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Abstract 
The Phase Space is a powerful tool for representing 
and reasoning about the qualitative behavior of non- 
linear dynamical systems. Significant physical phe- 
nomena of the dynamical system - periodicity, recur- 
rence, stability and the like - are reflected by out- 
standing geometric features of the trajectories in the 
phase space. Successful use of numerical computa- 
tions to completely explore the dynamics of the phase 
space depends on the ability to (1) interpret the nu- 
merical results, and (2) control the numerical exper- 
iments. This paper presents an approach for the au- 
tomatic reconstruction of the full dynamical behavior 
from the numerical results. The approach exploits 
knowledge of Dynamical Systems Theory which, for 
certain classes of dynamical systems, gives a complete 
classification of all the possible types of trajectories, 
and a list of bifurcation rules which govern the way 
trajectories can fit together in the phase space. These 
bifurcation rules are analogous to Waltz’s consistency 
rules used in labeling of line drawings. The approach 
is applied to an important class of dynamical system: 
the area-preserving maps, which often arise from the 
study of Hamiltonian systems. Finally, the paper de- 
scribes an implemented program which solves the in- 
terpretation problem by using techniques from com- 
putational geometry and computer vision. 

. ntroduction 
The theory Of any fUnCtiOns begins n8tu- 
r811y with its qualitative aspect, and thus 
the problem which fist presents itself is the 
following: Construct the curves defined by 
differential equations. 
- Hem-i Poincare 

Qualitative Physics is a young field. Progress is 
made when researchers formalize and implement their 
understanding of how certain qualitative reasoning 
tasks, such as prediction of future behavior, and ex- 
planation of how the behavior comes about, are being 
performed in particular problem domains. Two do- 
mains, among others, have received much attention: 
circuit analysis and design in the engineering domain, - 
and simple boilers and fluid flow in commonsense 
physics. Early works in Qualitative Physics primar- 
ily dealt with incremental deviation from equilibrium 
states where time evolution is not explicitly consid- 
ered [De Kleer, 19791. More recent works attempt to 

extend DeKleer’s qualitative algebra and incremen- 
tal analysis to handle time-varying behavior [Forbus, 
1984, Williams, 1984, Williams, 1986, Kuipers, 19841. 

The machineries developed for qualitative reasoning 
- qualitative state vector, quantity space, and limit 
analysis - are largely applicable to systems which are 
piecewise well-approximated by low-order linear sys- 
tems or by first order nonlinear differential equations. 
The behavior of linear systems is particularly sim- 
ple: the complete input-output behavior can be sum- 
marized in a single system transfer function. Conse- 
quently, if the response to one type of input is known, 
no more information is needed to determine responses 
for other input signals. 

The situation in a nonlinear system is completely dif- 
ferent: essential changes in the qualitative behavior 
of the system may occur as the amplitude of the in- 
put signal changes, or as the starting conditions are 
varied. More importantly, nonlinear systems have a 
far richer spectrum of dynamical behavior. Simple 
equilibrium points, periodic and quasiperiodic mo- 
tion, limit cycles, chaotic motion 8s unpredictable as 
a sequence of coin tosses - these are some of the be- 
havior found in a typical nonlinear system. 

Unfortunately, these nonlinear Characteristics do not 
show up in first order nonlinear differential equations. 
This is because the continuity and (local) uniqueness 
of flow severely constrain the kind of behavior possi- 
ble on the real line: the flow either tends towards an 
equilibrium, or goes off to infinity. 

In this research, I therefore propose to look at dynam- 
ical systems - those typically encountered in Physics 
- to provide a new source of examples for investiga- 
tion into the fundamental issues of descriptive lan- 
guage, style of reasoning, and representation tech- 
niques in qualitative reasoning about nonlinear dy- 
namical systems. Specifically, I will consider two- 
dimensional discrete dynamical systems defined by 
area-preserving maps containing a single control pa- 
rameter. The study of area-preserving maps - trans- 
formations of the plane which preserves area - began 
with the venerable problem of the stability of the so- 
lar system. I choose to investigate this simplest non- 
trivial type of conservative system because many im- 
portant problems in physics - the restricted j-body 
problem, orbits of particles in accelerators, and two 
coupled nonlinear osdletors, just to mention a few - 
can be reduced to the study of are&preserving mape. 
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Yn+l = x=sina!+(y, -xz)coso 

control parameter varies, I want my program to au- 

tomatically generate a family of phase portraits de- 
scribing the main dynamical properties of the map 
for all initial conditions in U and parameter values in 
T  
J. 

To explore the complete dynamics of a nonlinear sys 
tern over a large region of the phase space and param- 
eter space is a fairly typical problem in the physics 
literature. A good illustration of this task is provided 
by Henon’s well-known paper, “Numerical Study of 
Quadratic Area-Preserving Mappings” [Henon, 19691. 
The goal of Henon’s paper is to provide a description 
of the main properties of the quadratic map: 

Xn+l = x,cosa!-(y,-xi)sina 

where x and y are the state variables, and CY is the 
control parameter. The main results of Henon’s pa- 
per are shown in Figures l(a)-(f), which display the 
output of many numerical simulations. 

f(b) . .;:>, 

Figure 1: A partial list of phase portraits from numerical 
experiments. The figures are generated by plotting several 
hundred of successive values of (xra, yn). (a) CY = 1.16 (b) 
a! = 1.33 (c) a! = I.58 (d) CY = 2.0 (e) (;Y = 2.04 (f) CY = 2.21. 
Dashed line: axis of symmetry. 

The simplest approach to this problem is the brute 



force method: it divides the phase space and param- 
eter space into small grids and tries every possible 
combinations of initial conditions and parameter val- 
ues. A simple calculation will show that this method 
involves an enormous amount of computation. For 
instance, if we choose a uniform grid size of 0.01, we 
have to compute approximately 300 x 300 x 600 = 54 
million orbits. Assuming, on the average, 0.02 second 
is needed to compute 8 trajectory of 500 points, it will 
take over 300 hours of computation time to compute 
all the trajectories. 
The brute force method suffers from two serious prob- 
lems. First, it is grossly inefficient because most of 
the phase portraits computed will be qualitatively the 
same. Second, it is not reliable because there is al- 
ways the danger of missing some important qualita- 
tive features when the change occurs at a resolution 
finer than the grid size. 
A physicist often does much better than this. Fig- 
ure 2 represents a flow-chart of what a professional 
physicist does during the numerical experiment. The 
flow-chart has two nested loops. The outer loop in- 
volves deciding when to stop the experiment; the in- 
ner loop, when to move on to next parameter value. 
Controlling what experiment to do next, and inter- 
preting the results of the simulation - these are the 
two most important decisions the experimenter has 
to make. 

Figure 2: How-chart which describes the process of exper- 
imenting with a dynamical system. 

The task of behavior prediction can now be summa- 
rized as this: to develop a picture of all possible solu- 
tions to the dynamical system from a limited amount 
of numerical experiments at a limited number d ini- 

tia conditions and parameter values. The key ob- 
servation is that knowledge of qualitative dynamics 
and their geometric manifestations in the phase space 
provides a strong constraint on the type of behav- 
ior possible. As we will see in the next section, this 
constraint translates into a dramatic reduction of the 
amount of search required to find those combinations 
of initial states and parameter values that lead to 
9nteresting” phase portraits. 

A. Terminology 

The purpose of this section is to introduce some con- 
cepts and definitions from Dynamical Systems The- 
ory [Hirsch and Smale, 19741. A dynamical system 
consists of two parts: (1) the system state, and (2) 
the evolution law. The system state at any time to 
is a minimum set of values of variables {XI, . . . , x,) 
which, along with the input to the system for t 2 to, is 
sufficient to determine the behavior of the system for 
all time t 1 to. The variables which define the system 
state are called state variables. The conceptual n- 
dimensional space with the n state variables as basis 
vectors is called the phase space. A state vector is 
a set of state variables considered as a vector in the 
phase space. As the system evolves with time, the 
state vector traces out a path in the phase space; the 
path is called an orbit or a trajectory. Finally, 8 
phase portrait is a partition of the phase space into 
orbits. 
The evolution law determines how the state vector 
evolves with time. In a finite dimensional discrete 
time system, the evolution law is given by difference 
equations. The difference equation is specified by a 
function f : X --) X where X is the phase space 
of the discrete system. The function f which defines 
a discrete dynamical system is called a mappinrg, 
or 8 map, for short. The multipliers of the map 
f are the eigenvalues of the Jacobian of f. An area- 
preserving map is a map whose Jacobian has a unit 
determinant. 
The set of iterates off-z, f(x), f2(x), f’(x), . ..) f”(z) 
- as n becomes large is called the orbit of x relative 
to q it captures the history of x as f is iterated. 
Two types of point have the simplest histories - fixed 
point, and periodic point. The point x is a dxed 
point of f if f(x) = x. A fixed point x is called &a- 
ble, or elliptic, if all the multipliers of f at x lie on 
the unit circle; it is called unstable, or hyperbolic, 
otherwise. The point x is a periodic point of pe- 
riod n if p”(x) = x. The least positive n for which 
f”(x) = x is called the period of x. The set of all 
iterates of a periodic point forms a periodic orbit. 

. Qualitative ynamics and their 

Types of Orbit 
ve 8 brief outline of 
rbits in area-preserv 
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There are four ways in which an orbit generated by 
infinitely many iterations of the map can be explored 
in the phase space: 

1. A finite number of N points are encountered re- 
peatedly, corresponding to a periodic orbit of 
period N. 

2. The iterates fill a smooth curve, which is a topo- 
logical circle, in the phase space. This curve is 
called an invariant curve because the whole 
curve maps onto itself under the action of the 
map. 

3. The iterates can form a random splatter of 
points that fills up some area of the phase space. 
This happens when the orbit evolves in a chaotic 
manner whose detail depends sensitively on the 
initial conditions. 

4. The iterates leave the phase space after a finite 
number of iterations and escape to infinity in the 
end. These points are called escape points. 

Since the dynamics of are&preserving maps and 
Hamiltonian systems have a lot in common, these 
four types of geometric orbit have important physical 
interpretations. Due to space limitation, I just lit 
the interpretations below. The explanation of these 
interpretations can be found in [Yip, 19871. 

periodic points _ periodic motion 
invariant curve _ quasiperiodic motion 
chaotic region ++ chaotic motion 
escape points C unbounded motion 

2. Bifurcations: Qualitative changes 
in the phase portrait 

Two phase portraits are qualitatively equivalent 
if there exists a homeomorphism between them which 
preserves fixed points, periodic points, invariant 
curves, and their stability. Bifurcation is said to oc- 
cur when the dynamical system goes through a qual- 
itative change in its phase portrait as the control pa- 
rameter is varied. I will focus on one important type 
of bifurcation: appearance and disappearance of pe- 
riodic orbits. 
Meyer Meyer, 19701 gives a complete classification 
of fhe generic bifurcations of periodic points for one- 
parameter area-preserving maps. Meyer has shown 
that generic bifurcations occur when the multiplier 
x nth root of unity where n = 1, 2, 3, 4, and 
1 F The five types of generic bifurcation are: (1) 
extremal, (2) transitional, (3) phantom 3-k& (4) 
phantom Ckiss, and (5) emission. Because of space 
limitation, I only discuss the case of phantom J-~&W 
as an illustration of what the bifurcation geometry is. 
Again, detail of this can be found in [Yip, 19871. 
Phantom 3-kiss occurs when the multiplier X of the 
map is a cube root of unity. The region of stability 
of the elliptic fixed point shrinks to zero aa the hy- 
perbolic points of an unstable period-3 cycle “kiss” 
at, the origin. After the Ukiss”, the fixed point turns 
elliptic again, and a new unstable period-3 cycle is 
emitted. Note the change in orientation of the trim- 
g&r region around the elliptic point. The phantom 

S-kiss is often preceded by extremal bifurcations in 
a region a bit further away from the original elliptic 
fixed point, resulting in the formation of a pair of 
elliptic and hyperbolic period-3 points. 
The dynamics of the area-preserving maps severely 
constrain the way orbits can fit, together in the phase 
portraits. These constraints, which are encoded in 
the bifurcation patterns, are thus analogous to the 
consistency rules for line labeling in Waltz’s thesis 
[Waltz, 19751. A s we shall see later, the geometry of 
bifurcation allows us to decide whether a collection of 
phase portraits is consistent, and gives us clue to the 
types and locations of orbits that the program should 
be looking for. 

Biication 
Type 

Discrete Flow Pattern 

Figure 3: Five Generic types of Bifurcation Geometry. 
A periodic point bifurcates whenever its multipliers pass 
through an n-th root of unity. 

IV. The Control Problem 

A. How to start the numerical ex- 

periment? 

Elliptic fixed points are good places to start. We ex- 
pect that the orbits near an elliptic fixed point, where 
the linear terms of the map dominate, will be mostly 
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invariant curves. We then search radially outward un- 
til we encounter island chains, and eventually chaotic 
regions. 

B. Mow to decide what experiment 

to try next? 

Knowing the generic bifurcation patterns is valuable 
for controlling numerical experiments. To begin with, 
it is difficult, to locate the value of the control param- 
eter at which bifurcation occurs: it is of probabil- 
ity almost zero that a randomly chosen point in the 
(z,y, Q) space will be the bifurcation point. But the 
pattern of flow near a periodic point just before and 
after the bifurcation occurs in a finite range of the 
control parameter; hence the pattern is easier to de- 
tect during the experiments. 
Once a given flow pattern is found to match some 
parts in our library of bifurcation geometries, it will 
give us strong evidence that the corresponding bifur- 
cation exists, and we should be able to locate the rest 
of the flow patterns as given by the generic bifurca- 
tion. The pre-stored knowledge abouf these bifurca- 
tions gives us the complete information about what 
geometric objects, and approximately where in the 
control parameter space to look for. 
To take an example, consider the phantom S-k&w seen 
in figure Id. The local flow pattern around the fixed 
point matches that in figure 3. According to the bifur- 
cation pattern, the regular region around the stable 
fixed point will shrink in size, becoming an unstable 
fixed point; eventually, a new stable fixed point is 
born. So, we should expect to see figure If at some a 
slightly greater than two. 

c. Mow to decide when to termi- 

nate the experiments? 

Besides imposing a strong constraint on what can be 
expected to happen in the phase portrait, the generic 
bifurcations also provide an answer to the problem 
of termination: a simulation experiment is incom- 
plete unless all the major qualitative features in the 
phase portrait can be explained by this finite list of 
local generic bifurcations. An example is the change 
of stability of a fixed point. Suppose we have nu- 
merically located the 3-island chain and the center 
elliptic point at some ar = CYO as in figure Id. We 
know that the family of phase portraits is yet incom- 
plete because we expect a phantom S-kiss bifurcation 
to occur. In particular, we need to try at least two 
more experiments to obtain two phase portraits: first, 
ati Q = CYI when the triangular region is flipped, and 
second, at (~2 E (cYo,c~~) when the region becomes 
vanishingly small, indicating instability of the fixed 
point. 

1. Orb2 Type. How can one recognize the or- 
bit type - a O-dimensional finite point set 
whose elements are encountered repeatedly, a l- 
dimensional smooth curve, or a 2-dimensional 
region - of a set of iterates? 

2. Clustering. How can one determine the number 
of islands in an island chain? This number gives 
the period of the enclosed periodic point. 

3. Area and Centroid. How can one estimate the 
centroid and area enclosed by the curve? The 
centroid is a good approximation of the location 
of the enclosed periodic point,. The area gives a 
measure of saliency of the island chain. 

4. Shape. How can one recognize the shape of a 
curve? For example, is it, a 3-sided figure resem- 
bling a triangle? 

In the following, I will show how these four problems 
can be solved by applying techniques from computa- 
tional geometry and computer vision. Euclidean min- 
imal spanning tree (EMT) [Preparata and Shamos, 
19851, and scale space image [Witkin, 19831 - these 
are the two important data structures used by the in- 
terpretation program. The 
a8 follows (see figure 4). 

main processing 

Figure 4: Main 
tion problem 

processing steps for solving the in terpl -eta- 

steps are 

e Step 1. The program computes a EMST from 
the input point set, using the Prim-Dijkstra al- 
gorithm. 

e Step 2. The program detects clusters in the 
EMST by looking for edges in l&he tree that 
are significantly longer than nearby edges. Such 
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edges are called incontistent [Zahn, 19711. The 
criterion of edge inconsistency suggested by 
Zahn is used to detect inconsistent edges. Incon- 
sistent edges are then deleted, breaking up the 
EMST into connected sub-components. These 
sub-components are collected by a depth-first 
tree walk. 

l Step 9. For each sub-tree of the EMST, the pro- 
gram examines the degree of each of its nodes, 
where the degree of a node is the number of 
nodes connected to it in the sub-tree. For a 
smooth curve, the EMST consists of two ter- 
minal nodes of degree one; the rest, degree two. 
For a point set that fills an area, its correspond- 
ing EMST consists of many nodes having degree 
three or higher. 

e Step 4. To compute the area and centroid of 
the region bounded by a curve, the program 
generates an ordered sequence of points from 
the EMST, and spline-interpolates the sequence 
to obtain a smooth curve. The smooth curve 
is encoded using chain coding [Freeman, 19611. 
Straightforward algorithms are then applied to 
compute the area and centroid. 

l Step 5. A curve is parameterized by C(s) = 
(s(s), y(s)) where s is the arc length along the 
curve. The two functions x(s) and y(s) are com- 
puted from the chain code representation. Then, 
x(s) and y(s) are smoothed by the Gaussian and 
its first two derivatives at multiple spatial scales. 
Finally, the zero-crossings of the curvature func- 
tion R(S), and the signs of it(s) are computed to 
determine the locations and type of the extrema. 

Examples of orbit recognition can be found in [Yip, 
19871. 

VI. Summary 
In this paper, I have studied the task of qualitative 
analysis of nonlinear area-preserving map by numer- 
ical experiments. I have also described how to ap 
preach the two major problems in automating the ex- 
perimenting process: (1) experiment control, and (2) 
result interpretation. The basic idea is that knowl- 
edge of qualitative dynamics and bifurcations pro- 
vides a strong constraint on the type of behavior 
possible. Finally, I have described a program which 
solves the interpretation problem by using techniques 
from computational geometry and computer vision. 
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