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ABSTRACT 
Intuitively, discontinuous changes can be seen as very 
rapid continuous changes. A couple of alternative 
methods based on this ontology are presented and 
compared. One, called the approximation method, 
approximates discontinuous change by continuous 
function and then calculates a limit. The other, called 
the direct method, directly creates a chain of 
hypothetical intermediate states (mythical instants) 
which a given circuit is supposed to go through during 
a discontinuous change. Although the direct method 
may fail to predict certain properties of discontinuity 
and its applicability is limited, it is more efficient 
than the approximation method. The direct method 
has been fully implemented and incorporated into an 
existing qualitative reasoning program. 

I . Introdmctisn 
Continuous change is a notion in which quantities are 
assumed to take a certain amount of time to change 
value. Discontinuous changes are those to which this 
assumption does not apply; quantities can change 
value in a moment. 

Notion of discontinuous change plays a crucial role 
in characterizing the behavior of dynamic systems, 
such as nonlinear oscillators or flip-flops, without 
worrying about unmotivated details. At the 
commonsense level, the notion of discontinuous 
change seems to be natural; things appear to 
suddenly stop moving, collide, disappear and so on. 

Unfortunately, analysis of discontinuous changes 
is not easy. This is mainly because ordinary models 
for physical systems (e.g., circuit equations) do not 
always specify the system’s behavior under 
discontinuous change in full detail. In textbooks, this 
problem is often solved by using an ontology in which 
discontinuous change is very rapid continuous 
change. 

A couple of alternative methods are possible to 
implement this view. One, called the approximation 
method, approximates discontinuous change by a 
continuous function and then calculates a limit. The 

other, called the direct method, uses a notion of 
mythical instants to describe hypothetical 
intermediate states which a given circuit is supposed 
to go through during a discontinuous change. 

In this paper, we present and compare these two 
algorithms. We base our theory on qualitative 
reasoning, a formal theory for causal understanding, 
and we choose electronic circuits as a subject domain. 
In the next section, we study properties of 
discontinuous changes. In section ill, we will briefly 
overview previous work in qualitative reasoning and 
see how discontinuity has been handled. In sections 
IV and V, we will describe the two algorithms 
separately, and in section Vl, we will compare the two 
and summarize the discussion. 

The varieties of discontinuous changes depend on the 
physical model employed. In this paper, we study 
discontinuous changes arising in piecewise linear 
equation models for electronic circuits, since the use of 
piecewise linear equations is one of the most popular 
techniques in the electronic circuit domain. In this 
modeling, nonlinear circuit elements, such as diodes 
or transistors, are described with multiple operating 
regions. Circuit devices modeled with multiple 
operating regions will be called multiple-mode devices. 
Figure 1 shows the models for diodes and transistors 
we employ for explanation in this paper. Although 
they might appear too simple, they suffice for the 
discussion below, since the same kind of phenomena 
arise even when more complex models are used, as 
will be seen below. 

Possible causes of a single occurrence of 
discontinuous change arising in piecewise linear 
circuit models can be classified into three categories: 

(Al) discontinuous input 
(A2) mode transition of a multiple-mode device 
(A3) positive feedback without time delay. 
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(a) A model for diodes. (b) A model for transistors. 
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Figure 1. Device models in 

(uO is a positive constant.) 
piecewise linear equations. 

Discontinuous change caused by cause category Ai 
will be referred to as type Ai discontinuity. 

Properties of type Al discontinuity have been 
studied in depth in the field of transient analysis. 
Mathematical techniques such as Laplace or Fourier 
transform methods are studied to see how 
discontinuous input affects a given circuit. However, 
humans seem to use much simpler method when they 
characterize the behavior of many pulse circuits at a 
commonsense level. 

Type A2 discontinuity results from the use of 
piecewise linear equations as a circuit model. For 
example, the diode model shown in figure l(a) causes 
derivatives of current or voltage to change 
discontinuously when the operating region of the 
diode transitions. If detailed, nonlinear description of 
a circuit device is used, discontinuity of this type 
might disappear. However, abstract, less precise 
models are more useful in characterizing the behavior 
of nonlinear devices in such circuits as regulators, 
TI’L, or Schmitt triggers. Note also that as long as we 
use a piecewise linear model, we cannot avoid 
discontinuous change (at least of first order 
derivatives) on mode transition. 

Positive feedback without time delay may 
accelerate any small disturbance ad infinitum, 
resulting in type A3 discontinuity. Positive feedback 
is not rare in electronic circuits; positive feedback is 
observed in circuits containing devices such as tunnel 
diodes which exhibit negative incremental resistance 
in some operating mode, or one can design a circuit 
with positive feedback to create a memory (or a stable 
state), to generate pulses, and so on. In fact, the latter 
is an important technique in digital circuit design. 
Note that a positive feedback will not result in value 
jump, if the feedback factor is less than I. Note also 
that ordinary qualitative reasoners may produce an 
undesired result unless positive feedback is correctly 
recognized and handled. 
B. Properties of Discontinuous Change 
Discontinuous change arising from piecewise linear 
models has at least two properties. 

(Property 1) Causal structure of the system may 
change during discontinuous change. Theories of 
qualitative reasoning view causality as a value 
dependency among variables. More computationally, 
it can be seen as information flow from the cause to 
the effect [de Kleer and Brown, 19841. When a circuit 
consists only of passive elements, such as resistors or 
capacitors, its causal structure will not change in 
general. In contrast, when multiple-mode devices are 
involved, the causal structure of a circuit may change 
drastically, due to the transition of operating mode. 
An analysis program should be able to recognize and 
keep track of the change of causal structure so as to 
generate a causal explanation. 

(Property 2) A number of discontinuous changes of 
different types may occur one after another. 
Discontinuous change applied to the input of a given 
circuit will be propagated into other parts, possibly 
creating a complex chain of events. The problem here 
is that ordinary circuit equations do not contain 
sufficient information to explain this process in 
stepwise, causal terms. Consider the hypothetical 
circuit shown in figure 2. In textbooks of electronic 

vcc 

Figure 2. A hypothetical transistor circuit. 

engineering, the behavior of this circuit with UIN being 
raised from zero is usually explained as follows: 

when unv rises and reaches some level, TRI will turn ON, 
causing TR2 to turn OFF, causing TR3 to turn ON. 

This explanation implicitly assumes the following 
states: 

state-l: TRl: OFF, TR2: ON, TR3: OFF 
state-2 TRl: ON, TR2: ON, TR3: OFF 

state-J: TR1: ON, TR2: OFF, TR3: OFF 

state-4: TRl: ON, TR2: OFF, TR3: ON. 
Among these, state-2 and state-3 are mythical in the 
sense that they do not satisfy circuit equations 
employed here. By definition, mythical instants 
terminate instantaneously. Although one might want 
to use only legal states (namely, state-l and state-c?), a 
resulting explanation would be acausal and magical. 
This kind of situation arises as long as one uses an 
abstract model to capture the physical world. The 
direct method attempts to use mythical states to 
create a causal explanation. 

III. Previous Work 
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So far, the mainstream of qualitative reasoning has 
been analysis under continuity assumption [de Kleer, 
19841 [Kuipers, I.9841 Williams, 19841. Analysis of 
discontinuous change has received an inadequate 
treatment. In the domain of electronic circuits, J. de 
Kleer and B. Williams each have given algorithms for 
analyzing operating mode transition. De Kleer’s 
EQUAL does not allow discontinuous change even 
when a mode transition occurs [de Kleer, 1984, p. 
2’721. Williams allows discontinuous change only 
when discontinuity is explicitly indicated in a device 
model. But neither of the two deals with type Al or 
A3 discontinuity or property (2). 

Qualitative Process (QP) theory [Forbus, 19841 has 
more flexibility with discontinuous changes. 
Discontinuous change is allowed when processes are 
switched or when a special process, one for collision for 
instance, comes into play. Unfortunately, the process 
centered ontology of QP theory does not seem to match 
the device centered view taken by circuit engineers. 
Aggregation theory [Weld, 19851 also handles 
discontinuity, but from a different perspective. 

Iv. 
A. Outline sf the Method 
If discontinuous changes are very rapid continuous 
changes, it would be natural to approximate them by 
continuous change and then to calculate a limit. This 
idea can be implemented using a simple version of 
infinitesimal calculus. The analysis is carried out in 
two stages: 

1. Replacing discontinuous input by qualitatively 
continuous change in infinitesimal calculus. 

2. Carrying out envisionment using an 
infinitesimal calculus. A number of techniques 
[Robinson, 19661 [Nishida et al., 19851 [Raiman, 19861 
are available for this. For the purpose of this paper, 
our simpler method will do. We use a set of symbols 
(0, e(infinitesimal), M(medium), m (infInitely large)}, to 
represent order of magnitude. Among these symbols, 
we can define some obvious rules, such as E +E =E, 
&+M=M, &X&l=&, ~xQ3 =?, etc. We use a value interval 
to represent the range of the changing value. For 
example, C--E, 1~) means that the value is changing 
between some negative infinitesimal and some 
positive mid-range value. We abbreviate (a, a) as a. 

In order to see the possible behavior of a given 
system over time, we can make use of the following 
qualitative integration rule (on time): 

given a time interval Zr [to, 111 and a function fj’t), the value of 
fltl) is constrained by the following formula: 

C~~~llC~~tolJ+~Zengt~ZllXCranger(af~l 
where, length(Z): the length of the interval Z, 

rangedafk the value range of af during the 
interval ZI 

Although this rule seems to be too 
underconstrained, it is useful when the length of 
interval Z is infinitesimal. 

. Application of the 

This method directly applies to the type Al 
discontinuity. Suppose a step input is applied to tbe 
circuit shown in figure 3(a). This discontinuous input 
is approximated to the second order derivatives, as 
shown in figure 3(c). Table 1 shows the result of 

(a) A Circuit (b) Circuit Eouations 

VlN=VCfVR 

C-dvcldt = i 
R-i=vR 

. . . input 
: 

(c) The input. 

V 

__----- 

approximation 

Zlzstantl Interval1 Znstant2 Zatervalg Znstantg 

Figure 3. A sample circuit and approximation of discontinuqus 
input. 

envisionment. The three rows headed by aiVIN 

represent the approximated input. The six POWS 
headed by awe or aiVR are the result of envisionment. 
They are derived by integrating various constraints. 

Table 1. Analysis of type Al discontinuity by the approximation 
method. 

a”vZN 

a1 “IN 

s”IN 

a&c 
al UC 

Znstan.tl Interval1 Instant2 Interval2 
(length E) (length d 

Instant3 

@“R 
a1 VR 

#“R 

a) a~uC(imtant~) =0 is assumed. 

For example, the value of aovc at instant2 is 
constrained using the qualitative integration rule, as 
follows: 

a”uC(ZnstantZ)caovC(Z~~~t~) + 
I Interval1 

bvcdt 

The right handside will be simplified as follows: 

0+&X(-&, +M)=(-&, +&). 
For the value of aoVR at instan&, the value range +M 
obtained by applying the equation: 

a”VR(hSkZn~2) =a”VZN(lnskZn&) - d0VC(znSbZ~2) 

is more precise than that from applying the 
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integration rule (namely, (--I, + ~1). Mence we have 
employed the former. 

For type A2 and A3 discontinuity and property (11, 
however, the above idea does not suggest a solution. 
In order to handle these problems, we use a technique 
called dynamic causal stream analysis [Nishida et al., 
19871, which has some similarity to the transition 
analysis Williams, 19841. Details will be mentioned 
in section V-B, since the same algorithm is also used 
in the direct method. 

Difficulty arises when a discontinuous change 
evolves from the inside of a given system. Suppose for 
instance the situation in figure 4, in which 
discontinuous change evolves at variables ~2, ~3, and 
~4, due to positive feedback. In order to apply the idea 

f 
the input i 

- :. 

P 
the 

‘k-- 
system 

v4 +-” 
q z v4)- . . . . . I 

Figure 4. A situation in 

o : an equation * : direction of causality 
which discontinuous 

internally. 
change evolves 

mentioned above likewise to this kind of situation, we 
must replace each internal occurrence of 
discontinuous change by continuous change before 
propagating them into other parts (involving I$, u3’, 

and ~4’ in this case) of the system. For this purpose, 
the notion of local evolution of time Williams, 19861 
seems to provide an adequate ontology, though it is 
not explored in this paper. 

It is not obvious, however, whether or not the 
above algorithm will eventually terminate with a 
correct state description for the next stable state. The 
problem is complicated since mode transition may 
change the structure of the causal network during the 
above process. Although we have not proved, this 
algorithm seems to work correctly for normal circuits. 

V . The Direct Method 
A. Outline of the Method 
The direct method produces stepwise causal 
explanations for discontinuous changes by admitting 
intermediate mythical states which are not consistent 
with circuit equations. Mythical instants result from 
assuming as a default that the operating mode of 
multiple-mode devices and the value of variables 
constrained by integral will not change unless 
otherwise specified. These assumptions are called 
persistence of operating mode and persistence of 
integrated quantity, respectively. Analysis with these 

default assumptions seems to coincide with our 
intuitions, at least in the electronic circuit domain. 

Unlike the approximation method, the direct 
method does not place any hypothetical time intervals 
of infinitesimal length between adjacent 
instantaneous states during discontinuous change; 
instead, it directly predicts the next instant by 
analyzing the current instant. This process is 
repeated until the algorithm encounters a normal 
instant without any inconsistency. As a result, the 
algorithm will produce a chain of successive mythical 
instants followed by a normal instant for each 
successive occurrence of discontinuous change. 

Our discontinuity-as-a-very-rapid-continuous- 
change ontology is used in various forms in this 
process. For example, we use the following rules: 

[Continuity in discontinuous change] When the value of a 
variable x changes (either continuously or discontinuously) from 
one value a to another b (b*a), change to any value c between e 
and b always occurs before that to b. 

[Adjacency in operating mode transition] A muliple-mode 
device cannot transit from one operating mode to another in one 
transition, unless the next mode is adjacent to the original. 
Like canonicality heuristics [de Mleer and Brown, 
19841, these rules provide a basis of canonical 
explanation. 
B. Analyzing Discontinuity Using the Direct 
Method 
The key idea in analyzing type Al discontinuity is to 
identify variables which will not be instantaneously 
affected by the discontinuous input. Causal analysis 
[Williams, 19841 [Nishida et aI., 19871 helps us do this. 
If it is possible to assign to equations for a given 
circuit causal directions in such a way that no 
differential causality (i.e., data flow from a variable to 
its derivative) is involved, we can safely say that the 
output of each integral causality will remain 
unchanged during discontinuous change. For 
example, we can predict that the voltage UC across the 
capacitor C in the circuit in figure 3 will not be 
affected by a discontinuous input, since we can 
consistently think of the value of UC as being 
determined by integrating i/C. Notice that during the 
above process the predicted state may turn out to be 
inconsistent with the circuit equations. 

Inconsistencies encountered during the analysis 
are analyzed so as to predict the next state. Type A2 
and A3 discontinuity is recognized during the analysis 
of inconsistency. It goes in three steps: 

1. Singling out an incorrect assumption. First, a 
set of assumed equations or inequalities that are 
relevant to the inconsistency (the suspect set) is built 
by tracing back the causal structure from a constraint 
in contradiction; and then, if the suspect set contains 
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mire one element, it is filtered by using canonicality 
heuristics for discontinuous change (some of which are 
mentioned in the last section) and the preference rules 
as follows: an inequality supported by a persistence- 
of-operating-mode assumption is most preferred as a 
culprit, then comes an equation supported by a 
persistence-of-operating-mode assumption, and 
finally an equation supported by a persistence-of- 
integrated-quantity assumption. 

It is possible that the suspect set may still contain 
more than one element. This will produce an 
ambiguous result. 

redicting the next state. If it turns out that a 
ence-of-integrated-quantity assumption is 

supporting the culprit, the assumption is simply 
retracted. This will loosen the current constraints by 
one degree of freedom, resolving inconsistency. 

If a persistence-of-operating-mode assumption is 
blamed for supporting the culprit, the next operating 
mode is sought by examining how circuit equations or 
inequalities get violated. In order to make this 
process run efficiently, we associate a suggestion 
about the next operating mode with each assumption- 
based constraint. For example, associated with an 
inequality VDcV,, (a condition for a diode to be OFF) is 
a note which suggests that if this condition is violated 

rise of vD, then the next operating mode of 
will be ON. Notice that the search for the 
ting mode becomes crucial when multiple- 

mode devices are modeled with many operating 
modes. 

3. Constructing a state description for the next 
state. The state description for the next state is 
obtained from the current state description, rather 
than recomputed from the beginning. First, the 

et of circuit equations and inequalities are 
by r&racting those depending on the culprit 
ng those associated with a new assumption. 

Then, the causal structure for the next state is 
reconstructed, which is used to compute the state 
description. If the state description is obtained 
successfully, the next state is judged as a normal 
instant, followed by an interval. Otherwise, the 
causal structure for a new state is checked for a 

sitive feedback, to see a possibility of type A3 
scontinuity. If this is the case, a special procedure is 

applied to determine the direction of jump and to 
foresee a possible conclusion of the jump. Otherwise 
analysis of inconsistency is repeated. 

A rule for predicting the direction of value jump 
caused by a positive feedback is as follows: 

if a variable in a positive feedback loop depends positively 
(negatively) on the primary cause, the value will jump to the 
reverse (same) direction. 

This rule is derived from an ontological ground. 
Consider for example a system which is modeled by 
equations: x=y+z, and z=K.~ (x: input, K: a constant), 
and let the constant K be set to Ko (~0). A positive 
feedback comes into play if the constant K is changed 
to ~1 ( C-I) as a result of a mode transition. Although 
in piecewise linear models, K changes 
instantaneously, it would be beneficial to think about 
a hypothetical situation in which K changes gradually 
from Ko to Kl. The closer K comes to -1, the bigger 
becomes y/x and -Z/X, since y=(l/(l +K))-x and 
z =(Kl(l + K))-x. Notice that the above rule for jumping 
values is exemplified, since y depends negatively on r 
and z positively on z when K reaches Kl and a positive 
feedback comes into play. 
C. Am Example 
In general, the direct method provides a simple but a 
powerful means for dealing with chains of 
discontinuous change. Let us see how it works for an 
unstable multi-vibrator shown in figure 5. 

Figure 5. An unstable multi-vibrator. 

1. Initial condition. We assume TRl and TR2 are 
initially ON and OFF, respectively, and both UC, and vc2 
are involved in an interval (I+,- vcc, v,), where V, is a 
threshold (see figure l(b)), and VCC~,XI. 

2. Analyzing the initial state. It follows that the 
capacitor cl is being charged, raising the base voltage 
VTR,-B of the transistor TR2. Thus, it is foreseen that 
the condition vTR,-B <v, for TR2 to be OFF will 
eventually be violated, turning TR2 ON. Notice that C2 
is being discharged, keeping IQ less than v,. This fact 
will be used in the next step. Notice also that 
although the base current into TRl is positive and is 
decreasing, it will not reach zero since before that 
happens the capacitor ~2 would be saturated. 

3. Constructing a state description for the next 
instant, say instantl. It is assumed as a default that 
TRl remains ON (persistence of operating mode), and 
the values of ucl and uc2 will not be affected by the 
transition of operating mode (persistence of integrated 
quantities). Unfortunately, these assumptions turn 
out to be inconsistent, because VTR,-B must be below v,, 
on the one hand, since UTR,B=VC, +VTR,-C, vc2 CV, and 
VTR~-C=O, and VTR,-B must be equal to v,,, on the other 
hand, since TRI remains ON. Relevant to this 
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contradiction are the assumptions that UC, remains 
unchanged and that TRl remains ON. The latter is 
preferred as a culprit (see the last section) and is 
retracted. Notice that it also follows that TRl will 
turn OFF since it is now assumed that UTR,-B drops 
below Q,. Thus, it has turned out that the current state 
is mythical and immediately followed by another 
instant, Say@zstant2. 

4. Constructing a state description for instunt2. This 
time no inconsistency is encountered and instant2 is 
declared to be normal. Nence, it is followed by an 
interval, in which TRl is OFF, TR2 ON, Cl being 
discharged, and ~2 being charged, just symmetric with 
the initial situation. 

Notice that the above analysis predicts that a 
number of variables change their value 
discontinuously. For example, UTR,-C is expected to 
rise discontinuously from zero, UTR,-B drop 
discontinuously from u,,, and so on. 
VI. Comparissm imd @Qnduding 

These two methods differ in terms of preciseness and 
efficiency. 

Preciseness. In general, the approximation 
method seems to implement the discontinuity-as-a- 
very-rapid-continuous change ontology with more 
fidelity. The direct method may fail to characterize 
certain properties of the response to discontinuous 
input. If the direct method is applied to the example 
shown in figure 3, it will predict that doURI alUR and 
&-bR, willjmp to +, - and +, respectively, as a result 
of discontinuous input. Unlike the result shown in 
table-l, prediction by the direct method does not make 
explicit the fact that &UR(ir I) has several keen peaks 
of infinitely large magnitude. Fortunately, those 
peaks do not cause serious problems in the electronic 
circuit domain. In ordinary models of electronic 
circuits, the operating mode of each circuit element is 
determined only by variables on a0 level (those that 
stand either for voltage or for current). Therefore, a 
peak at al level plays a critical role only when 
differential causality is involved and the value of a a0 
level variable is determined by that of a al level 
variable. First of all, circuits with differential 
causality are relatively rare. Second, existence of 
differential causality can be detected by causal 
analysis. It serves as a warning. 

Efficiency. A naive implementation of the 
approximation method will result in an inefficient 
algorithm because the approximation-limit process 
will be carried out uniformly for a discontinuous input 
irrespective of necessity. In contrast, the direct 
method is more efficient because the computation 
process is invoked only when inconsistency is 
detected. Compare also how type Al discontinuity is 

handled by each method (see table-l and description 
in section V -B). 

We have incorporated an algorithm based on the 
direct method into an existing qualitative reasoning 
program R-I [Nishida et al., 19871. It can analyze 
all the examples shown in this paper. Cur future 
direction is twofold: extension for differential 
causality and ill-formed circuits. The robustness 
against ill-formed circuit is crucially important in 
ICAI environments where students use the program 
for reviewing their circuits. 

References 
[de Kleer and Brown, 19841 de Kleer, J. and 

Brown, J. S., A Qualitative Physics Based on 
Confluences, Artificial Intelligence, 24,7-83,1984. 

[de Kleer, 19841 de Kleer, J., How Circuits Work, 
Artificial Intelligence 24,205280,1984. 

[Forbus, 19841 Forbus, K. D., Qualitative Process 
Theory, Artificial Intelligence, 24,85-168,1984. 

[Kuipers, 19841 Kuipers, B., Commonsense 
Reasoning about Causality: Deriving Behavior 
from Structure, Artificial Intelligence, 24, 169-203, 
1984. 

[Nishida et al., 19851 Nishida, T., Kawamura, T. 
and Doshita, S., Dealing with Ambiguity and 
Discontinuity in Qualitative Reasoning, in 
Proceedings of Symposium on Knowledge 
Information Processing, IPSJ, 1985. 

[Nishida et al., 19871 Nishida, T., Kawamura, T. 
and Doshita, S., Dynamic Causal Stream Analysis 
for Electronic Circuits, Trans. IPM, 28(2), 1987. 

[Raiman, 19861 Raiman, C., Order of Magnitude 
Reasoning, in Proceedings AAAI-86, 100-104, 
1986. 

[Robinson, 19663 Robinson, A., Non-Standard 
Analysis, North-Holland, Amsterdam, 1966. 

[Weld, 19851 Weld, D. S., Combining Discrete and 
Continuous Process Models, in Proceedings MCAI- 
85,140-143,1985. 

Cwilliams, 19841 Williams, B. C., Qualitative 
Analysis of BIOS Circuits, Artificial Intelligence, 
24,281-346,1984. 

[Williams, I.9861 Williams, B. C., Doing Time: 
Putting Qualitative Reasoning on Firmer Ground, 
in .Proceedings AAAI-86,105-112,1986. 

IPSJ: Information Processing Society of Japan. 

648 Engineering Problem Solving 


