
Hierarchical Reasoning about Inequalities

Elisha Sacks’
MIT Laboratory for Computer Science

545 Technology Square, Room 370
Cambridge, MA 02139, USA

Abstract
This paper describes a program called BOUNDER that
proves inequalities between functions over finite sets
of constraints. Previous inequality algorithms per-
form well on some subset of the elementary func-
tions, but poorly elsewhere. To overcome this prob-
lem, BOUNDER maintains a hierarchy of increasingly
complex algorithms. When one fails to resolve an in-
equality, it tries the next. This strategy resolves more
inequalities than any single algorithm. It also per-
forms well on hard problems without wasting time on
easy ones. The current hierarchy consists of four algo-
rithms: bounds propagation, substitution, derivative
inspection, and iterative approximation. Propagation
is an extension of interval arithmetic that takes lin-
ear time, but ignores constraints between variables
and multiple occurrences of variables. The remaining
algorithms consider these factors, but require expo-
nential time. Substitution is a new, provably correct,
algorithm for utilizing constraints between variables.
The final two algorithms analyze constraints between
variables. Inspection examines the signs of partial
derivatives. Iteration is based on several earlier algo-
rithms from interval arithmetic.

.

This paper describes a program called BOUNDER that
proves inequalities between functions over all points sat-
isfying a finite set of constraints: equalities and inequali-
ties between functions. BOUNDER manipulates extended
elementary functions: polynomials and compositions of
exponentials, logarithms, trigonometric functions, inverse
trigonometric functions, absolute values, maxima, and
minima. It tests whether a set of constraints, C, implies
an inequality a 5 b between the extended elementary func-
tions a and b by calculating upper and lower bounds for
a - b over all points satisfying C. It proves the inequality
when the upper bound is negative or zero, refutes it when
the lower bound is positive, and fails otherwise.

Previous bounding algorithms perform well on some
subset of the extended elementary functions, but poorly

lThis research was supported (in part) by National Institutes
of Health Grant No. ROl L&f04493 from the National Library of
.Medicine and National Institutes of Health Grant No. R24 RR01320
from the Division of Research Resources.

elsewhere. For this reason, BOUNDER maintains a hierar-
chy of increasingly complex bounding algorithms. When
one fails to resolve an inequality, it tries the next. Al-
though complex algorithms derive tighter bounds than
simple ones for most functions, exceptions exist. Hence,
BOUNDER'S hierarchy of algorithms derives tighter bounds
than even its most powerful component. It also performs
well on hard problems without wasting time on easier ones.

The purpose of BOUNDER is to resolve inequalities that
arise in realistic modeling problems efficiently, not to derive
deep theoretical results. It is an engineering utility, rather
than a theorem-prover for pure mathematics. For this
reason, it only addresses universally quantified inequali-
ties, which make up the majority of practical problems,
while ignoring the complexities of arbitrary quantification.
BOUNDER helps PLR [Sacks, 1987b] explore the qualita-
tive behavior of dynamic systems, such as stability and
periodicity. For example, suppose a linear system contains
symbolic parameters. Given constraints on the parame-
ters, one can use BOUNDER to reason about the locations
of the system’s poles and zeroes. PLR also enhances the
performance of QMR [Sacks, 19851, a program that derives
the qualitative properties of parameterized functions: signs
of the first and second derivatives, discontinuities, singu-
larities, and asymptotes.

BOUNDER consists of an inequality prover, a context
manager, and four bounding algorithms: bounds propa-
gation, substitution, derivative inspection, and iterative
approximation. The prover uses the bounding algorithms
to resolve inequalities, as described above. First, it re-
duces the original inequality to an equivalent but simpler
one by canceling common terms and replacing monotonic
functions with their arguments. For example, x+ P 5 y + 1
simplifies to x 5 y, -x 5 -y to x 2 y, and eZ < ear to
x 5 y. The prover (only cancels multiplicands whose signs
it can determine by bounds propagation.

The context manager organizes constraint sets in the
format required by the bounding algorithms. The bound-
ing algorithms derive upper and lower bounds for a func-
tion over all points satisfying a constraint set. The con-
text manager and bounding algorithms are described in
the next two sections. The final two sections contain a
review of literature and conclusions. I argue that current
inequality provers are weak, brittle, or inefficient because
they process all inputs uniformly, whereas BOUNDER avoids

Sacks 649

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

these shortcomings with its hierarchical strategy. While calls bounds propagation. The bounding algorithms de-
this paper discusses only inequality constraints and non- fine the extended elementary functions on the extended
strict inequalities, BOUNDER implements boolean combina-
tions of inequality constraints and strict inequalities anal-

real numbers in the standard fashion, so that l/ f 00 = 0,
logo=-co,2m = 00, and so on. Throughout this paper,

ogously. “number” refers to an extended real number.

II. The Context al-lager

The context ima nager derives, an upper (lower) bound for
a variable x from an inequality L 2 R by reformulating it
as x 2 U (z 2 U) with U free of x. It derives upper and
lower bounds for x from an equality L = R by reformu-
lating it as x = U. Inequality .manipulation may depend
on the signs of the expressions involved. For example, the
constraint ax < b can imply x 5 b/a or x 2 b/a depend-
ing on the sign of a. In such cases, the context manager
attempts to derive the relevant signs from other members
of the constraint set using bounds propagation. If it fails,
it ignores the constraint. Constraints whose variables can-
not be isolated, such as x < 22, are ignored as well. The
number of variables in a constraint is linear in its length
and each variable requires linear time to isolate. Isolation
may require deriving the signs of all the subexpressions in
the constraint. Theorem 1 implies that this process takes
linear time. All told, processing each constraint requires
quadratic time in its length. Subsequent complexity re-
sults exclude this time.

Two pairs of functions form the interface between the
context manager and the bounding algorithms. Given
a variable x and a set of constraints C, the functions
VAR-L&(x) and VAR-U&(x) return the maximum of x’s
numeric lower bounds in C and the minimum of its numeric
upper bounds. The functions LOWE%(x) and UPPERc(x)
return the maximum over all lower bounds, symbolic and
numeric, and the minimum over all upper bounds. Both
VAR-LB and LOWER derive lower bounds for x, whereas
both VAR-UB and UPPER derive upper bounds. Bowever,
LOWER and UPPER produce tighter bounds then VAR-LB '
and VAR-UB because they take symbolic constraints into
account. Examples of these functions appear in Table 1.
All four functions run in constant time once the contexts
are constructed.

Table 1: Bounds of {a 2 1, b 2 0, b 2 -2, ab 2 -4, c = b)

1 VAR-LB VAR-UB LOWER UPPER
a 1 00 1 -4/b
b -2 0 max(-2,-4/a,c} min(O,c}
C -00 00 b b

This section contains the details of the bounding algo-
rithms. Each derives tighter bounds than its predeces-
sor, but takes more time. Each invokes all of its predeces-
sors for subtasks, except that derivative inspection never

A. Bounds Psopagartioln
The bounds propagation algorithm (BP) bounds a com-
pound function by bounding its components recursively
and combining the results. For example, the upper bound
of a sum is the sum of the upper bounds of its addends.
The recursion terminates when it reaches numbers and
variables. Numbers are their own bounds, while VAR-LB
and VAR-UB bound variables. Figures 1 and 2 contain the
upper bound algorithm, UBc(e), for a function e over a set
of constraints C. The lower bound algorithm, LBc(e), is
analogous. One can represent e as an expression in its
variables xl, . . . , x, or as a function e(x) of the vector
x = (Xl,. . . , xn). From here on, these forms are used inter-
changeably. The TRIG-UB algorithm, not shown here, uses
periodicity and monotonicity information to derive upper
bounds for trigonometric functions and their inverses.

$&
a number
a variable
a+b
ab
a”
min{a, b)

m={a, bl
log a
I4
trigonometric

UBc(e)

;AR-U%(e)
ub, -I- uba
max {lb,lba, !b,ubb, ub,bba, ub,uba)
EXPT-UR(a, b)
min (uba, ubb)
m= (UL ubb)
log ubo
ma {I&l, IuhJ)
TRIG-U&(e)

Figure 1: The UBC(e) algorithm; Zb, and ub, abbreviate
LBc(e) and UBc(e).

Case EXPT-UB& b)

UBc(u) > 0 ,UBc (b loga)

b = f with p, q integers
p, q odd and positive PBCMlb
p,q odd and ub, < 0 [LB&lb
p even eUBc(bloglal)
else 00

else

in

00

Figure 2: The EXPT-U&(a, b) algorithm

The correctness
the theorem:

and complexity ofBP are summarized

Theorem 1 For any extended elementary function e(x)
and set of constraints C, bounds propagation derives num-
bers lb, and ube satisfying

Vx.satisfies(x, S) + lb, 5 e(x) 5 ub, (1)

650 Engineering Problem Solving

in time proportional to e’s length.

The proof is by induction on e9s length. It appears in a
longer version of this paper [Sacks, 1987a], as do all sub-
sequent proofs.

Bounds propagation achieves linear time-complexity
by ignoring constraints among variables or multiple oc-
currences of a variable in an expression. It derives ex-
cessively loose bounds when these factors prevent all the
constituents of an expression from varying independently
over their ranges. For instance, the constraint a 5 b im-
plies that a - b cannot be positive. Yet given only this
constraint, BP derives an upper bound of oo for a - b by
adding the upper bounds of a and -b, both 00. As another
example, when no constraints exist, the joint occurrence of
x in the constituents of z2 + zc implies a global minimum of
-l/4. Yet BP deduces a lower bound of -oo by adding the
lower bounds of x2 and x, 0 and -oo. Subsequent bound-
ing algorithms derive optimal bounds for these examples.
Substitution analyzes constraints among variables and the
final two algorithms handle multiple occurrences of vari-
ables. All three obtain better results than BP, but pay an
exponential time-complexity price.

El. Substitution

The substitution algorithm constructs bounds for an ex-
pression by replacing some of its variables with their
bounds in terms of the other variables. Substitution ex-
ploits all solvable constraints, whereas bounds propagation
limits itself to constraints between variables and numbers.
In our previous example, substitution derives an upper
bound of 0 for a-b from the constraint a 5 b by bounding
a from above with b, that is a - B 5 b - b = 0. Sub-
stitution is performed by the algorithms SUPc(e,H) and
INFc(e, H) 9 which calculate upper and lower bounds on e
over the constraint set C in terms of the variable set H.
When H is empty, the bounds reduce to numbers.

Figures 3 and 4 contain the SUP function and its
auxiliary, SUPP. The auxiliary functions EXPT-SUP and
TRIG-SUP are derived from BP’s exponential and trigono-
metric bounding algorithms by replacing UBc(a) with
SUPc(a, H), LBc(a) with INFc(a, H), and so on for b. The
expression v(e) denotes the variables contained in e and
f(b, a, H) abbreviates u(b) - v(u) C H. In the remainder
of this section, we will focus on SUP. HNF is analogous.

In step 1, SUP calculates the upper bounds of numbers
and of variables included in H. It analyzes a variable, x,
not in H by constructing an intermediate bound

B = SUPc(UPPERc(x), fl U {x)) (2)

for z and calling SUPP to derive a final bound. If possible,
SUPP derives an upper bound for ZE in H directly from the
inequality x 5 B. Otherwise, it applies bounds propaga-
tion to B. For instance, the inequality x < 1 - z yields a
bound of l/2, but x 2 z2 - 1 does not provide an upper

, bound, so SUPP returns UBc(x2 - 1).

e is
1 v(e)EH

SUPc(e, H)
e

2 a ‘variable SUPpc(e, s(UPPERc(e), w U {e}))
3 u+b

3.1 f(b, a, H) +, H) + s(b, H)
3.2 else f (03)

4 ab
4.1 LBc(u) 2 0

f (b, a, W) =x {S(a, M)s(b, H), i(a, H)s(h W>)
else s(as(W u 443)

4.2 UBC(a) 5 0
f (b, a, H) max {~(a, W)i(b, H), ;(a, W)i(b, H)}
else s(ai(b,N U v(a)),H)

4.3 else max{s(a, +(b, H), s(a, -W(b, W>,
;(a, N)s(b, H),+, H)i(b, H))

5 ub EXPT-SUPc(a, b, a)
6 min(u, b} dn @(a, a), s(b, H))
7 max(u, b} ~x~s(oq&~)~
8 logu 1% 4% H)
9 I4 mx {I+, W)I 9 I+, a) II
10 trig TRIG-SUPc(e, H)

Figure 3: The SUPc(e, N) algorithm. The symbols s and
i abbreviate SUPc and INFc respectively.

case
1 GWB)

SUPPc(x, B)
B

2 B=rx+A
rER, u$?u(A)
2.1 r 2 1 00
2.2 r < 1 A

r--r
3 B = min(C, D) min {SUPP~(X, C), SUPPC(X, D)}
4 B = max(C, D) max {SUPPC(S, C), SUPPC(X, D)}
5 else uBc(B)

Figure 4: The SUPPc(x, B) algorithm

SUP exploits constraints among variables to improve
its bounds on sums and products. If b contains variables
that a lacks, but which have bounds in u’s variables, SUP
constructs an intermediate upper bound, U, for a+ b or ab
by replacing b with these bounds. A recursive application
of SUP to U produces a final upper bound. (Although not
indicated explicitly in Figure 3, these steps are symmetric
in a and b.) If a and b have the same variables, SUP bounds
a + b and ab by recursively bounding a and b and applying
bounds propagation to the results. For example, given the
constraints c 2 1, d 2 1, and cd 5 4, SUP derives an
intermediate bound of 3c/4 for c - l/d by replacing -l/d
with -c/4, its upper bound in c. This bound is derived as
follows:

SUP(-;, (6)) = -I$, {c)) = Sup~;~~c~) = -i (3)

SUP uses the recursive call SUP(c, (1) = 4 to derive a ,final
bound of 3 for c - I/d. The following theorem establishes
the correctness of substitution:

Sacks 651

Theorem 2 For every extended elementary function e,
variable set H, and construint set C, the expressions
i = INFc(e, H) and s = SUPc(e, H) satisfy the conditions:

variable causes less damage on smaller regions because all
these values are less far apart. Figure 5 illustrates this
idea for the function x2 - x on the interval [O,l]. Part (a)
demonstrates that BP derives an overly pessimistic lower

i and s are expressions in H (4
Vx.satisfies(x,§) =S i(x) i e(x) 2 s(x) (5)

bound on [0, l] b ecause it minimizes both -x and x2 in-
dependently. Part (b) h s ows that this factor is less signif-
icant on smaller intervals: the maximum of the two lower

Substitution utilizes constraints among variables to
bounds, -3/4, is a tighter bound for x2 - x on [0, l] than

improve on the bounds of ‘BP, but ignores constraints that of part (a). One can obtain arbitrarily tight bounds

among multiple occurrences of variables. It performs iden-
by constructing sufficiently fine partitions.

tically to BP on the example of x2 + x, deriving a lower
bound of -oo. Yet that bound is overly pessimistic because n m n mn m
no value of x minimizes both addends simultaneously. The c . e m
last two bounding algorithms address this shortcoming. 0 1 0 1 P

z’z
1

-1 1 3 -- --
2 4

c. Derivative Inspection

Derivative inspection calculates bounds for a function over (4 (b)
a constraint set C from the signs of its partial derivatives.
Let us define the range of xi in C as the interval

Figure 5: Illustration of iterative approximation on [Q, 11.
The symbols m and n mark the values of x that minimize

xi = [INFb(xi, {}), SUPc(xi, {})I (6)
-x and x2. The numbers below are LB(x2 - z) .

and the range of x = (xl,. . . ,x,) in C as the Carte-
sian product X = X1 x ... x X, of its components’
ranges. Derivative inspection splits the range of a function
f(x) into subregions by dividing the range of each xi into
maximal intervals on which a f /axi is non-negative, non-
positive, or of unknown sign. The maximum upper bound
over all subregions bounds f from above on X. This bound
is valid over all points satisfying C by Theorem 2. Each
region can be collapsed to the upper (lower) bound. of xi
in every dimension i where d f /azi is non-negative (non-
positive) without altering f’s upper bounds. An analogous
procedure derives lower bounds.

Derivative inspection takes time proportional to the
number of regions into which f’s domain splits. For this
reason, it only applies to functions whose partial deriva-
tives all have finitely many zeroes in X. When the signs
of all partial derivatives are known, derivative inspection
yields optimal bounds directly, since all regions reduce to
points. For example, it derives an optimal lower bound of
-l/4 for x2 + x because the derivative of x2 + z is non-
positive on [-00,-l/2] and non-negative on [-l/2, oo] .
Otherwise, one must use a second bounding algorithm to
calculate bounds on the non-trivial subregions. This two-
step approach generally yields tighter bounds than apply-
ing the second algorithm directly on f’s entire domain,
since the subregions are smaller and often reduce to points
along some dimensions.

D. Iterative Approximation
Iterative approximation, like derivative inspection, reduces
the errors in bounds propagation and substitution caused
by multiple occurrences of variables. Instead of bounding
a function over its entire range directly, it subdivides the
regions under consideration and combines the results. In-
tuitively, BP’s choice of multiple worst case values for a

Iterative approximation generalizes interval subdivi-
sion to multivariate functions and increases its efficiency,
using ideas from Moore (Moore, 19791 and Asaithambi
et al. [Asaithambi et al., 19821. As an additional opti-
mization, it bounds functions over the regions generated
by derivative inspection, rather than over their entire do-
mains. Let f (x1, . . . , xn) be continuously differentiable on
a region X and let wi denote the width of the interval
Xi. For every positive E, iterative approximation derives
an upper bound for f on X that exceeds the least upper
bound by at most E within

L 0
n n

- Wi
c

i=l
(7)

iterations, where the constant L depends on f and X.

In this section, I discuss, in order of increasing generality,
existing programs that derive bounds and prove inequal-
ities. As one would expect, the broader the domain of
functions and constraints, the slower the program. The
first class of systems bounds linear functions subject to
linear constraints. ValdBs-PQrez [Valdds-PQrez, 19861 ana-
lyzes sets of simple lineur inequulities of the form x - y 2 n
with & and y variables and n a number. Be uses graph
search to test their consistency in cu time for c constraints
and v variables. Malik and Binford [Malik and Binford,
19831 and Bledsoe [Bledsoe, 19751 check sets of general
linear constraints for consistency and calculate bounds on
linear functions over consistent sets of constraints. Both
methods require exponential time.2 The former uses the

2The eirnplex algorithm often
a polynomial alternative exists.

performs better in practice. Also,

652 Engineering Problem Solving

Simplex algorithm, whereas the latter introduces prelimi-
nary versions of BOUNDER'S substitution algorithms. Bled-
soe defines SUP) SUPP, INF, and INFF for linear functions
and constraints and proves the linear version of Theorem 2.
In fact, these algorithms produce exact bounds, as Shostak
[Shostak, 19771 proves.

The next class of systems bounds nonlinear functions,
but allows only range constraints. All resemble BOUNDER's
bounds propagation and all stem from Moore’s [Moore,
19791 interval arithmetic. IvIoore introduces the rules for
bounding elementary functions on finite domains by com-
bining the bounds of their constituents. His algorithm
takes linear time in the length of its input. Bundy [Bundy,
19841 implements an interval package that resembles BP
closely. It generalizes the combination rules of interval
arithmetic to any function that has a linite number of ex-
trema. If the user specifies the sign of a function’s deriva-
tive over its domain, Bundy’s program can perform inter-
val arithmetic on it. Unlike BOUNDER'S derivative inspec-
tion algorithm, it cannot derive this information for itself.
Many other implementations of interval arithmetic exist,
some in hardware.

empty sets H, his algorithm makes recursive calls with H
empty. This produces needlessly loose bounds and some-
times causes an infinite recursion.

Bundy and Welham [Bundy and Welham, 19791 derive
upper bounds for a variable z from an inequality L 5 R by
reformulating it as z 5 u with U free of x. If U contains
a single variable, they try to find its global maximum, M,
by inspecting the sign of its second derivative at the ze-
roes of its first derivative. When successful, they bound
x from above with M. Lower bounds and strict inequali-
ties are treated analogously. They use a modified version
of the PRESS equation solver [Bundy and Welham, 19811
to isolate x. As discussed in section II, inequality manip-
ulation depends on the signs of the expressions involved.
When this information is required, they use Bundy’s inter-
val package to try to derive it. The complexity of this al-
gorithm is unclear, since PRESS can apply its simplification
rules repeatedly, possibly producing large intermediate ex-
pressions. BOUNDER contains both steps of Bundy and
Welham’s bounding algorithm: its context manager de-
rives bounds on variables from constraints, while its deriva-
tive inspection algorithm generalizes theirs to multivariate
functions. PRESS may be able to exploit some constraints
that BOUNDER ignores because it contains a stronger equa-
tion solver than does BOUNDER.

The final class of systems consists of theorem provers
for predicate calculus that treat inequalities specially.
These systems focus on general theorem proving, rather
than problem-solving. They handle more logical connec-
tives than BOUNDER, including disjunction and existential
quantification, but fewer functions, typically just addition.
Bledsoe and Hines [Bledsoe and Hines, 19801 derive a re-
stricted form of resolution that contains a theory of dense
linear orders without endpoints. Bledsoe et al. [Bledsoe et
csl., 19831 prove this form of resolution complete. Finally,
Bledsoe et al. [Bledsoe et Cal., 19791 extend a natural deduc-
tion system with rules for inequalities. Although none of
these authors discuss complexity, all their algorithms must
be at least exponential.

Moore also proposes a simple form of iterative ap-
proximation, which Skelboe [Skelboe, 19741, Asaithambi
et al. [Asaithambi et al., 19821, and Ratschek and Rokne
[Ratschek and Rokne, 1984, ch. 41 improve. BOUNDER'S
iterative approximation algorithm draws on all these
sources.

Simmons [Simmons, 19861 handles functions and con-
straints containing numbers, variables, and the four arith-
metic operators. He augments interval arithmetic with
simple algebraic simplification and inequality information.
For example, suppose z lies in the interval [--1,1]. Sim-
mons simplifies x - a: to 0, whereas interval arithmetic pro-
duces the range [-2,2]. He also deduces that x 2 z from
the constraints x 5 y and y 5 z by finding a path from x
to z in the graph of known inequalities. The algorithm is
linear in the total number of constraints. Although more
powerful than BOUNDER's bounds propagation, Simmons’s
program is weaker than substitution. For example, it can-
not deduce that x2 2 y2 from the constraints x 2 31 and
Y 2 0.

Brooks [Brooks, 1981, sec. 31 extends Bundy’s SUP Current inequality reasoners are weak, brittle, or ineffi-
and INF to nonlinear functions and argues informally that cient because they process all inputs uniformly. Interval
Theorem 2 hold for his algorithms. This argument must be arithmetic systems, such as Bundy’s and Simmons’s, run
faulty because his version of SUPH(@, {}) recurses infinitely quickly, but generate exceedingly pessimistic bounds when
when e equals x + l/x or x + x2, for instance. Brooks’s dependencies exist among the components of functions.
program only exploits constraints among the variables of These dependencies are caused by constraints among vari-
sums rx + B and of products xnB with r real, z a vari- ables or multiple occurrences of a variable, as discussed
able of known sign, B an expression free of x, and n an in Section 1II.A. The upper bound of a - b given a 2 b
integer. In other cases, it adds or multiplies the bounds demonstrates the first type, while the lower bound of x2+x
of constituents, as in steps 3.1, 4.1.1, 4.2.1, and 4.3 of given no constraints demonstrates the second. Each of the
BOUNDER'S SUP (Figure 3). These overly restrictive condi- remaining systems is brittle because it takes only one type
tions rule out legitimate substitutions that steps 3.2, 4.1.2, of dependency into account. Iterative approximation, sug-
and 4.2.2 permit. For example, BOUNDER can deduce that

l/y 2 0 from the constraints y > x and 2 2 1, but
gested by Moore, and derivative inspection, performed in

l/z - the univariate case by Bundy and Welham, address the sec-
Brooks’s algorithm cannot. On some functions and non- ond type of dependency, but ignore the first. Conversely,

Sacks 653

substitution, used (in a limited form) by Brooks and Sim-
mons, exploits constraints among variables, while ignoring
multiple occurrences sf variables. All these systems are in-
efficient because they apply a complex algorithm to every
input without trying a simple one first.

BOUNDER overcomes the limitations of current in-
equality reasoners with its hierarchical strategy. It uses
substitution to analyze dependencies among variables and
derivative in & ection and iterative approximation to an-
alyze multiple occurrences of variables. Together, these
techniques cover far more cases than any single-algorithm
system. Yet unlike those systems, BOUNDER does not
waste’time applying overly powerful methods to simple
problems. It tries bounds propagation, which has lin-
ear time-complexity, before resorting to its other methods.
An inequality reasoner like BOUNDER should be an impor-
tant component of future general-purpose symbolic algebra
packages.

[Asaithambi et al., 19821 M. S. Asaithambi, Shen Zuhe,
and R. E. Moore. On computing the range of val-
ues. Computing, 283225-237, 1982.

[Bledsoe, 19751 W. W. Bledsoe. A new method for prov-
ing certain Presburger formulas. In Proceedings of
the Fourth International Joint Conference on Artifi-
cial Intelligence, pages 15-21, 1975.

[Bledsoe and Hines, 19801 W. W. Bledsoe and Larry M.
Hines. Variable elimination and chaining in a
resolution-based prover for inequalities. In Proceed-
ing of the fifth conference on automated deduction,
Springer-Verlag, Les Arcs, France, July 1988.

[Bledsoe et al., 19791 W. W. Bledsoe, Peter Bruell, and
Robert Shostak. A prover for general inequalities. In
Proceedings of the Sixth International Joint Confer-
ence on Artificial Intelligence, pages 66-69, 1979.

[Bledsoe et al., 19831 W. W. Bledsoe, K. Kunen, and R.
Shostak. Completeness results for inequality provers.
ATP 65, University of Texas, 1983.

[Brooks, 19811 Rodney A. Brooks. Symbolic reasoning
among 3-d models and 2-d images. Artificial Intel-
ligence, 17~285-348, 1981.

[Bundy, 19841 Alan Bundy. A generalized interval package
and its use for semantic checking. ACM Transactions
on Mathematical Software, 10(4):397-409, December
1984.

[Bundy and Welham, 19791 Alan Bundy and Bob Wel-
ham. Using meta-level descriptions for selective ap-
plication of multiple rewrite rules ia algebraic man&
ulution. D.A.I. Working Paper 55, University of Edin-
burgh, Depatment of Artificial Intelligence, May 1979.

[Bundy and Welham, 198l] Alan Bundy and Bob Wel-
ham. Using meta-level descriptions for selective ap
plication of multiple rewrite rules in algebraic manip-

ulation. Artificial Intelligence, 16(2):189-211, May
1981.

[Malik and Binford, 19831 J. Malik and T. Binford. Rea-
soning in time and space. In Proceedings of the Eighth
International Joint Conference on Artificial Intelli-
getace, pages 343-345, August 1983.

[Moore, 19791 Ramon E. Moore. Methods and Applica-
tions of Interval Analysis. SIAM Studies in Applied
Muthematics, SIAM, Philadelphia, 1979.

[Ratschek and Rokne, 19841 H. Ratschek and J. Rokne.
Computer Methods for the Range of Functions. Hal-
sted Press: a division of John Wiley and Sons, New
York, 1984.

[Sacks, 19851 Elisha P. Sacks. Qualitative mathematical
reasoning. In Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, pages 137-
139, 1985.

[Sacks, 1987a] Elisha P. Sacks. Hierarchical inequality rea-
soning. TM 312, Massachussetts Institute of Technol-
ogy, Laboratory for Computer Science, 545 Technol-
ogy Square, Cambridge, MA, 02139, 1987.

[Sacks, 1987133 Elisha P. Sacks. Piecewise linear reasoning.
In Proceedings of the National Conference on Artifi-
cial Intelligence, American Association for Artificial
Intelligence, 1987.

[Shostak, 19771 Robert E. Shostak. On the SUP-INF
method for proving Presburger formulas. Journal of
the ACM9 24:529-543, 1977.

[Simmons, 19861 Reid Gordon Simmons. “Commonsense”
arithmetic reasoning. In Proceedings of the National
Conference on Artificial Intelligence, pages 118-124,
American Association for Artificial Intelligence, Au-
gust 1986.

[Skelboe, 19741 S. Skelboe. Computation of rational func-
tions. BIT, 14:87-95, 1974.

[Valdb-P&ez, 19861 Rati Valdds-PCrez. Sputio-temporal
reasoning and linear inequalities. AIM 875, Mas-
sachusetts Institute of Technology, Artificial Intelli-
gence Laboratory, May 1986.

