
Robabilistic Semantics ualitative Influences 

Michael P. Wellman 
MIT Laboratory for Computer Science 

545 Technology Square 
Cambridge, MA 02139 

Abstract 
What’s in an infiuence link? To answer this founda- 
tional question, I propose a semantics for qualitative 
influences: a positively influences b if and only if the 
posterior distribution for b given o increases with o 
in the sense of first-order stochastic dominance. By 
requiring that this condition hold in all contexts, we 
gain the ability to perform inference across chains of 
qualitative influences. Under sets of basic desiderata, 
the proposed definition is necessary as well as sufF~- 
cient for this desirable computational property. 

I, Introduction 
Innumerable AI programs incorporate constructs that are 
intended to capture the notion that one variable “causes” 
or influences another in some particular fashion, at preci- 
sions ranging from the mere direction of influence to exact 
numerical relationships. Although such terms as “cause” 
and “influence” are often defined rather loosely in knowl- 
edge language specifications, any inference procedure that 
manipulates models containing these terms imposes con- 
straints on their possible meaning. 

In the sections below, I investigate the constraints 
imposed on a semantics for qualitative probabilistic in- 
fluences by the most basic properties of typical inference 
algorithms. Qualitative influences are those at the impre- 
cise end of the spectrum, asserting only a direction of as- 
sociation among variables. In looking for a probabilistic 
semantics we admit models where the directions are not 
guaranteed, and the functional relationships are not deter- 
ministically fixed. 

Figure 1: Part of the causal model for digitalis therapy. 
The direction on a link from a to b indicates the effect of 
an increase in a on b. 

In the figure the elliptical nodes represent random 
variables. The rectangular node is a decision variable, in 
this case the dosage of digitalis administered to the pa- 
tient. The hexagonal node is called the value node and 
represents the utility of the outcome to the patient.’ This 
terminology and notation are adapted from influence dia- 
gram [Shachter, 19861, a probabilistic modeling formalism 
similar to Bayes networks [Pearl, 1986a]. 

Influences among the variables are indicated by depen- 
dence links, annotated with a sign denoting the direction of 
influence. Thus digitalis negatively influences conduction 
and positively influences automaticity. The former is the 
desired effect of the drug, because a decrease in conduction 
decreases the heart rate, which is considered beneficial for 
patients with tachycardia (tach), the population of interest 
here. The desirability of lower heart rates is represented 
by the negative influence on the value node (given tach), 
asserting that lower rates increase expected utility. The 
increase in automaticity is an undesired side-effect of digi- 
talis because this variable is positively related to the prob- 
ability of ventricular fibrillation (v. fib.), a life-threatening 
cardiac state. Calcium (Ca) and potassium (K) levels also 
influence the level of automaticity. 

One of the primary advantages of encoding the dig- 
italis model qualitatively is modularity, a knowledge rep- 
resentation issue of particular concern in the case of un- 
certainty [Heckerman and Horvitz, 19871. While the exact 
probabilistic relationships among these variables vary from 
patient to patient, the direction of the relations are reliably 

HI, Example: The 
Therapy Advisor 

Cur discussion of qualitative influences is set in the con- 
text of a simple causal model taken from Swartout’s pro- 
gram for digitalis therapy [Swartout, 19831. The model, 
shown in Figure 1, is a fragment of the knowledge base 
that Swartout used to re-implement the Digitalis Therapy 
Advisor [Gerry et al., 19781 via an automatic programmer. 

‘Supported by National Institutes of Health Grant No. 
ROl LM04493 from the National Library-of Medicine. 

660 Engineering Problem Solving 

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved. 



taken as constant. Conclusions drawn from this model are 
therefore valid for a much broader class of patients. 

The conclusions we would like our programs to derive 
from the digitalis model are those taken for granted in the 
description above. For example, we unthinkingly assumed 
that the effects of digitalis on conduction and of conduc- 
tion on heart rate would combine to imply that digitalis 
reduces the heart rate. Further, because lower heart rates 
are desirable, digitalis is therapeutic along the upper path. 
Similarly, it is toxic along its lower path to the value node. 
The tradeoff between therapy and toxicity cannot be re- 
solved by the mere qualitative influences in the model. 

The remainder of this paper develops a semantics for 
qualitative influences that justifies the kinds of inferences 
we require while providing the maximum possible degree of 
modularity. A formalism for qualitative influences among 
binary events was introduced in a previous paper [Well- 
man, 19871. In the sections below I present the basic defi- 
nitions, extending them to cover multi-valued parameters. 
The resulting definition is shown to be the weakest that 
satisfies our inference desiderata. 

Consider two random variables, a and b. Informally, when 
a and 6 are dichotomous events, a qualitative influence is 
a statement of the form “a makes b more (or less) likely.” 
This binary case is easy to capture in a probabilistic as- 
sertion. Let A and A denote the assertions a = true and 
a = false, respectively, and similarly, B and B. Then 
we say “a positively influences b,” written S+(a, b), if and 
only if 

Vx Pr(.B]Ax) 2 Pr(B]Az). (1) 

In the equation x ranges over all assignments to the other 
event variables consistent with both A and A. The quan- 
tification is necessary to assert that the influence holds in 
all contexts, not just marginally. Because of this context 
variable, S+ holds in a particular influence network pro- 
grams that alter the structure of the network may exhibit 
non-monotonicity in S+ [Grosof, 19871. Conditions anal- 
ogous to (1) and those following serve to define negative 
and zero influences, omitted here for brevity. 

For the dichotomous case, Bayes’s rule implies that (1) 
is equivalent to 

Vx Pr(A]Bx) 2 Pr(A]Bx). (2) 

In the terminology of Bayesian revision (1) is a condition 
on posteriors, while (2) is a condition on likelihoods. Notice 
that S+(a, b) is simply an assertion that the likelihood ratio 
is greater than or equal to unity. 

Formalizing S+ is not quite so straightforward when a 
and b take on more than two values. In such cases we want 
to capture the idea that “higher values of a make higher 
values of b more likely.” An obvious prerequisite for such 
statements is some interpretation of “higher.” Therefore, 

we require that each random variable be associated with 
an order 2 on its values. For numeric variables such as 
Upotassium concentration,n this relation has the usual in- 
terpretation; for variables like “automaticity” a measure- 
ment scale and ordering relation must be contrived. 

The more troublesome part of defining positive influ- 
ences is in specifying what it means to Qmake higher values 
of b more likely.” Intuitively, we want a statement that the 
probability distribution for b shifts toward higher values 
as a increases. To make such a statement, we need an or- 
dering that, given any two cumulative probability density 
functions (CDFs) Gi and G2 over b, determines whether 
Gr is “higher” than 62. 

However, not all probability distributions can be eas- 
ily ordered according to the size of the random variable. 
Different rankings are obtained through comparing dis- 
tributions by median, mean, or mean-log, for example. 
We require an ordering that is robust to changes of these 
measures because the random variables need be described 
by merely ordinal scales [Krantz et al., 19711. An asser- 
tion that calcium concentration positively influences auto- 
maticity should hold whether calcium is measured on an 
absolute or logarithmic scale, and regardless of how auto- 
maticity is measured. 

An ordering criterion with the robustness we desire 
is first-order stochastic dominance (FSD) [Whitmore and 
Findlay, 19781. FSD holds for Gr over Gz if and only if 
the mean of Gr is greater than the mean of G2 for any 
monotonic transform of b. That is, for all monotonically 
increasing functions 4, 

/ 
W)G(b) 2 

J 
cb(+G@). (3) 

A necessary and sufficient condition for (3) is 

Vb cl(b) 5 G2(b). (4 
That is, for any given value of b the probability of obtaining 
b or less is smaller for Gi than for G2. For further discus- 
sion and a proof that (4) is equivalent to (3), see (Fishburn 
and Vickson, 19781. 

We are now ready to define qualitative influences. Let 
F(b(aix) be the CDF for b given a = ai and context x.~ 
Then S+(a, b) if and only if 

Val, a2, x a1 2 a2 + F(bla,x) FSD F(blaax). (5) 
Adopting the convention for binary events that true > 
false, we can verify that (5) is a generalization of (1). 

Like (I), (5) is a condition on posteriors. Mil- 
grom [Milgrom, 19811 proves that the equivalent likeli- 
hood condition is the Monotone Likelihood Ratio Property 
(MLRP) from statistics [Berger, 19851. 

a As above, z ie an assignment to the remaining random variables 
consistent with the condition as = ~6. We need to include x here 
and in the definitions below because these conditions will be applied 
in situations where z is partially or totally known. If we had stated 
the conditions in marginal terms (“on average, a positively influences 
b-1, it would not be valid to apply them in specific contexts. 



Finally, we need a special definition for influences on 
the value node. The variable a positively influences utility, 
U+ (a), if and only if 

va,a2,x a1 L a2 =+ +l,s) 3 +2,x), (6) 

where u is a utility function [Savage, 19721 defined over the 
event space. 

Because b positively influences c, the pointwise FSD con- 
dition (4) implies that for any co, G(co ]bzo) is a decreasirag 
function of b. And S+(a, b) entails FSD of F(blqxo) over 
F(blazx,-,). Therefore, (3) applies with the inequality re- 
versed (negating G(colbxo) yields an increasing function), 
leading to the conclusion 

Vco G(coJwo)I G(cola2~0), (11) 

IV. Chains of Pnfluence 
In an earlier paper on qualitative influences [Wellman, 
19871, I considered networks of variables connected by in- 
fluence links describing the direction of probabilistic de- 
pendence. There, I demonstrated for the binary case that, 
in the absence of direct links from a to b, S+(u, b) A 
S+(b,c) =% S+(u,c). F rom a computational perspective 
the ability to perform inference across influence chains is 
an essential property of a qualitative algebra. From the 
digitalis model, for example, we would like to deduce that 
increasing the dose of digitalis decreases the heart rate but 
increases the likelihood of v. fib. Indeed, most programs 
with models like this would make such an inference. For- 
tunately, the definition offered above for S+ implies tran- 
sitivity for multi-valued as well as binary variables. 

Proposition 1 If a and c are not connected by any direct 
links, S+(a, b), and S+(b,c), then S+(a,c) holds in the 
network obtained by removing b. 

Proof: Choose al and a2 such that al > ~2, and an so 
consistent with al, ~2, and all b. Let G denote the condi- 
tional CDF for c and c the minimal value of the variable. 
By the definition of cumulative probability we have 

G(coluixo) = 1” / fac(bcluixo)dbdc. (7) 
E 

Changing the order of integration and decomposing the 
joint probability yields 

G(colwo) = 
// 

cco f,(claibxo)fa(blaizo)dcdb. (8) 

Because a and c are conditionally independent given b and 
5, we can remove ui from the fc expression.3 Rewriting 
the density function as the derivative of a cumulative, we 
get 

G(colwo) = fc(clbxo)dcdF(bluixo). (9) 

The inner integral is simply the CDF for c given b. 

G(colwo) = 
/ 

G(coIbxo)dJ’(blaixo). (10) 

SThe conditional independence follows from separation in the in- 
fluence network. See Pearl [Pearl, 1986b] for a discussion of the 
independence properties of graphical probability representations. 

implying FSD. Because al) a2, and zro were chosen arbi- 
trarily, we have finally S+(u, c). 

Similar arguments with the appropriate signs and di- 
rections switched would reveal that chains of influences 
may be combined by sign multiplication. 

In the remainder of this section I present some simple 
desiderata for a qualitative influence definition that entail 
the hecessity of FSD for chaining influences. We start by 
specifying the form such definitions must take. To capture 
the intent of “higher values of a make higher values of b 
more likely” in a probabilistic semantics, it seems reason- 
able to restrict our attention to conditions on the posterior 
distribution of b for increasing values of a. Therefore, we 
postulate that a definition of S+(u, b) must be of the form 

02) 

where R is some relation on CDFs. This condition is ex- 
actly (5) with FSD replaced by the more abstract relation. 

There are two basic desiderata that severely restrict 
the possible Rs. First, the definition for S+ induced by 
R in (12) must satisfy Proposition 1. Without the ability 
to chain inferences, the qualitative influence formalism has 
little computational value. Second, the condition must be 
a generalization of the original definition of S+ for dichoto- 
mous events (1). With only two possible values there does 
not appear to be a weaker monotonicity condition. These 
criteria lead to a sharp conclusion. 

Proposition 2 Let @(a, b) be defined by (121. Given the 
following conditions: 

1. Proposition 1 
2. For binary b, al 2 ~2, and x, 

F(blalx) R F(blu2x) ts Pr(B]ars) 2 Pr(BIa2z) 
(13) 

the weakest R is FSD. 

Proof: First, note that FSD satisfies these conditions. 
Next, assume that R satisfies them but R does not en- 
tail FSD. We will start with an instantiation of Proposi- 
tion 1 and derive a contradiction. Let a, b, and c be the 
only variables (so we can safely ignore x) with S+(a, b), 
S+(b, c), and no other direct links. For concreteness, let 
b range over the unit interval [0, l] and c be binary with 
Pr(C]b) = 4(b), for some 4 : [0, l] -+ [0, l] monotonic. The 
monotonicity of 4 guarantees S+(b, c): By assumption, 
Proposition 1 applies, yielding the conclusion Sf (a, c) and 
therefore F(c]ar) R F(cJa2). Because c is binary, (13) must 
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hold. Expanding the expression for the posterior probabil- 
ity of c given a, the RBS of (13) becomes 

/,’ 4(b)dJ’(blal) 2 /,’ 4(bW’(blw). (14 

Because 4 may be any monotonic function, FSD is neces- 
sary for (14) and is therefore entailed by R. 

The force of this result is weakened somewhat by 
the u priori restriction of definitions to those having the 
form of (12). Many statistical concepts of directional rela- 
tion (based on correlation or joint expectations, for exam- 
ple) do not fit (12) yet appear to be plausible candidates 
for a definition of qualitative influence. Quadrant depen- 
dence [Lehmann, 19661 holds between a and b when4 

U+(u) is satisfied in the reduced network if and only if 
u(ai, z) is increasing in ui. From (6) we know that u(b, 5) 
is monotonically increasing in b. In fact, it can be any 
monotonic function. Therefore, (16) is increasing in ai 
under the same conditions as (3), which is exactly S+ as 
defined by (5). 

Proposition 3 demonstrates that while conditions. like 
quadrant dependence which are weaker than Sf may be 
sufficient for propagating influences across chains, they are 
not adequate to justify decisions across chains. For choos- 
ing among alternatives, the relevant parameter is the util- 
ity function evaluated at a point; utilities conditioned on 
intervals of the decision variable (as in quadrant depen- 
dence) do not have the same decision-making import. 

Vul,a2 al 2 u2 =+ F(blu 5 al) FSD F(bla 5 ~2). (15) 

Lehmann proves that quadrant dependence is necessary 
but not sufficient for regression dependence, which is his 
terminology for (5) without the quantification over con- 
texts z. As quadrant dependence is weaker yet still ex- 
hibits transitivity, 6 it seems to be an attractive alternate 
to regression dependence. To justify our choice of the lat- 
ter, we must appeal to the decision-making implications of 
probabilistic models. 

The basic definitions above can be extended in a variety 
of ways. Conditional influences-defined for binary events 
in a previous paper [Wellman, 1987]-simply delimit the 
range of z in (5). For example, the negative influence of 
heart rate on utility in the digitalis model is conditional 
on tachycardia. 

Swartout’s XPLAIN knowledge base included the “do- 
main principle” that if a state variable acts synergistically 

The prime motivation for adopting a probabilistic seman- 
tics is so that the behavior of our programs can be justified 
by Bayesian decision theory [Savage, 19721. A decision is 
valid with respect to an influence model if expected util- 
ity is maximized. For example, if U+(u) and there are no 
indirect paths from a to the value node, then a decision of 
al over a2 is valid if and only if al > a2, by the definition 
of U+ (6).6 Decision-making power is enhanced if we can 
deduce new influences on utility from chains of influences 
in the network. Our definition of qualitative influence is 
necessary as well as sufficient for such inferences. 

with the drug to induce toxicity, then smaller doses should 
be given for higher observations of the variable [Swartout, 
19831. This fact could be derived by a domain-independent 
inference procedure given a suitable definition for qualita- 
tive synergy. We can say that two variables synergisti- 
cally influence a third if their joint influence is greater (in 
the sense of FSD) than separate statistically independent 
influences.’ In the digitalis example, we need to assert 
that digitalis acts at least independently with Ca and K 
deviations in increasing automaticity. In addition, we must 
specify that the decrease in utility for a given increase in 
automaticity is larger when automaticity is already high. 
Such a relationship can be captured by an assertion that 
automaticity is synergistic with itself in its toxic effects. 

Proposition 3 Consider a network where W+(b) holds 
and a and u are not connected by any direct links. A nec- 
essary and suficient condition fir U+(a) on removal of b 
is S+ (a, b) as defined by (5). 

Proof: The expected utility of ai with any x is given by 

u(a&x) = J u(b, z)dF(bluiz). (16) 

‘This ia actually the condition Lehmann proposes as a strength- 
ening of quadrant dependence. The basic quadrant dependence fixes 
01 at a’s maximal value. 

6For transitivity we need to quantify 
proof parallels that for Proposition 1. 

over contexts in (15). The 

“The existence of other paths from a to utility would leave open 
the possibility that the net influence of a is negative. For exam- 
ple, we could summarize the therapeutic effect of digitalis through 
conduction and heart rate as a direct positive influence. But this 
might be outweighed by the indirect negative influence of digitalis 
via automaticity. 

elated 
Philosophers have long attempted to develop mathemat- 
ical definitions of causality. Motivated by computational 
rather than philosophical concerns, I have ignored in this 
treatment temporal properties, mechanisms, spuriousness, 
and other issues salient to causality. These concerns aside, 
Suppes [Suppes, 19701 proposes a probabilistic condition 
equivalent to (1) without the context quantification for bi- 
nary events. For multi-valued variables, Suppes suggests 
quadrant dependence (15). 

As suggested previously, ordering of random vari- 
ables has also attracted considerable interest in statis- 
tics [Berger, 1985, Lehmann, 1966, Ross, 19831 and deci- 
sion theory [Whitmore and Findlay, 19781. Milgrom [Mil- 

7This type of relationship was 
19841, a diagnostic program based 

exploited by NESTOR [Cooper, 
on probabilistic inequalities. 
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grom, 19811 demonstrates the application of MLRP to the- 
oretical problems in informational economics. 

The key difference between the S+ definition proposed 
here and previous work is that we obtain transitivity by re- 
quiring the condition to hold in all contexts. Suppes shows 
that the causal algebra induced by his condition-defined 
only at the margin-does not possess the transitive prop- 
erty. As argued above, this is a computationally essential 
characteristic of qualitative influences. 

VIII. Conclusions 
Despite the ubiquity of qualitative influence assertions in 
knowledge representation mechanisms, there has been lit- 
tle study of the semantics of such constructs. Previous 
work either denies the probabilistic nature of the relation- 
ships among variables in the model or takes for granted 
the ability to draw inferences by chaining influences in the 
network. I have defZned a positive qualitative influence 
of a on b as an assertion that, in all contexts, the poste- 
rior probability distribution for b given a is stochastically 
increasing (FSD) in a. A series of propositions provided 
theoretical support for this S+ definition: 

Q s+ supports chaining of influences. 

condition 0 s+ is the weakest posterior 
chaining of influences. 

that supports 

0 s+ is necessary and sufficient for chaining decisions 
across influences. 

A semantics for qualitative influences should prove 
valuable for analyzing knowledge bases like the digitalis 
model of Figure 1, as well as knowledge representation 
theories that include similar constructs. In particular, 
the definition of S+ can help to evaluate the potential of 
purely qualitative methods like Cohen’s endorsement ap- 
proach [Cohen, 19851 and to characterize the techniques 
from AI work on qualitative reasoning that are valid in 
probabilistic domains. 
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