
oices in
Problems

Sanjay Mittal and Felix Frayman

Intelligent Systems Laboratory, Xerox PARC,

3333 Coyote Hill Rd., Palo Alto, CA. 94304

Constraint problems derived from design and

configurations tasks often use components (structured

values) as domains of constrained variables. Most existing

methods are forced into unnecessary search because they

assign complete components to variables. A notion of

partial choice is introduced as a way to assign a part of a

component. The basic idea is to work with descriptions of

classes of solutions as opposed to the actual solutions. It is

shown how this idea can reduce search and in the best case

eliminate search. A distinction is made between a partial

commitment (a partial choice that would not be retracted)

and a partial guess. A particular way to implement partial

choice problem solvers is discussed. This method organizes

choices in a taxonomic classification. Use of taxonomies not

only helps in pruning the search space but also provides a

compact language for describing solutions, no-goods, and

representing constraints. It is also shown how multiple

hierarchies can be used to avoid some of the problems

associated with using a single hierarchy.

lidi
A central component of many design tasks is a constraint

satisfaction problem (CSP) as defined by Mackwot-th [Mackworth,

19771, i.e., finding consistent assignment of values for a set of

variables that together define the artifact which is the output of

the design task. These variables are constrained by expressions

derived from structural, functional, and performance

requirements (see [Mittal and Araya, 19861, and [Araya and

Mittal, 19871 for a more detailed articulation of this approach). An

important characteristic of such constraint problems, i.e., the ones

formulated for design tasks, is the use of structured values to

represent domains of variables. Simply stated a structured value

has internal structure in terms of additional variables with

corresponding values. It is not hard to see why this is convenient.

In design tasks, one often has pre-defined components that are

used to define the domain of some of the design variables. Use of

certain pre-defined resistors in discrete circuit design or the use of

fixed sets of components in computer configuration are some

examples. Unfortunately, most of the general-purpose methods

for constraint satisfaction work at the level of making a complete

choice for a variable and rely on some form of least commitment

to defer making a guess to minimize search. In this paper, we

introduce the idea of making a partial choice, which is especially

appropriate for variables that have structured values (henceforth

components).

The paper is organized as follows. We start with a simple

example involving the use of components and show how the

existing methods are forced into unnecessary search because they

have to choose a complete component. Next, we introduce the

notion of partial choice and how it reduces search. The basic idea

of partial choice is to operate on descriptions of sets of solutions

as opposed to actual solutions. In some situations, a partial choice

can be viewed as a commitment that will not be retracted. A

partial commitment may thus be viewed as an extension of the

least commitment principle. We also discuss situations in which no

partial commitment can be made and one has to resort to a

partial guess. Making a partial choice affords benefits similar to

hierarchical search, i.e., pruning of choices without having to

examine all choices. In the next section, we show that taxonomies

are one way to implement partial choices. We also show how

multiple taxonomies can be simultaneously used to avoid having a

particular order in which partial choices are made, something that

results from using a single hierarchy. Some of these ideas have

been implemented in two design expert systems, Pride [Mittal et

al., 19861 and Cossack [Frayman and Mittal, 19871.

In the first part of the paper we will use the following very simple

constraint problem.

Example 1. There are two variables X and Y. Each has two

components as possible choices (in other words their domains).

The components in turn can be viewed as having two distinct

fields: pl and p2 for components in the domains of X and Y. We

shall use curly braces ({}) to represent the choices for a variable

and square brackets ([I) to represent a component. The choices for

X and Y are:

Mittal and Frayman 631

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

x: {[pi :a, p2: b] [pl :a, p2:c]} and Y: {[pl :d, p2:elI~l :d, p2:f]) the constraint problem in such a way that arbitrary choices can be

We shall further use the dot notation to refer to nested

variables. Thus, X.pl means the value of the pl field of the

component assigned to X. The constraints on X and Y are:

minimized. In simple terms, one can think of least commitment as

a technique for deferring a variable assignment as long as possible

if multiple choices are possible and enough constraints are not

known that would allow one to commit to the right choice. In
Cl : X.pl = a iff Y.p2 = e; C2: Y.pl =d iff X.p2 = c other words, avoid making a guess as long as possible in order to

The constraint Cl reads, “X.pl has value a if and only if Y.p2

has value e”. This problem has four candidate solutions (2 choices

for X x 2 choices for Y) and only one solution:

minimize backtracking. In our example, the choices and

constraints are such that no particular order of assigning values or

checking the constraints helps in reducing the search.

x = [pl :a, p2:c] and Y = [pl :d, p2:el V. Use

The idea of making a partial choice is deceptively simple.
In this section, we shall briefly analyze the performance of some However, instead of just stating it we will motivate it by the
of the general-purpose methods for doing constraint search on following exercise.
the above problem.

A. Generate and test

Using generate and test (G&T), one would build a generator that

generates candidate solutions by making all possible assignments

to X and Y. The constraints would be used to test the acceptance

of the candidates. It is easy to see that in this case, the generator

would produce 4 candidates, only one of which will be acceptable.

A. “Flattening”’ the components

The basic common cause of search in the methods discussed in the

previous section can be traced to the fact that each component

really represents a pre-packaged assignment of values to many

variables. This means that a problem solver that assigns such a

component to a variable ends up with a larger commitment than

is warranted. Consideration of later constraints may lead to a

variables in some order to define partial candidates. Prune a

partial candidate if any constraints can be applied. This improves

over G&T in general. But in our example, the constraints can only

. Hierarchical Generate and test

We define hierarchical G&T as follows. Assign values to the

problem to the following problem. There are four independent

variables: X.pl, X.p2, Y.pl, Y.p2 with the following domain of

contradiction for some of these assignments, causing the problem

solver to search. This is easy to see if we eliminate the use of

components, i.e., “flatten” them, and transform the above

values:
be tested after both variables have been assigned values and thus
no benefit results. Note that chronological backtracking is a

X.pl : {a); X.p2: {b, c); Y.pl : {d}; Y.pZ: (e, f}.

standard way to implement hierarchical G&T.

would minimize search and in our example find the correct

solution without any search. In general, however, the above

One can easily build a least commitment problem solver that

C. Constraint propagation

Another common technique is constraint propagation as

described in [de #leer and Brown, 19861. This is like hierarchical

G&T with the constraints folded into the generator in such a way

that they can be used to “look-ahead” for making more

constrained choices for the other variables. In our example,

constraints can be used inside the generator in the following way.

Once a choice is made, say for X, constraint Cl can be used to

make a choice for Y that satisfies that constraint. Clearly, this has

advantages if the constraints can be so folded into the generator.

However, only one of the two initial choices for X or Y is the

correct one so in half the cases one would still have to search.

However, as we shall show one can still do better.

D. Least Commitment Approaches

problem transformation would be incorrect. Consider the

problem defined in figure 1 (example 2, s$c. IV.B.2). Simply

“flattening” the components changes a 2-variable problem with a

search space of 16 to a 4-variable problem with a search space of

64. This is because the use of components already represents the

result of doing constraint satisfaction on this flattened set of

variables with their own domains. In essence, components

represent solutions to a set of constraints which can then be
ignored because they are already implicit in the components.

Alternately, one can view components as the result of doing some

kind of compilation of the constraints on sub-sets of variables,

which now correspond to components. By going back to the

flatter set of variables, we will have to re-introduce those

constraints, undoing past work. Real design problems often have

One approach that has sometimes been very effective is the use of

some kind of least commitment problem solver as implemented in

Molgen [Stefik, 19811 or more recently in the Pride expert system

[Mittal and Araya, 19861. In both of the above systems, least

commitment is practiced by employing techniques for ordering

hundreds of variables with tens of components per variables.

In summary, flattening such problems affects the search

efficiency in two ways. One, flattening the components causes the

search space to grow exponentially. Remember that the increase

in the search space comes both from increasing the number of

632 Engineering Problem Solving

variables as well as by, possibly, increasing the domains for the

variables. Two, flattening brings back the constraints which had

been compiled away, increasing the time complexity at least

linearly.

artial choices: the best of both worlds

It is easy to state the notion of partial choice now. Simply, it is a

way to make a commitment to only a part of a component in the

expectation that such a partial choice would allow constraints to

be considered to enable a better choice1 for the rest of the

component at a later point in problem solving. The idea is that

where one wauld resort to guessing, one now selects an

appropriate description for a class of components. This description

may not uniquely apply to a single component but should be

specific enough to enable further inferences to be made. At the

same time it should not be so specific that it has to be retracted, at

least avoidably so. We differentiate between partial commitment
- a partial choice that does not have to be retracted and partial

guess - a partial choice that may have to be removed later in the

processing. Partial choice refers to both partial commitment and

partial guess.

1. Partial Commitment

Consider example 1 of section II. A partial commitment for X

would be to commit to pl =a because that is common to all

choices of X. Similarly, for Y commit to pl = d because that is

common to all choices for Y. With these partial commitments, the

constraints Cl and C2 can be used to select the correct component

for X and Y. In effect, by allowing partial commitments we get the

best of both worlds. By continuing to operate on components,

albeit partially, we preserve the advantages of components, i.e.,

prior solutions to other constraints and a reduced search space. At

the same time we get the benefits of being able to consider the

fields of a component as independent variables which allows

finer-grain commitments to be made (or deferred).

ab acYde df

At any moment during problem solving, when there is more

than one alternative to be selected from and least commitment

has to resort to guessing, the notion of partial commitment is

applicable. Partial commitment involves examining the set of

alternatives and determining a common part present in all the

alternatives or the facts which will be true no matter which

alternative is selected. Partial commitment is a monotonic

inference, i.e., it never has to be retracted. Another way of

viewing partial commitment is as means of calculating the

entailments of the previously made decisions or making explicit

the facts already available in an implicit form.

A problem solver that uses partial commitment would

progressively commit to more fields of a component until all of

them are assigned values. The major benefit of partial

Figure 1. Choices and solutions for example 2.

It is not possible to use the partial commitment approach as

it has been introduced earlier, since there is no common part for

any of the 4 possible choices for X and Y. It is necessary to

introduce some modifications for the partial choice idea to make

it work in this case. The modified approach will be called partial

1 By “better choice” we mean a choice that minimizes

backtracking.

commitment approach is reducing search (backtracking) since a

potentially retractable full commitment is replaced by a safe

partial commitment. Another benefit of partial commitment has

to do with finding all solutions of the constraint satisfaction

problem. Since making a partial commitment does not make any

unnecessary commitments that have to be retracted later, the

state of the computation implicitly carries all the solutions to the

CSP problem.

2. Partial Guess

The notion of partial commitment crucially depends on the

existence of a common part for a set of alternatives. Often, there

is nothing common among all the choices considered. We

introduce the notion of partial guess to make the same idea work

in thiscase. Let’s consider the following example.

Example 2. There are two variables X and Y having two fields

pl and p2 with identical domainsof possible values:

X: {[pl :a, p2: b] [pl :a, p2:c] [pl :d, p2:e] [pl :d, p2:f]}

Y: {[pl :a, p2:b] [pl :a, p2:c] [pl :d, p2:e] [pl :d, p2:f))

The domains of the variables internal to these components, pl

and p2, are:

pl : {a, d}; p2: {b, c, e, f}

The constraints on X and Y are:

Cl: X.pl = a iff Y.pl =d; C2: Y.p2=e iff X.pZ=c

C3 X.pl =d iff Y.pl =a; C4 Y.p2=c iff X.p2 =e

Figure 1 shows all 16 candidate solutions with four solutions

marked :

Mittal and Frayman 633

guess approach. The partial guess approach is based on the idea

that it is possible to introduce subsets of the original set that have

common parts and make commitments to the introduced sets,

instead of committing to individual components. The subsets with

common parts for our example are shown in Figure 2.

Figure 2. Choices for X and Y in example 2 organized as
a tree.

Since the common part decomposition is based on pl we will

use pl for the first decision. There are multiple alternatives for

both X.pl, Y.pl and we arbitrarily2 select assignment of value to

X.pl first. There are 2 possible values X.pl = a or X.pl = d. We will

choose arbitrarily X.pl = a. Assuming that the problem solver can

use constraints in the generation3 of alternatives, the first

constraint Cl can be used to assign Y.pl =d. Making a partial

guess of X.pl =a effectively reduced the search space by

eliminating four choices in the top-left quadrant in Figure 1 from

viable solution candidates. Thus, making partial guesses

effectively cuts down the search space by providing the benefit of

a hierarchical search. A solution for the problem in Example 2 can

be found easily by further examining the set of solution

candidates left.

It is necessary to point out an important difference between

making partial guesses with the introduced subsets and making a

partial commitment as illustrated by Example 1. Guesses with the

introduced sets are retractable, while partial commitments are

monotonic and do not involve any guessing.

2 To simplify the discussion, the problem was structured

symmetrically in order to eliminate the reasoning in

choosing the preferred order of making commitments.

Selecting Y.pl at this point will work similarly.

3 The ideas are still applicable in case the problem

use constraints in the generation phase.

solver can not

some common descriptions. Partial choice strategy is also

preferred to the flattening approach in cases when components

have large number of properties or when the properties have

large domains of values. In such cases flattening approach will

increase the search space of possible values describing an

individual component to the product of the domain sizes for every

component property, while partial choice strategy will operate on

the search space defined by a number of distinct component

alternatives.

So far we have presented these ideas in terms of assigning a

partial component to a variable and thereby reducing search. One

can also think of partial choice as a method for working with a

description of classes of solutions, instead of working with actual

solutions. In the examples we used for illustration the common

part (either as a committment or as a guess) represented a

description of a set of choices which could be instantiated by

filling in the other variables of the components to obtain the

complete components. Viewed this way, partial committment is

the special case where a description applies to all members of a

set. As a result, the description is a monotonic inference. Partial

guess is the general case where the description may cover only a

sub-set and may have to be retracted as the problem solving

proceeds. We elaborate on this view in the next section where we

present the use of taxonomies as a particular way of representing

the descriptions of solution sets.

There is a long history in Al of representing a set by abstracting

the common parts and organizing the set in a taxonomic

classification. The same basic idea can be used as a way of

organizing choices for constraint problems. A set of component

choices can be organized in a hierarchy. intermediate nodes in this

hierarchy represent a subset of the choices characterized by some

common description of all the choices. For example, in a computer

configuration problem, the set of printers may be organized in a

taxonomy of high speed, medium speed, and low speed printers.

The high speed printer node represents the subset of printers that

all have speeds greater than say 1OOcps. Notice that at this level of

description of the set, nothing is said about other properties of

printers such as technology of printing, quality of printing, cost,

interface, etc.

A. Searching with taxonomies

We briefly sketch a method for using taxonomic grouping of

choices for making partial choices. The basic ideas are as follows.

First, the choices for variables are organized into taxonomies.

Second, instead of committing to a complete component as the

value of a variable, we allow a more abstract description to be
assigned to a variable. This description is a node in a pre-defined

taxonomy. Third, the constraints have to be written in such a way

that they can operate on these taxonomic descriptions. Finally, the

634 Engineering Problem Solving

search methods operate by moving down the taxonomy. If the

correct taxonomic node cannot be committed to and a guess has

to be made, it is made by selecting one of the nodes. If the choice

later proves to be incorrect, then the problem solver backs up and

selects another node. If a choice at some level does not allow all

the applicable constraints to be processed, the problem solver

descends to the next level and makes further choices. Notice that a

retracted node allows a whole set of choices to be marked as

no-goods (in ATMS terms [de Kleer, 19861) without having to

examine them individually. Furthermore, the chosen node

represents a partial choice that would allow further inferencing.

Space limitations do not allow detailed consideration of the

algorithmic choices for building such problem solvers.

We summarize some of the advantages of using taxonomies

for organizing choices. One, they allow partial choices to be made

which leads to more efficient problem solving. Two, they provide

a compact description of the no-good sets. For example, the

no-goods determined from the constraint, “Class Foo of

word-processing programs need letter-quality printers”, can be

compactly expressed as:

(((Word-Processing Foo) (Printer Dot-Matrix)),

((Word-Processing Foo) (Printer Thermal)))

In other words, no-goods can be represented compactly by

pairs of inconsistent classes. Without the use of taxonomies, one

would need to enumerate the actual printers and

word-processing programs that are now represented by the

classes Dot-Matrix, Thermal, and X. Finally, taxonomies provide a

compact language for describing the solutions to the constraint

problem. For example, instead of enumerating the sets of

components that are consistent, one might be able to express

them more succinctly in terms of these taxonomies. For example,

((Word-Processing X) (Printer Letter-Quality)) compactly

describes a potentially very large set of solutions.

5. atural taxonomies

In practice, it may not be easy to automatically compute an

appropriate way of organizing a set of components in a hierarchy
that is most effective during search. There may be competing ways

of decomposing a component, some offering search advantages

over the others. Furthermore, common part decomposition

involve multiple component properties. The decomposition search

space for computing all possible ways of finding common parts is a

power set over the set of properties in a component. Natural

taxonomies that evolve over a period of use by different users in

some domains provide some relief from those problems.

Essentially, taxonomies can be used to represent pre-determined

decisions about how to abstract common parts. The different

levels of the taxonomy reflect a decision about which variables are

more useful to commit to earlier. As we pointed out previously,

this decision is intrinsically tied to the nature of the constraints

and choices. One can conjecture that the evolution of these

taxonomies reflects a continuing experimentation with ways to

make the proper choices with respect to features to abstract. A

stable taxonomy, as obtained from domain experts, represents a

compilation of these prior experimentations.

Another kind of decision embedded in a taxonomy is the

grouping of variables in a node. Consider the case where a set of

choices can be abstracted along different dimensions by finding

different common parts. The constraint relationships might be

such that instead of walking down a hierarchy, making

progressively larger choices (i.e., involving more variables), it

might make more sense to directly commit to two or more

variables. These meta-level choices are again reflected in how the

taxonomies are created. Note, that instead of viewing these kinds

of properties of taxonomies as a given, one can use them actively

in developing suitable taxonomies. Thus, there is a duality

between characteristics of existing taxonomies and problem

solving criteria for forming new ones. Use of taxonomies also

helps in acquiring and maintaining the knowledge-base of

components and constraints (see [Frayman and Mittal, 19871 for

an extended discussion).

. sin

Use of taxonomies suffers from one potentially fatal flaw.

Consider what happens if the choices and constraints are such that

a suitable hierarchical classification cannot be made or is not

made. In the worst case, all the choices may be grouped under a

single class. Taxonomies would not only not help but may lead to

much wasted effort while the other nodes are rejected. Another,

and more common, situation can occur when there are alternate

ways of classifying some choices and it cannot be pre-determined

which of those ways is more useful. Figure 3 shows three alternate

ways of classifying printers, each of which is useful in resolving

some of the constraints some of the time. Any single hierarchy

which merges these three will lead to the wrong partial choice

some of the time.

Printe Printe

Printe

etterQualdty

ear Letter Quality

raft Quality

Figure 3. Alternate ways of classifying printers.

We briefly sketch a method whereby one can search using

multiple alternate ways of organizing a set of choices. The basic

idea is to extend the problem solver to simultaneously make

Mittal and Frayman 635

partial choices in each of the alternate hierarchies. For example,

instead of just selecting a node in a single hierarchy, the problem

solver can select a node in one of the hierarchies that is most

relevant to the constraint being considered. Each such partial

choice would lead to certain constraints being processed, which in

turn would allow further inferencing. Once all the constraints

have been satisfied, then the choices described by the chosen

nodes in each of the hierarchies can be intersected to find the

actual solutions. For example, the problem solver could be
simultaneously making partial choices from each of the

hierarchies shown in Figure 3. At the end of constraint

satisfaction, the printer choices might be described by:

{HighSpeed & LetterQuality & Laser). By intersecting the sets of

printers described by these classes one gets the actual set of

printers which constitute all consistent solutions. Note that the

same intersection technique can be used during the intermediate

stages of problem solving to quickly determine if the current

partial choices are mutually consistent. By allowing multiple

hierarchies one can avoid the problems associated with a single

internal to the set of variables comprising a component) to be

ignored. We suspect that both of these ideas can be effectively

used together. Another difference between the two works is that

while arc consistency algorithms only remove some of the

inconsistencies, partial choice methods are also effective in

finding consistent solutions to the complete CSP problem. A

continuing area of investigation for us is to extend some of the

existing constraint reasoning methods in a way that incorporates

partial choice ideas, especially the use of multiple taxonomies. We

are also investigating if our ideas can also be incorporated in the

various network consistency algorithms [Mackworth, 1977;

Mackworth et al., 19851.

We are grateful to Agustin Araya and Mark Stefik for useful

discussions of some of the ideas presented in this paper. Danny

Bobrow, Johan de Kleer, and Mark Stefik gave insightful

comments on earlier draft of this paper. Danny pointed out the

relationship to the work on minimization of boolean terms.
taxonomy.

1. Conclusion [Araya and Mittal, 19871 A. Araya and S. Mittal. Compiling design

plans from description of artifacts and problem solving

heuristics. To appear in Proc. l/CA/-87, Milan, Italy,

International Joint Committee for Artificial Intelligence,

August 1987.

[de Kleer, 19861 J. de Kleer. An assumption-based TMS. Artificial

This paper introduced the notion of partial choice for constraint

satisfaction problems in structured domains. Partial choice

represents an improvement over the least commitment strategy

when least commitment has to rely on guessing to proceed. There

are two flavors of partial choices -partial commitments are partial

choices that do not have to be retracted and partial guesses which

are partial choices that may be retracted. Partial commitments are

applicable in case alternate choices have a common part and

involve computing the entailments of the previously made

decisions. Partial guesses are applicable in case alternative choices

do not have a common part, but can be divided into

non-intersecting subsets with common parts. Partial guesses select

such subsets which allows the whole subsets to be ruled out

Intelligence, 28(2): 127- 162, March 1986.

[de Kleer and Brown, 19861 J. de #leer and J. 5. Brown. Theories of

Causal Ordering. Artificial Intelligence, 29(1):33-61, July

1986.

[Frayman and Mittal, 19871 F. Frayman and 5. Mittal. Cossack: A

constraints-based expert system for configuration tasks. To

appear in Proc. 2nd Intl. Conf. on Applications of A/ to Eng.,

Boston, MA., August 1987.

networks [Mackworth, 19771 A. K. Mackworth. Consistency in

relations. Artificial Intelligence, 8: 99-l 18, 1977

of

[Mackworth et al., 19851 A. K. Mackworth, J. A. Mulder, and W. 5.

Havens. Hierarchical arc consistency: exploiting structured

domains in constraint satisfaction problems. Computationa/

/nte//igence, 1(3-4):118-126, August - November 1985.

without considering all their elements. A common thread

through all the ideas presented here is the use of description of

classes of solutions as opposed to the actual solutions. Working

with such descriptions, in appropriate cases, can both help reduce

the search as well as find multiple solutions.

Our use of hierarchies for structuring a set of choices is

similar in some ways to the use of hierarchical domains for arc

consistency, i.e., removal of local inconsistencies for binary

constraints [Mackworth et al., 19851. In some ways the notion of

partial choice as applied to structured values is complementary to

the use of hierarchies in [Mackworth et al., 19851. There

hierarchies are an effective way to organize the choices for a

variable without any consideration to the internal structure of

the choices. We are particularly concerned about situations where

the choices have internal structure in terms of additional variables

and constraints. Thus, hierarchies are a way of organizing a set of

variables that effectively allows a set of constraints (i.e., ones
[Stefik, 19811 M. J. Stefik. Planning with constraints. Artificial

Intelligence, 16(2) : 1 1 1 - 140, 198 1.

[Mittal et al., 19861 5. Mittal, C. L. Dym, and M. Morjaria. PRIDE:

An Expert System for the Design of Paper Handling Systems.

Computer, 19(7):102-l 14, July 1986.

[Mittal and Araya, 19861 S. Mittal and A. Araya. A

Knowledge-Based Framework for Design. In Proc. AAAI-86,

pages 856-865, Philadelphia, PA., American Association for

Artificial Intelligence, August 1986.

636 Engineering Problem Solving

