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Abstract 
This paper describes a new technique called piecewise 
linear reasoning (PLR) for analyzing dynamic systems 
describable by finite sets of ordinary differential equs 
tions. Current qualitative reasoning programs derive 
the abstract behavior of a system by simulating hand- 
crafted “qualitative” versions of the differential equa- 
tions that characterize it and summarizing the re- 
sults. PLR infers more detailed information by con- 
structing and examining piecewise linear approxima- 
tions of the original equations. As evidence that PLR 
can provide useful information to engineers, its anal- 
yses of the Lienard and van der Pol equations are 
presented. 

0 

This paper describes a new technique called piecewise lin- 
ear reasoning (PLR) for analyzing dynamic engineering sys- 
tems. Engineers treat many devices as dynamic systems 
and model them with sets of ordinary differential equa- 
tions. They derive the behavior of the devices by analyz- 
ing the associated equations. Rather than treat individual 
devices directly, engineers aggregate them into classes that 
share common sets of parameterized differential equations. 
They analyze device classes abstractly and instantiate the 
results with appropriate numbers. This approach avoids 
redundancy, provides global insight, and facilitates design. 
For example, the parameterized equation y’(t) = ay(t) de- 
scribes the class of one-tank devices with instantaneous 
mixing. From the solution, y(t) = yceat, and the phys- 
ical constraint ye > 0, one sees that y increases toward 
infinity if a is positive, remains constant if a equals 0, and 
decreases asymptotically to 0 if a is negative. One can de- 
sign a specific one-tank device by choosing an appropriate 
value of a. 

PLR provides engineers with information they need 
about parameterized systems: local properties in interest- 
ing.regions as well as global properties such as stability, 
periodicity, limit cycles, and asymptotic behavior. For sys- 
tems of linear equations, this information can be derived 
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through straightforward mathematical analysis. Nonlin- 
ear systems, however, generally require extremely sophis- 
ticated analysis and rarely yield to any known analytic 
technique. The central tenet of my research is to solve 
this problem by sacrificing generality for tractability: con- 
structing and examining piecewise linear approximations 
of nonlinear systems instead of analyzing them directly. 

The next section describes the PLR methodology and 
the following two sections demonstrate its capabilities. 
The final three sections contain a review of previous work, 
PLR’s implementation status, and conclusions. 

e PLR 

Engineers need to know the properties of parameterized 
systems of differential equations that model device classes. 
This section explains how PLR derives that information 
from piecewise linear approximations of the equations. 
PLR can produce straightforward approximations auto- 
matically, including both examples in this paper, but the 
ultimate responsibility for constructing adequate approx- 
imations rests with the user. Precedents for this divi- 
sion of labor certainly exist. Users of numerical packages 
must choose appropriate algorithms, error margins, initial 
guesses, and step sizes. Similarly, de Kleer and Brown ]Bo 
brow, 1985, p. 261 note that qualitative reasoning requires 
users to derive the confluences for systems by themselves. 

PLR determines the properties of a parameterized 
piecewise linear system in two analysis stages: local and 
global. Both stages employ a phase-space representation. 
Local analysis derives phase diagrams for each linear subre- 
gion of a piecewise linear system. It solves the differential 
equations symbolically with the familiar algorithm from 
the theory of linear systems-Laplace transform, partial 
fractions expansion, and inverse Laplace transform-and 
invokes the QMR mathematical reasoner [Sacks, 19851 to 
deduces the q&it&due properties of the solutions: signs of 
the first and second derivatives, discontinuities, singulari- 
ties, and asymptotes. It uses this information to construct 
a phase diagram consisting of one or more significant re- 
gions on which all solutions have identical qualitative prop- 
erties. 

Global analysis infers the joint phase diagram for a 
system from the local phase diagrams through a com- 
bination of algebraic and geometric reasoning. First, it 
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concatenates the relevant portions of the individual dia- 
grams and determines the significant regions. Next, it 
tests whether trajectories can cross the boundaries be- 
tween pairs of adjoining regions and summa rizes the results 
in a transition graph whose nodes and links represent re- 
gions and possible transitions. Whenever the out-degree 
of a region exceeds 1, PLR attempts to split it into subre- 
gions of lower degree by case analysis. Each walk through 
the graph denotes a trajectory in the joint phase diagram. 
Loops denote trajectories that remain in one region forever, 
whereas longer cycles denote trajectories that continually 
shift between a sequence of regions. PLR completes the 
phase diagram by sketching trajectories for all walks. 

PLR has exponential time-complexity in the number 
of nonlinear components in a system. It must combine the 
solutions of 2n sets of linear equations to perform global 
analysis on a system of n piecewise linear equations each 
composed of two lines. The original system would have to 
contain n nonlinear components for this situation to arise. 
Engineers rarely analyze systems with large numbers of 
nonlinearities. Doing so is a challenge for any intelligent 
agent. 

I will illustrate local and global analysis with two ex- 
amples that frequently arise in nonlinear oscillators: the 
Lienard equation and the van der Pol equation. Both ex- 
amples are simple enough for mathematicians to analyze 
directly. The solutions, described in Brauer and Nohel 
[Brauer and Nohel, 19691, afford a standard against which 
to measure PLR. 

III. The Lienasd Ekpatism 

The Lienard equation takes on many forms. We will dis- 
cuss the version 

Y” + y’ + y2 + y = 0 (1) 

in this section. Approximating the nonlinear term y2 + y 
with two lines, as shown in Figure 1 yields the piecewise 
linear equations 

y" + y' - ; - ; =0 for 8<-i 

y”+y’+i=O for y>-f 

(2) 

(3) 

PLR chooses this approximation by default because it is the 
simplest one that passes through the extrema and zeroes of 
y2 + y. The results generalize to any bimodal linearization 
that contains these points. In this example, I have chc+ 
sen numeric equations for expository ease. An example of 
global analysis of parameterized equations appears in the 
next section. 

Figure 2 shows the phase diagrams that local analysis 
constructs for equations (2) and (3). Equation (2) has the 
solution 

ydt> = a(y0, y&)e-qt + 6(yo,yh)eTt - 1 (4 

?P+?/ \ 

Figure 1: Piecewise linear approximation of y2 + y 

Figure 2: Phase diagrams for (a) equation (2) and (b) 
equation (3). The lines a(y, y’) = 0 and b(y, y’) = 0 are 
dotted. 

with 

gy, Y’) = (3 - dq(y + 1) - 2y’/G (5) 
b(y, y’) = (3 + 6)(Y + 1) + 2y’/fi (6) 

where yo and yb denote the initial values of y and y’. Let us 
abbreviate a(yo, yh) by a0 and b(yo, yk) by be. The function 
y1 has four possible behaviors depending on the signs of ue 
and be.2 It increases monotonically toward infinity for ac 
negative and be positive, since the ao term increases toward 
0 and the be term increases toward infinity. Inspection 
of derivatives establishes that y1 decreases to a minimum 
then increases toward infinity for uo and bo positive. By 
similar reasoning, it decreases toward negative infinity for 
ao positive and bo negative and increases to a maximum 
then decreases toward negative infinity for both negative. 
Two lines delimit the significant regions in which these four 
behaviors occur: ao is positive for points (yo, yb) below the 
line u(y, y’) = 0 and negative for points above it, whereas 
be is negative for points below the line b(y, y’) = 0 and 
positive for points above it. The remaining analysis of 
equations (2) and (3) is analogous. 

Figure 3 contains the transition graph and phase dia- 
gram produced by global analysis. The significant regions 
are labeled A-E with region E subdivided into El, Ez, and 

2This discussion excludes the following degenerate cases: if ao and 
bo both equal 0, yl equals -1 identically; if uo equals 0, yl moves 
away from -1 along the line b(y, y’) = 0; and if bo equals 0, yl 
approaches -1 along the line a(y, y’) = 0. 
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Ea. Trajectories in region A cannot cross into any other 
region. Trajectories in region B cross into region E be- 
cause they increase toward infinity in the y direction. If 
the height, h, at which a trajectory crosses into E is less 
than hr, it enters El and remains there forever, spiraling 
around the origin. For h between hp and hz, the trajec- 
tory crosses into region E2 then into region C then back 
into El for good. It cannot cross from region C to E2 or 
Es because the upper boundary of C, the line a(y, y’) = 8, 
intersects the boundary of E below hl. For h greater than 
hz, the trajectory crosses from region B to Es then enters 
region D and remains there. After performing this anal- 
ysis, PLR sketches the phase diagram. We can verify the 
results by comparing Figure 3 with Figure 4, the phase 
diagram for the original Lienard equation (l), as given by 
Brauer and Nohel [Brauer and Nohel, 1969, p. 2201. 

Figure 3: Transition graph and phase diagram for the 
piecewise Lienard equations 

Van der Pol equations often arise in oscillatory dynamic 
systems. Figure 5 depicts a simple example from network 
theory: a capacitor, an inductor, and a nonlinear resis- 
tor connected in series. By Kirchoff’s laws, the current 
through the circuit, I, obeys the equation 

I” + ;(312 - 1)1’ + -&I=0 (7) 
with C the capacitance, L the inductance, and k a positive 
scaling factor. Intuitively, the system oscillates because 
the nonlinear resistor adds energy to the circuit at low 
currents and drains energy at high currents. One obtains a 
piecewise linear approximation of equation (7) by replacing 
the nonlinear resistor model with a piecewise linear one, 
as illustrated in Figure 6. The analysis of the resulting 
equations 

Figure 4: Phase diagram for the actual Lienard equation. 

follows the general pattern described in the previous sec- 
tion, although the symbolic parameters, k, E, and C, com- 
plicate the process somewhat. PLR must consider two 
cases, depending on whether the characteristic equations 
have real or complex roots. I will discuss only real roots; 
the complex case is similar. 

I L I 

c 

Figure 5: A circuit governed by van der Pol’s equation 

In the case of real characteristic roots, equation (8) 
has positive roots, while equation (9) has negative ones. 
Figure 7 depicts the complete phase diagrams for both 
equations along with their regions of applicability. Equa- 
tion (8) holds in region G, while equation (9) holds in F 
and H. As with the Lienard equation, PLR infers the joint 
phase diagram (Figure 8) from the individual ones by con- 
structing a transition graph. The significant regions are F, 
G, and H with region G subdivided into Gr above the I 

IT” - $I/+ &I = 0 for ]I] 5 J- = .58 
4 

(8) 
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I 

Figure 6: Piecewise linear approximation of k(13 - I) 

axis and G2 below. Figure 7b shows that trajectories in 
region F of the joint phase diagram eventually enter Gr. 
From there, they go up and right until they enter H. Sim- 
ilarly, Figure 7a shows that trajectories in region H even- 
tually enter G2 and continue down and left into F. Hence, 
the transition graph consists of a single cycle. The phase 
diagram contains a unique limit cycle toward which all 
non-periodic trajectories spiral, but PLR currently lacks 
the tools to derive this fact. 

I 

F G H F H 

(4 

Figure 7: Phase diagrams for (a) equation (8) and (b) 
equation (9) 

Figure 8: Transition graph and phase diagram for the 
piecewise van der Pol equations 

Commonly used tools for analyzing nonlinear device mod- 
els fall into the following categories: theoretical methods, 
experimentation, numeric simulation, piecewise linear ap- 
proximation, and qualitative reasoning. Although theoret- 
ical methods can be extremely powerful, engineers try to 
avoid them because of their complexity and limited ap- 
plicability. Experiments and simulations yield low-level, 
numeric data about individual devices. Engineers must in- 
terpret the data and generalize the results to device classes. 
This process becomes difficult for systems containing many 
parameters. In interpretation, engineers can miss impor- 
tant properties of the model for lack of raw data. For ex- 
ample, discontinuities and extrema might occur between 
the observed or simulated points, while asymptotes may 
arise beyond their range. Engineers can also overlook im- 
portant properties due to the sheer volume of raw data. 
Generalization can fail too, since a model need not behave 
in a certain manner for UU parameter values just because 
it does so for certain ones. 

The third method of analyzing a nonlinear system 
consists of constructing a piecewise linear approximation, 
simulating it for various parameter values, and scrutinizing 
the results. Piecewise linear approximation offers a con- 
venient representation for nonlinear engineered systems. 
However, analysis by simulation and scrutiny suffers from 
the same limitation as experimentation and simulation: it 
provides raw data about individual devices rather than ab- 
stract properties of device classes. PLR exploits the piece- 
wise linear representation, but replaces the simulation al- 
gorithm with one that derives higher-level information. 

Qualitative reasoning [Bobrow, 19851 (QR) derives the 
abstract behavior of dynamic systems by simulating hand- 
crafted “qualitative” versions of their differential equations 
and summarizing the results. In its current form, QR falls 
far short of telling an engineer what he needs to know 
about a nonlinear system. It can only provide extremely 
abstract descriptions, such as “the quantity f increases for 
a while, reaches a maximum, and decreases thereafter.” 
More information is required to design, analyze, and de- 
bug actual devices: local properties in interesting regions 
such as estimates of maxima, minima, and rates of change 
as well as global properties such as stability, periodicity, 
limit cycles, and asymptotic behavior. QR abstracts away 
the details required to derive this information by repre- 
senting dynamic systems with confluences instead of dif- 
ferential equations. It cannot even express many functional 
properties that engineers find useful, such as linearity, ex- 
ponential decay, asymptotic approach, oscillation, damped 
oscillation, stability and limit cycles. 

QR also generates spurious behaviors. One cause, de- 
scribed by Kuipers (Kuipers, 1985b], is the local charac- 
ter of its analysis. In addition, the abstract nature of 
confluences introduces ambiguities that differential equa- 
tions preclude. For example, the equation y’ = y - y2 
implies that 9’ is negative whenever y exceeds 1, whereas 
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the corresponding confluence leaves the sign completely 
ambiguous.3 Consequently, QR concludes that y can in- 
crease toward infinity, even though it is bounded from 
above. Kuipers [Kuipers, 1985a] notes that this type of am- 
biguity crops up in almost every clinical system of second- 
order or higher. The same result holds for other domains. 
The problem is that QR focuses on the abstract behavior of 
extremely general systems, whereas engineers require de- 
tailed information about more-specific ones. It might be 
possible to attain this level of detail with an extended ver- 
sion of QR that included a richer set of confluences and 
stronger analysis algorithms. I have found it more promis- 
ing to extend the piecewise linear approach, although PLR 
takes ideas from QR as well. 

Ilytically, the prospc 
L-- ---l:-L:--L?,- ^ 

defy known analytic techniques. 
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SRaiman [Raiman, 19861 addresses a special case of this problem 
by incorporating assertions of the form “quantity o is negligible in 
relation to quantity F’ into QR. His extension does not solve our 
example because neither y2 nor y is negligible with respect to the 
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