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Constraint problems derived from design and 

configurations tasks often use components (structured 

values) as domains of constrained variables. Most existing 

methods are forced into unnecessary search because they 

assign complete components to variables. A notion of 

partial choice is introduced as a way to assign a part of a 

component. The basic idea is to work with descriptions of 

classes of solutions as opposed to the actual solutions. It is 

shown how this idea can reduce search and in the best case 

eliminate search. A distinction is made between a partial 

commitment (a partial choice that would not be retracted) 

and a partial guess. A particular way to implement partial 

choice problem solvers is discussed. This method organizes 

choices in a taxonomic classification. Use of taxonomies not 

only helps in pruning the search space but also provides a 

compact language for describing solutions, no-goods, and 

representing constraints. It is also shown how multiple 

hierarchies can be used to avoid some of the problems 

associated with using a single hierarchy. 

lidi 
A central component of many design tasks is a constraint 

satisfaction problem (CSP) as defined by Mackwot-th [Mackworth, 

19771, i.e., finding consistent assignment of values for a set of 

variables that together define the artifact which is the output of 

the design task. These variables are constrained by expressions 

derived from structural, functional, and performance 

requirements (see [Mittal and Araya, 19861, and [Araya and 

Mittal, 19871 for a more detailed articulation of this approach). An 

important characteristic of such constraint problems, i.e., the ones 

formulated for design tasks, is the use of structured values to 

represent domains of variables. Simply stated a structured value 

has internal structure in terms of additional variables with 

corresponding values. It is not hard to see why this is convenient. 

In design tasks, one often has pre-defined components that are 

used to define the domain of some of the design variables. Use of 

certain pre-defined resistors in discrete circuit design or the use of 

fixed sets of components in computer configuration are some 

examples. Unfortunately, most of the general-purpose methods 

for constraint satisfaction work at the level of making a complete 

choice for a variable and rely on some form of least commitment 

to defer making a guess to minimize search. In this paper, we 

introduce the idea of making a partial choice, which is especially 

appropriate for variables that have structured values (henceforth 

components). 

The paper is organized as follows. We start with a simple 

example involving the use of components and show how the 

existing methods are forced into unnecessary search because they 

have to choose a complete component. Next, we introduce the 

notion of partial choice and how it reduces search. The basic idea 

of partial choice is to operate on descriptions of sets of solutions 

as opposed to actual solutions. In some situations, a partial choice 

can be viewed as a commitment that will not be retracted. A 

partial commitment may thus be viewed as an extension of the 

least commitment principle. We also discuss situations in which no 

partial commitment can be made and one has to resort to a 

partial guess. Making a partial choice affords benefits similar to 

hierarchical search, i.e., pruning of choices without having to 

examine all choices. In the next section, we show that taxonomies 

are one way to implement partial choices. We also show how 

multiple taxonomies can be simultaneously used to avoid having a 

particular order in which partial choices are made, something that 

results from using a single hierarchy. Some of these ideas have 

been implemented in two design expert systems, Pride [Mittal et 

al., 19861 and Cossack [Frayman and Mittal, 19871. 

In the first part of the paper we will use the following very simple 

constraint problem. 

Example 1. There are two variables X and Y. Each has two 

components as possible choices (in other words their domains). 

The components in turn can be viewed as having two distinct 

fields: pl and p2 for components in the domains of X and Y. We 

shall use curly braces ({}) to represent the choices for a variable 

and square brackets ([I) to represent a component. The choices for 

X and Y are: 
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x: {[pi :a, p2: b] [pl :a, p2:c]} and Y: {[pl :d, p2:elI~l :d, p2:f]) the constraint problem in such a way that arbitrary choices can be 

We shall further use the dot notation to refer to nested 

variables. Thus, X.pl means the value of the pl field of the 

component assigned to X. The constraints on X and Y are: 

minimized. In simple terms, one can think of least commitment as 

a technique for deferring a variable assignment as long as possible 

if multiple choices are possible and enough constraints are not 

known that would allow one to commit to the right choice. In 
Cl : X.pl = a iff Y.p2 = e; C2: Y.pl =d iff X.p2 = c other words, avoid making a guess as long as possible in order to 

The constraint Cl reads, “X.pl has value a if and only if Y.p2 

has value e”. This problem has four candidate solutions (2 choices 

for X x 2 choices for Y) and only one solution: 

minimize backtracking. In our example, the choices and 

constraints are such that no particular order of assigning values or 

checking the constraints helps in reducing the search. 

x = [pl :a, p2:c] and Y = [pl :d, p2:el V. Use 

The idea of making a partial choice is deceptively simple. 
In this section, we shall briefly analyze the performance of some However, instead of just stating it we will motivate it by the 
of the general-purpose methods for doing constraint search on following exercise. 
the above problem. 

A. Generate and test 

Using generate and test (G&T), one would build a generator that 

generates candidate solutions by making all possible assignments 

to X and Y. The constraints would be used to test the acceptance 

of the candidates. It is easy to see that in this case, the generator 

would produce 4 candidates, only one of which will be acceptable. 

A. “Flattening”’ the components 

The basic common cause of search in the methods discussed in the 

previous section can be traced to the fact that each component 

really represents a pre-packaged assignment of values to many 

variables. This means that a problem solver that assigns such a 

component to a variable ends up with a larger commitment than 

is warranted. Consideration of later constraints may lead to a 

variables in some order to define partial candidates. Prune a 

partial candidate if any constraints can be applied. This improves 

over G&T in general. But in our example, the constraints can only 

. Hierarchical Generate and test 

We define hierarchical G&T as follows. Assign values to the 

problem to the following problem. There are four independent 

variables: X.pl, X.p2, Y.pl, Y.p2 with the following domain of 

contradiction for some of these assignments, causing the problem 

solver to search. This is easy to see if we eliminate the use of 

components, i.e., “flatten” them, and transform the above 

values: 
be tested after both variables have been assigned values and thus 
no benefit results. Note that chronological backtracking is a 

X.pl : {a); X.p2: {b, c); Y.pl : {d}; Y.pZ: (e, f}. 

standard way to implement hierarchical G&T. 

would minimize search and in our example find the correct 

solution without any search. In general, however, the above 

One can easily build a least commitment problem solver that 

C. Constraint propagation 

Another common technique is constraint propagation as 

described in [de #leer and Brown, 19861. This is like hierarchical 

G&T with the constraints folded into the generator in such a way 

that they can be used to “look-ahead” for making more 

constrained choices for the other variables. In our example, 

constraints can be used inside the generator in the following way. 

Once a choice is made, say for X, constraint Cl can be used to 

make a choice for Y that satisfies that constraint. Clearly, this has 

advantages if the constraints can be so folded into the generator. 

However, only one of the two initial choices for X or Y is the 

correct one so in half the cases one would still have to search. 

However, as we shall show one can still do better. 

D. Least Commitment Approaches 

problem transformation would be incorrect. Consider the 

problem defined in figure 1 (example 2, s$c. IV.B.2). Simply 

“flattening” the components changes a 2-variable problem with a 

search space of 16 to a 4-variable problem with a search space of 

64. This is because the use of components already represents the 

result of doing constraint satisfaction on this flattened set of 

variables with their own domains. In essence, components 

represent solutions to a set of constraints which can then be 
ignored because they are already implicit in the components. 

Alternately, one can view components as the result of doing some 

kind of compilation of the constraints on sub-sets of variables, 

which now correspond to components. By going back to the 

flatter set of variables, we will have to re-introduce those 

constraints, undoing past work. Real design problems often have 

One approach that has sometimes been very effective is the use of 

some kind of least commitment problem solver as implemented in 

Molgen [Stefik, 19811 or more recently in the Pride expert system 

[Mittal and Araya, 19861. In both of the above systems, least 

commitment is practiced by employing techniques for ordering 

hundreds of variables with tens of components per variables. 

In summary, flattening such problems affects the search 

efficiency in two ways. One, flattening the components causes the 

search space to grow exponentially. Remember that the increase 

in the search space comes both from increasing the number of 
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variables as well as by, possibly, increasing the domains for the 

variables. Two, flattening brings back the constraints which had 

been compiled away, increasing the time complexity at least 

linearly. 

artial choices: the best of both worlds 

It is easy to state the notion of partial choice now. Simply, it is a 

way to make a commitment to only a part of a component in the 

expectation that such a partial choice would allow constraints to 

be considered to enable a better choice1 for the rest of the 

component at a later point in problem solving. The idea is that 

where one wauld resort to guessing, one now selects an 

appropriate description for a class of components. This description 

may not uniquely apply to a single component but should be 

specific enough to enable further inferences to be made. At the 

same time it should not be so specific that it has to be retracted, at 

least avoidably so. We differentiate between partial commitment 
- a partial choice that does not have to be retracted and partial 

guess - a partial choice that may have to be removed later in the 

processing. Partial choice refers to both partial commitment and 

partial guess. 

1. Partial Commitment 

Consider example 1 of section II. A partial commitment for X 

would be to commit to pl =a because that is common to all 

choices of X. Similarly, for Y commit to pl = d because that is 

common to all choices for Y. With these partial commitments, the 

constraints Cl and C2 can be used to select the correct component 

for X and Y. In effect, by allowing partial commitments we get the 

best of both worlds. By continuing to operate on components, 

albeit partially, we preserve the advantages of components, i.e., 

prior solutions to other constraints and a reduced search space. At 

the same time we get the benefits of being able to consider the 

fields of a component as independent variables which allows 

finer-grain commitments to be made (or deferred). 

ab acYde df 

At any moment during problem solving, when there is more 

than one alternative to be selected from and least commitment 

has to resort to guessing, the notion of partial commitment is 

applicable. Partial commitment involves examining the set of 

alternatives and determining a common part present in all the 

alternatives or the facts which will be true no matter which 

alternative is selected. Partial commitment is a monotonic 

inference, i.e., it never has to be retracted. Another way of 

viewing partial commitment is as means of calculating the 

entailments of the previously made decisions or making explicit 

the facts already available in an implicit form. 

A problem solver that uses partial commitment would 

progressively commit to more fields of a component until all of 

them are assigned values. The major benefit of partial 

Figure 1. Choices and solutions for example 2. 

It is not possible to use the partial commitment approach as 

it has been introduced earlier, since there is no common part for 

any of the 4 possible choices for X and Y. It is necessary to 

introduce some modifications for the partial choice idea to make 

it work in this case. The modified approach will be called partial 

1 By “better choice” we mean a choice that minimizes 

backtracking. 

commitment approach is reducing search (backtracking) since a 

potentially retractable full commitment is replaced by a safe 

partial commitment. Another benefit of partial commitment has 

to do with finding all solutions of the constraint satisfaction 

problem. Since making a partial commitment does not make any 

unnecessary commitments that have to be retracted later, the 

state of the computation implicitly carries all the solutions to the 

CSP problem. 

2. Partial Guess 

The notion of partial commitment crucially depends on the 

existence of a common part for a set of alternatives. Often, there 

is nothing common among all the choices considered. We 

introduce the notion of partial guess to make the same idea work 

in thiscase. Let’s consider the following example. 

Example 2. There are two variables X and Y having two fields 

pl and p2 with identical domainsof possible values: 

X: {[pl :a, p2: b] [pl :a, p2:c] [pl :d, p2:e] [pl :d, p2:f]} 

Y: {[pl :a, p2:b] [pl :a, p2:c] [pl :d, p2:e] [pl :d, p2:f)) 

The domains of the variables internal to these components, pl 

and p2, are: 

pl : {a, d}; p2: {b, c, e, f} 

The constraints on X and Y are: 

Cl: X.pl = a iff Y.pl =d; C2: Y.p2=e iff X.pZ=c 

C3 X.pl =d iff Y.pl =a; C4 Y.p2=c iff X.p2 =e 

Figure 1 shows all 16 candidate solutions with four solutions 

marked : 
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guess approach. The partial guess approach is based on the idea 

that it is possible to introduce subsets of the original set that have 

common parts and make commitments to the introduced sets, 

instead of committing to individual components. The subsets with 

common parts for our example are shown in Figure 2. 

Figure 2. Choices for X and Y in example 2 organized as 
a tree. 

Since the common part decomposition is based on pl we will 

use pl for the first decision. There are multiple alternatives for 

both X.pl, Y.pl and we arbitrarily2 select assignment of value to 

X.pl first. There are 2 possible values X.pl = a or X.pl = d. We will 

choose arbitrarily X.pl = a. Assuming that the problem solver can 

use constraints in the generation3 of alternatives, the first 

constraint Cl can be used to assign Y.pl =d. Making a partial 

guess of X.pl =a effectively reduced the search space by 

eliminating four choices in the top-left quadrant in Figure 1 from 

viable solution candidates. Thus, making partial guesses 

effectively cuts down the search space by providing the benefit of 

a hierarchical search. A solution for the problem in Example 2 can 

be found easily by further examining the set of solution 

candidates left. 

It is necessary to point out an important difference between 

making partial guesses with the introduced subsets and making a 

partial commitment as illustrated by Example 1. Guesses with the 

introduced sets are retractable, while partial commitments are 

monotonic and do not involve any guessing. 

2 To simplify the discussion, the problem was structured 

symmetrically in order to eliminate the reasoning in 

choosing the preferred order of making commitments. 

Selecting Y.pl at this point will work similarly. 

3 The ideas are still applicable in case the problem 

use constraints in the generation phase. 

solver can not 

some common descriptions. Partial choice strategy is also 

preferred to the flattening approach in cases when components 

have large number of properties or when the properties have 

large domains of values. In such cases flattening approach will 

increase the search space of possible values describing an 

individual component to the product of the domain sizes for every 

component property, while partial choice strategy will operate on 

the search space defined by a number of distinct component 

alternatives. 

So far we have presented these ideas in terms of assigning a 

partial component to a variable and thereby reducing search. One 

can also think of partial choice as a method for working with a 

description of classes of solutions, instead of working with actual 

solutions. In the examples we used for illustration the common 

part (either as a committment or as a guess) represented a 

description of a set of choices which could be instantiated by 

filling in the other variables of the components to obtain the 

complete components. Viewed this way, partial committment is 

the special case where a description applies to all members of a 

set. As a result, the description is a monotonic inference. Partial 

guess is the general case where the description may cover only a 

sub-set and may have to be retracted as the problem solving 

proceeds. We elaborate on this view in the next section where we 

present the use of taxonomies as a particular way of representing 

the descriptions of solution sets. 

There is a long history in Al of representing a set by abstracting 

the common parts and organizing the set in a taxonomic 

classification. The same basic idea can be used as a way of 

organizing choices for constraint problems. A set of component 

choices can be organized in a hierarchy. intermediate nodes in this 

hierarchy represent a subset of the choices characterized by some 

common description of all the choices. For example, in a computer 

configuration problem, the set of printers may be organized in a 

taxonomy of high speed, medium speed, and low speed printers. 

The high speed printer node represents the subset of printers that 

all have speeds greater than say 1OOcps. Notice that at this level of 

description of the set, nothing is said about other properties of 

printers such as technology of printing, quality of printing, cost, 

interface, etc. 

A. Searching with taxonomies 

We briefly sketch a method for using taxonomic grouping of 

choices for making partial choices. The basic ideas are as follows. 

First, the choices for variables are organized into taxonomies. 

Second, instead of committing to a complete component as the 

value of a variable, we allow a more abstract description to be 
assigned to a variable. This description is a node in a pre-defined 

taxonomy. Third, the constraints have to be written in such a way 

that they can operate on these taxonomic descriptions. Finally, the 
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search methods operate by moving down the taxonomy. If the 

correct taxonomic node cannot be committed to and a guess has 

to be made, it is made by selecting one of the nodes. If the choice 

later proves to be incorrect, then the problem solver backs up and 

selects another node. If a choice at some level does not allow all 

the applicable constraints to be processed, the problem solver 

descends to the next level and makes further choices. Notice that a 

retracted node allows a whole set of choices to be marked as 

no-goods (in ATMS terms [de Kleer, 19861) without having to 

examine them individually. Furthermore, the chosen node 

represents a partial choice that would allow further inferencing. 

Space limitations do not allow detailed consideration of the 

algorithmic choices for building such problem solvers. 

We summarize some of the advantages of using taxonomies 

for organizing choices. One, they allow partial choices to be made 

which leads to more efficient problem solving. Two, they provide 

a compact description of the no-good sets. For example, the 

no-goods determined from the constraint, “Class Foo of 

word-processing programs need letter-quality printers”, can be 

compactly expressed as: 

(((Word-Processing Foo) (Printer Dot-Matrix)), 

((Word-Processing Foo) (Printer Thermal))) 

In other words, no-goods can be represented compactly by 

pairs of inconsistent classes. Without the use of taxonomies, one 

would need to enumerate the actual printers and 

word-processing programs that are now represented by the 

classes Dot-Matrix, Thermal, and X. Finally, taxonomies provide a 

compact language for describing the solutions to the constraint 

problem. For example, instead of enumerating the sets of 

components that are consistent, one might be able to express 

them more succinctly in terms of these taxonomies. For example, 

((Word-Processing X) (Printer Letter-Quality)) compactly 

describes a potentially very large set of solutions. 

5. atural taxonomies 

In practice, it may not be easy to automatically compute an 

appropriate way of organizing a set of components in a hierarchy 
that is most effective during search. There may be competing ways 

of decomposing a component, some offering search advantages 

over the others. Furthermore, common part decomposition 

involve multiple component properties. The decomposition search 

space for computing all possible ways of finding common parts is a 

power set over the set of properties in a component. Natural 

taxonomies that evolve over a period of use by different users in 

some domains provide some relief from those problems. 

Essentially, taxonomies can be used to represent pre-determined 

decisions about how to abstract common parts. The different 

levels of the taxonomy reflect a decision about which variables are 

more useful to commit to earlier. As we pointed out previously, 

this decision is intrinsically tied to the nature of the constraints 

and choices. One can conjecture that the evolution of these 

taxonomies reflects a continuing experimentation with ways to 

make the proper choices with respect to features to abstract. A 

stable taxonomy, as obtained from domain experts, represents a 

compilation of these prior experimentations. 

Another kind of decision embedded in a taxonomy is the 

grouping of variables in a node. Consider the case where a set of 

choices can be abstracted along different dimensions by finding 

different common parts. The constraint relationships might be 

such that instead of walking down a hierarchy, making 

progressively larger choices (i.e., involving more variables), it 

might make more sense to directly commit to two or more 

variables. These meta-level choices are again reflected in how the 

taxonomies are created. Note, that instead of viewing these kinds 

of properties of taxonomies as a given, one can use them actively 

in developing suitable taxonomies. Thus, there is a duality 

between characteristics of existing taxonomies and problem 

solving criteria for forming new ones. Use of taxonomies also 

helps in acquiring and maintaining the knowledge-base of 

components and constraints (see [Frayman and Mittal, 19871 for 

an extended discussion). 

. sin 

Use of taxonomies suffers from one potentially fatal flaw. 

Consider what happens if the choices and constraints are such that 

a suitable hierarchical classification cannot be made or is not 

made. In the worst case, all the choices may be grouped under a 

single class. Taxonomies would not only not help but may lead to 

much wasted effort while the other nodes are rejected. Another, 

and more common, situation can occur when there are alternate 

ways of classifying some choices and it cannot be pre-determined 

which of those ways is more useful. Figure 3 shows three alternate 

ways of classifying printers, each of which is useful in resolving 

some of the constraints some of the time. Any single hierarchy 

which merges these three will lead to the wrong partial choice 

some of the time. 

Printe Printe 

Printe 

etterQualdty 

ear Letter Quality 

raft Quality 

Figure 3. Alternate ways of classifying printers. 

We briefly sketch a method whereby one can search using 

multiple alternate ways of organizing a set of choices. The basic 

idea is to extend the problem solver to simultaneously make 
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partial choices in each of the alternate hierarchies. For example, 

instead of just selecting a node in a single hierarchy, the problem 

solver can select a node in one of the hierarchies that is most 

relevant to the constraint being considered. Each such partial 

choice would lead to certain constraints being processed, which in 

turn would allow further inferencing. Once all the constraints 

have been satisfied, then the choices described by the chosen 

nodes in each of the hierarchies can be intersected to find the 

actual solutions. For example, the problem solver could be 
simultaneously making partial choices from each of the 

hierarchies shown in Figure 3. At the end of constraint 

satisfaction, the printer choices might be described by: 

{HighSpeed & LetterQuality & Laser). By intersecting the sets of 

printers described by these classes one gets the actual set of 

printers which constitute all consistent solutions. Note that the 

same intersection technique can be used during the intermediate 

stages of problem solving to quickly determine if the current 

partial choices are mutually consistent. By allowing multiple 

hierarchies one can avoid the problems associated with a single 

internal to the set of variables comprising a component) to be 

ignored. We suspect that both of these ideas can be effectively 

used together. Another difference between the two works is that 

while arc consistency algorithms only remove some of the 

inconsistencies, partial choice methods are also effective in 

finding consistent solutions to the complete CSP problem. A 

continuing area of investigation for us is to extend some of the 

existing constraint reasoning methods in a way that incorporates 

partial choice ideas, especially the use of multiple taxonomies. We 

are also investigating if our ideas can also be incorporated in the 

various network consistency algorithms [Mackworth, 1977; 

Mackworth et al., 19851. 
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