slower mechanism has reached 
equilibrium, the environment it provides for a faster mech- 
anism may have changed. However, the faster mechanism, 
by definition, must have tracked the slower mechanism on 
its way to equilibrium. Thus, the fast mechanism is al- 
ready in equilibrium, and simulation is not necessary. By 
combining the values of shared variables, the fact that the 
mechanism is in equilibrium, and other context informa- 
tion, a complete description of the equilibrium state of the 
fast mechanism can be derived by propagation. 

AWP+ 

AWP* 
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I I ANP 

ANP* ANP+ 

(4 w 
Figure 4: The relationship between ANP and AWP 

e (a) From the point of view of the Water Balance mechanism 
(Figure l), a change to ANP causes a subsequent change 
to AWP. 

e (b) From tt-3 point of view of the Sodium Balance 
mechanibnr (Figure 2), the monotonic function constraint 
AWP = M+(ANP) requires the two parameters to change 
together. 
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Figure 5 shows the pattern of control for a three-level time- 
scale hierarchy, deriving the effect of an initial perturbation through- 
out the system. Upward arrows initiate simulation to a new 
equilibrium, and downward arrows initiate propagation to a com- 
plete description of an existing equilibrium state. The algorithm 
is as follows. After simulating a mechanism, QSIM identifies 
the faster mechanisms which share parameters with the current 
mechanism, and propagate that information to determine the 
equilibrium state of the faster mechanism. Once this is done, the 
slower mechanisms sharing parameters are identified. The cur- 
rent values of parameters shared with this mechanism are used to 
define the initial state for it to be simulated. The process repeats 
recursively. 

In order for the abstraction hierarchy to support correct sim- 
ulation, control of the focus of attention must be combined with 
an appropriate interpretation of information from one level of the 
hierarchy, as viewed from another. In particular, if some change 
causes a fast mechanism to behave abnormally, this is viewed 
from the slower mechanism as a displacement of a monotonic 
function. 

3.2 Changing the Monotonic Function Constraints 

As we have discussed, the slower sodium balance mechanism 
(Figure 2) includes the monotonic function constraint, AWP = 
M+(ANP). In addition to the monotonically increasing direc- 
tion of the relationship, the constraint specifies car-respnding vaZ- 
ues. In the normal situation, each parameter has a normal value 
- called AWP* and ANP*, respectively - and the monotonic 
function includes the point (ANP*,AWP*). Figure 4b shows 
this relationship. 

During the response of the sodium balance mechanism to dif- 
ferent initial conditions, the values of ANP and AWP move 
along this curve. These corresponding values, and those on the 
other constraints, provide critical information about the possible 
transient and equilibrium states of the sodium balance mecha- 
nism. The faster water balance mechanism acts to move the 
values back to this curve if they are displaced from it. 

slow 
AWP 

I 

medium AWP+ 
I 

fast AWP* 

Figure 5: Control of focus of attention. 
Each bead represents a qualitative state, so simulation produces 
a string of beads, and propagation of an equilibrium state pro- 
duces a single bead. Changes in focus of attention take place 
in the sequence shown. (1) The equilibrium state of the fastest 
mechanism provides values for initializing a simulation of the next 
slower mechanism. (2) The final state of the second simulation 
is first used to propagate a new equilibrium state for the fastest 
mechanism. (3) Then values from both faster mechanisms are 
available to initialize the slowest mechanism. And so on. 

Notice, however, that the abstracted monotonic function con- 
straint, AWP = M+(ANP), and especially its corresponding 
values, also depend on the value of the context parameter NFWIP, 
representing the rate of water intake, which appears only in 
the water balance mechanism. If NFWIP is shifted to a value 
higher than normal, then the monotonicity of the relationship 
AWP = M+(ANP) is preserved, but the corresponding values 
are changed to (ANP*,AWP+), where AWP+ > AWP*. Fig- 
ure 6 shows how this change means that the relationship has been 
shifted upward. 

In the water and sodium balance systems, we can see how a 
change can propagate within the hierarchy. 

An externally imposed change affects the fast mechanism, 
say an increase to the rate of water intake, NFWIP. 

The external change is not visible to the slower mechanism, 
which has abstracted away the changed variable, NFWIP. 
However, QSIM determines that the change to the water 
balance mechanism results in a shift of the monotonic func- 
tion constraint, AWP = M+(ANP). 

The slower mechanism adjusts to the shifted monotonic 
function constraint by finding a new equilibrium point. In 
this case, the sodium balance mechanism excretes sodium 
to bring the water volume, AWP, down to its normal level, 
AWP*, even at the cost of reducing the amount of sodium, 
ANP, below normal, to AWP-. (Figure 6) 

Using the time-scale abstraction hierarchy, we thus derive a 
single qualitative prediction for the behavior resulting from in- 
creased water intake: water volume rises quickly, followed by a 
slower process of sodium excretion (with simultaneous water ex- 
cretion) until water volume returns to normal. In this final equi- 
librium state, total sodium and sodium concentration are below 
normal. A “flat” model derived from the same set of constraints 
produces an intractibly branching set of predicted behaviors. 

shifted 

normal 

I ANP 

‘I ANP* 
ANP- 

Figure 6: Normal and shifted monotonic function constraints. 
The sodium balance mechanism (Figure 2) moves to bring AWP 
back to its normal value AWP*. If the relation AWP = 
M+(ANP) is shifted upward, ANP will reach equilibrium at a 
value lower than normal, ANP- < ANP*. 
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3.3 Prnplementation Considerations 

The time-scale abstraction methods have been implemented as 
extensions to QSIM’ , developed and tested on a three-level time- 
scale hierarchy consisting of the water and sodium balance mech- 
anisms and the Starling equilibrium mechanism governing the 
balance of water between the plasma and interstitial compart- 
ments [Kuipers and Kassirer, 19841. A preliminary model of con- 
trol of heart rate and output has also been developed in isolation 
[Kuipers and Kassirer, 19851 and is being incorporated into the 
hierarchy. In future work, we plan to extend the hierarchy to 
include the mechanisms referred to in Figure 3. The ultimate 
purpose of this physiological model is to support “deep model” 
reasoning and hypothesis testing in medical diagnosis. 

The extensions required to the knowledge given to QSIM are 
minor: 

The time-scale ordering of the mechanisms making up a 
system is given explicitly. Shared variables and shifted cor- 
responding values are computed automatically when infor- 
mation is mapped from one mechanism to another. 

In order to map a qualitative value from one mechanism de- 
scription to another, the landmarks in the quantity space 
have explicitly associated meanings, such as zero, infinity, 
or normal, which can be matched across two symbol struc- 
tures representing the same quantity space. 

At the moment, with a small hierarchy, simulation con- 
tinues until all related mechanisms have been considered. 
With a large knowledge base, a method for cutting off sim- 
ulation at some lowest level of detail will be required. 

Conchsions 

In the medical physiology domains we have discussed, the natural 
system appears to have a suitable modular structure for imposing 
a time-scale hierarchy. This is not necessarily always the case. 
Perrow [1984] argues that certain engineered systems such as nu- 
clear power plants are simply too complex and highly interactive 
for human comprehension, especially under emergency circum- 
stances. For some systems, we suspect that the modularity by 
time-scale necessary for this kind of hierarchical structure does 
not exist, and cannot validly be imposed. 

In this paper, we have presented methods for qualitative sim- 
ulation of complex systems that can be structured as a time-scale 
hierarchies of interacting mechanisms. Another important appli- 
cation of time-scale abstraction, discussed in [Kuipers, 19871, is 
the use of the abstracted view of a process to determine the cause 
of a branching behavioral prediction, identifying a new distinc- 
tion in the quantity space of some independent variable, and 
making the simulation deterministic. 

We believe that these results, along with other recent devel- 
op,ments in qualitative simulation (e.g. Williams [1986], Weld 
[1986], and Kuipers and Chiu [1987]), are significant steps to- 
wards robust qualitative reasoning methods capable of being ap- 
plied to complex problems in the real world. 
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