
An Architecture For Intelligent Task Autsmatio

Jeffrey M. Becker and Fred E. Garrett
Martin Marietta Denver Aerospace

P.O. Box 179, M.S. 0428
Denver, CO 80201

Abstract

This report discusses the Martin Marietta Intelligent
Task Automation Project (ITA). The purpose of
the ITA project is to integrate Artificial Intelligence
(AI) task planning, path planning, vision, and
robotics technologies into a system designed to
autonomously perform manufacturing tasks in
dynamic or unstructured environments. The
application domain chosen for primary
demonstrations is dimensional measurement of an
F-l 5 bulkhead. The overall goal is to be able to
perform the inspection an order of magnitude faster
than the current manual method, which takes about
24 hours for about 1000 inspection points. The
project was conducted in two phases. Phase I,
completed in December 1984, demonstrated the
readiness of the technologies in each of the areas
making up the ITA system. Phase II, which was
mostly complete in June 1987, demonstrated that
the technologies can be integrated into a working
system and that the system can be transferred to
other applications. The architecture of the ITA
system is discussed with an emphasis on the AI
components making up the system. The
strengths and weaknesses of the architecture and AI
techniques applied are discussed.

I. Introduction

Artificial Intelligence and Robotics technologies have
advanced to the state where combining them into an
intelligent system for performing industrial tasks is
feasible. The purpose of this paper is to give a broad
overview of the Martin Marietta Intelligent Task
Automation (ITA) project so the reader can gain an
understanding of its overall architecure and the AI
technologies applied.

Phase I, which started in January 1983,
demonstrated the readiness of component technologies
of the ITA system. Sequence planning (the “traveling
salesman” problem), task planning, and path planning
systems were developed and demonstrated. Vision
-_I-

This work was performed at the Intelligent Task
Automation Project facilities of Martin Marietta Denver
Aerospace. This work was supported by the Air Force
Wright Aeronautical Laboratories and the Defense
Advanced Research Projects Agency under Contract
F336 15-82-C-5 139.

672 Robotics

capabilities demonstrated included edge extraction and
classification, planar region extraction, object
recognition [Magee and Nathan, 19851, and dimensional
measurement, all from laser scanner range data. Plan
execution was demonstrated by performing a tool pickup
and several measurement actions using a Cincinnati
Milacron T3-746 arm and the 6 degree of freedom
control system developed during the program. An
approach to the problems of execution monitoring and
exception handlin
[VanBaalen, f

was also developed and implemented
1984 .

Phase II, which started in December 1985,
demonstrated that the technologies developed in Phase I
could be integrated into a working system. Most of the
code developed for Phase I was rewritten under Phase II
to incorporate lessons learned. Figure I illustrates the
hardware configuration for the bulkhead inspection
demonstration task.

The ITA Phase II system architecture is a heterogenous
hierarchical planning and plan execution system
consisting of a sequence level, a task level, a geometric
level, and a physical level. The software consists of the
thirteen components (boxes) shown in Figure 2. These
components access the seven knowledge bases
(cylinders) shown. The general sequence of operations
is as follows.

Measurements to be performed are entered using the
Offline Measurement Entry component. The
measurement specifications are preprocessed to generate
the measurement knowledge base, the sequence plan,
and the Operation Planner MACROPS (generalized
plans) using the ITA system in Offline Simulation mode.
Though not strictly necessary, preprocessing improves
the speed of online operations in a production
environment. Offline simulation also provides a safe
means for verifying correct system operation. When
started up online via the System Monitor, Top Level
executes the sequence-level plan by getting the next
measurement to be performed from the Sequence
Planner, getting a task plan to perform the measurement
from the Operation Planner, passing the operation plan
to the Plan Executive/Monitor for execution, and
passing the result of plan execution back to the System
Monitor for archiving. The Plan Executive/Monitor
uses the Geometric Reasoner to translate qualitative
parameters of the plan to quantitative values. It sends
commands for robot actions and ultrasonic
measurements to the Path Planner. The Path Planner

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

uses the Collision Avoidance component to determine if
a proposed path intersects with any object in the
workspace, and sends commands to the Robot Controls
component to execute a path plan. Commands for
Scanning Laser Ranging Assembly (SLRA)
measurements are sent by the Executive to the Vision

component. If either the Path Planner or Vision
component returns an error message for a command
result, the Executive invokes the Exception Handler to
diagnose the problem and generate a recovery plan. A
description of each component follows.

Ethernet

f

I & Control
Wyse I 100 I I Symbollcs 3670 I I S~mbo?ics 3670 I I IRIS 3020 I I Intel 310 1-l I

F16 Bulkhead

Figure 1: ITA Phase II Hardware Configuration
p-J - Tool Rack

n /
Geometric
Reasoner

Measurement

I

Planner
Knowledge Knowledge * I

h System
Monitor *

- ROBOT

Figure 2: ITA Phase II Functional Diagram

Becker and Garrett 673

The Offline components are used to enter and edit
specifications of the measurements to be performed to
inspect a part, to generate problem sets for testing the
path planner, and to provide a 3-D graphics simulation
capability for display of path planner output. The
simulation may be driven instead of the actual robot for
overall system verification. Measurement specifications
are entered using a graphics display of the bulkhead to
select measurement locations, and using a menu-oriented
interface for entering additional
dimension and tolerance.

parameters such as

The System Monitor serves as the user interface to
the ITA online system, and may also be used to monitor
preprocessing activities. Commands are included for
starting, stopping, interrupting, and continuing inspection
activities, and for displaying the results of the inspection.
Graphics interfaces are provided for the Sequence
Planner, the Operation Planner, the Plan
Executive/Monitor, the Exception Handler, and the Path
Planner to allow for detailed examination of system
activities.

The Top Level component executes sequence-level
plans as described above. Top Level also watches for
STOP and INTERRUPT commands from the System
Monitor and will either halt all system activity
immediately or interrupt activity after the current plan
completes execution accordingly.

The Sequence Planner generates a sequence plan
from an unordered set of measurement specifications. It
also looks up the next measurement goal in the stored
sequence plan on request from Top Level. Generating a
sequence plan consists of partitioning remaining
measurements into groups according to the measuring
tool to be used, and then ordering the points within each
group. Partitioning of measurements is performed using
a set of rules coded in MRS (Meta-Level Representation
System) [Genesereth, et al.. 19841 for tool selection.
Measurements that are already done or that cannot be
done because of the unavailability of the correct tool are
placed in separate groups. Ordering of the measurement
points is accomplished using a near-optimal solution to
the traveling salesman problem known as the “Convex
Hull” algorithm followed by 2-Optimal Edge Exchange
and Peephole optimizations [Golden, et al., 19801.
Looking up the next step consists of popping the next
measurement specification off the stored sequence plan,
and verifying the required resources are available. If
not, resequencing is performed and the next
measurement (if any) from the new
returned.

sequence is

The Operation Planner consists of a Task Planner, a
Plan Generalization component that creates a
macrop-operator (MACROP) from a plan, and a
MACROP Lookup component that finds and instantiates
a MACROP for a given initial state and goal conditions.
The Operation Planner first tries MACROP Lookup. If
no applicable MACROP can be found, the Task Planner
is called on to generate the plan from scratch. The plan
is then generalized and stored as a MACROP for future
reference.

The Task Planner is a hierarchical, nonlinear,
backward chaining planner that uses hill climbing search
(backtracking is chronological). For a treatmerfb7;f
related planners see ABSTRIPS [Sacerdoti, .

Nonlin [Tate, 19771, Noah [Sacerdoti, 19771. and SIPE
[Wilkins, 19841. The Task Planner is hierarchical in the
sense of ABSTRIPS - goals are weighted and only the
highest level unsatisfied goals are worked on. Nonlinear
plans are achieved by (1) allowing operators to be
ordered in parallel with other operators in the plan if
there are no interactions and (2) allowing serendipitious
goal reduction. Deductive operators are used to replace
explicit delete lists in the operator descriptions. Unary
and n-ary constraints on operator variables are provided
to generate and to test candidate bindings for operator
variables, respectively. Figure 3 shows an operator
declaration and a deductive operator for the ITA
domain.

;;; Operator for Ultrasonic Measurements:

(static-operator
:name-and-format (us-measure Stool Sann Sid)
zpreconditions

((couplant-applied (goal-point (meas Sid)))
(at Sam (in-contact-point (meas Sid)))
(holding $arm Stool))

: adders
((measured Stool Sarm (meas Sid)))

:unary-constraints
((type Sa2-m arm)
(type Stool us-tool))

:n-ary-constraints
((can-lift Sarm Swl)
(weight Stool $w2)
(<= SW2 Swl))

:resources (Stool Sarm)
:message-pattern

(MEASURE (min-value (meas Sid))
(max-value (meas Sid)))

:command-stream (command-stream path-planner Sarzn)
:reply-pattern (VALUE Sval)
:result-pattern (dimension $id Stool Sval 0.0))

;;; Propositions denied when a tool is picked up:

(deductive-operator
:name-and-format (holding Sann Stool)
:denied ((location Stool $arm in-rack)

(holding Sarm (n= Stool))))

Figure 3: Example of Static and Deductive Operators

Plan Generalization involves replacing certain
constants in a plan by variables, finding overall
preconditions and adders of the plan, collecting unary
and n-ary constraints, and creating additional resource
constraints. Figure 4 shows an example of a generalized
plan. MACROP Lookup is a straightforward process of
comparing each MACROP to the given initial state and
goal conditions, and then determining if the constraints
are satisfied. The MACROP is then plugged with the
bindings found. MACROP Lookup is roughly two
orders of magnitude faster than generating the same
plan from scratch (- 0.1 set versus w 10.0 set for a
typical ITA domain plan). This capability is essential
for meeting the production environment timing
constraints of the ITA project.

674 Robotics

;;; MACROP for Ultrasonic Measurement sequence:

(macrop
:name-and-format (MEASURED $IDl STOOL1 S-1 SID2)
:purpose

((MEASURED STOOL1 $ARMl (MEAS $ID2)))
:p&onditions

((AT $ARMl (IN-CONTACT-POINT (PILEAS $IDl)))
(HOLDING $ARMl $TOOLl)j

:adders
((AT S-1 (IN-CONTACT-POINT (MEAS $ID2)))
(MEASURED STOOL1 $ARMl WAS $ID2)))

:unary-constraints
((TYPE STOOL1 US-TOOL)
(TYPE $ARMl ARM))

:n-ary-constraints
((CAN-LIFT $AlWl $Wl)
(WEIGHT STOOL1 $W2)
(<= SW2 $Wl))

:resources (STOOL1 SARMl)
:plan

((1 (MOVE-RETRACT $ARMl $IDl) NIL)
(2 (MOVE $ARMl (MEAS $IDl) (MEAS $ID2)) (1))
i3 (APPLY-COUPLANT $ARMl $ID2) (2))
(4 (MOVE-CONTACT $ARMl $ID2) (3))
(5 (US-MEASURE STOOL1 $ARMl $ID2) (4))))

Figure 4: Example of a MACRQP

The Geometric Reasoner is responsible for
creating, accessing, and maintaining the Measurement
Knowledge Base (MKB). The MKB contains
information about where the arm can be positioned to
perform each measurement, the approach position in
free space for ultrasonic measurements, and parameters
for performing SLRA measurements such as patch sizes
and locations in the field of view. This information is
derived from geometric constraint and preferrence
information.

The Plan Executive/Monitor executes a plan by
sending commands to the Path Planner, which controls
robot motion and ultrasonic measurements, and to
Vision, which controls SLRA measurements. The
Executive splits a plan into separate command streams,
one for each independently controllable sensor or
effector. The Path Planning component uses a
lookahead queue to do smoothing where continuous
motion is possible over several commands, so it receives
all of its commands from a plan at once. To
synchronize a commanded process that uses a lookahead
queue with other processes, the Executive inserts WAIT
commands before any command that has a predecessor
belonging to another command stream. The Executive
sends a CONTINUE command for a WAIT command
when the appropriate predecessor commands have been
completed. The reply to a command can be either a
normal reply or an exception reply. A command may
also “time out” if a reply is not sent within a reasonable
period of time. When an exception reply or timeout
occurs, execution of the plan is stopped, and all relevant
information about the exception is passed to the
Exception Handler.

The Exception Handler is responsible for diagnosing
the cause of the exception, updating the world model to
correspond to the current state of the world, and
generating a recovery plan. For diagnosis, the Exception

Handler is given a knowledge base- @IRS rules)
containing information about possible causes for each
fault, the number of times each exception has occured,
the assertions that each available test can verify,
preconditions of each test, and an estimated cost for
each test. When an exception message is received, the
certainty of assertions associated with possible causes is
reduced. Tests are selected, executed, and the results
interpreted until a single cause is isolated. The next test
to execute is selected by dynamically generating a
near-minimal decision tree according to fault frequency,
test cost, and test precondition information. Replanning
is done by the Operation Planner using the current state
for the initial state and the original goals of the failed
plan for the goal conditions.

The Path Planner functions as the interface between
the task plan Executive/&Ionitor and the real-time robot
controller. The Path Planner first verifies that the goal
position is reachable. It then generates collision-free
paths for the robot using a dual-level algorithm. First, a
potential collision-free path for the end effectoq,
(modeled as a point) is found using the “visibility lines”
method [Lozano-Perez, 19791 with goal optimization for
producing graph nodes, and A* search for selecting the
node sequence. The prospective path is then checked at
incremental positions to see if any collisions involving
intermediate links of the arm will occur. If a collision
could occur, new intermediate subgoals are proposed
and evaluated until a collision free path is found. A
third trajectory-planning phase, involving profile
smoothing and velocity selection, is handled in the Robot
Controller.

The Collision Avoidance Model is the geometric
representation of the workcell (objects, tools, robot
parts) used by the Path Planner. The Collision
Avoidance Model provides for determining if a point or
line segment intersects any worlccell object, if a robot in
a particular position intersects its own links or a
workcell object, and for updating the model to reflect
changes in the real world. The basic representation
structure is a region tree. A region tree (actually a
directed graph) is a hierarchical structuring of part of
space into arbitrarily oriented regions. A region can be
a sphere, tube (cylinder with spheres of the same radius
at both ends), or a rectangular parallelepiped. At the
leaves are solid regions representing actual workcell
objects. Regions need not completely contain their
children, but all regions except for roots must be
completely contained in some set of ancestors. Region
tree nodes contain shape, size, position, orientation, and
solidity information.

The Vision component is responsible for processing
SLRA images to obtain dimensions for the observed
parts of the bulkhead. The SLRA was developed by the
Environmental Research Institute of Michigan (ERIM)
under subcontract to Martin Marietta Corporation during
Phase I of the ITA contract. It uses a modulated laser
light source to determine the range to the target. The
range is computed by determining the phase change that
results when the light travels from the sensor to the
target and back. The resulting 3-D range inform&ion
can be used for dimensional measurement and object
classification. Each measurement involves positioning
rectangular patches in the image to correspond to
critical areas of the part being measured. Measurements
are obtained by a variety of techniques, depending on

Becker and Garrett 675

the type of measurement to be performed. These
techniques include edge detection, computing surface
normals, and curve fitting.

III. Results and Analysis

Phase II demonstrations have shown the ITA system
works as an integrated whole. Several runs of the
measurement process were performed, both simulated
and with the actual robot arm and measuring tools. The
system was shown to be able to handle bad measurement
and broken measurement tool exceptions properly. In a
separate research task funded under the ITA program,
coordinated dual-arm control algorithms were
demonstrated. (Further details, not available at the time
of writing, will be given at the conference.)

Although major strides were made in building an
integrated intelligent robot system, the system is still not
as flexible nor as powerful as we would like for truly
general-purpose manipulator automation. For example,
to make the system more flexible, the Top Level
component, which is currently hard coded for the
inspection domain, should be replaced by a high-level
planner that can call on special- purpose functions such
as the current sequence planner as tools.

Because of the heterogenous hierarchical
architecture used, the task planner only has to plan for a
single measurement at a time. This makes the task
planner’s job much easier. In fact, we have found the
branching factor of the ITA measurement domain to be
less than that of the standard blocks world domain for
task planning. Even so, ITA task plans share many
subsequences. We would like to add the capabilities of
selectively generalizin
plan as in Morris f

interesting subsequences of a
Minton, 19851, and of using

MACROPs in addition to primitive operators for
constructing a task plan. We are also looking into
incremental task plan revision techniques [Simmons,
19851 as an alternate means of replanning following an
exception under a research task associated with the ITA
project. Overall, richer representations of domain
objects and robot actions are needed to allow more
powerful. knowledge-based task planning for more
difficult domains.

We have fo;;ia;k;t truly robust exception handling
in robotics requires powerful sensory
capabilities, espeicially vision. Reasoning can do little to
replace perception when it comes to determining the
state of an environment subject to external influences.
Our choice of a break-and-resume approach to exception
handling was based on the (correct) assumption that
high-level sensing operations could not generally be
done in real time. Given a fast vision system for
real-time hand-eye control, many problems that are now
treated as exceptions (e.g., bumping into something
because of positioning inaccuracy) could be easily
avoided. We hope that a second arm and a more
general vision component can be added back to the
system in follow-on work. Object recognition research
conducted during Phase I could be applied to such an
effort.

for controlling an industrial robot in a real-world
domain. Being able to integrate such a system is very
much a team effort and requires organizational
commitment as well as technological expertise. Martin
Marietta is currently assessing the possibility of making
the Intelligent Task Automation system available as a
test bed for outside research in the areas of planning,
compliant and multi-arm controls, and integrating vision
with robotics.

Acknowledgements

The Martin Marietta Intelligent Task Automation
Project is a team effort, and this paper is based upon the
efforts of and has received input from many people.
Our thanks to the entire ITA team. Special thanks to
Dennis Haley (project manager), Don Mathis, and Mark
Thomas.

References

Brooks, R. A., Lozano-Perez, T., 1983. “A Subdivision
Algorithm in Configuration Space for Findpath with
Rotation”, Proceedings IJCAI-83, Karlsruhe, West
Germany, 1983, pp 799-806.

Genesereth, M., R. Greiner, M. Grinberg, and D. Smith,
1984. The MRS Dictionary, Heuristic Programming
Project Report No. HPP-80-24, Stanford University,
Stanford, CA, January 1984.

Golden, B., L. Bodin, T. Doyle, and W. Stewart Jr.,
1980. “Approximate Traveling Salesman Algorithms”,
Operations Research, Vol 28, No. 3, Part II, May-June
1980, pp 694-711.

Lozano-Perez, T., 1979. “An Algorithm for Planning
Collision-Free Paths Among Polyhedral Obstacles”,
Communications of the ACM, Vol 22, No. 10, October
1979, pp 560-570.

Magee, M., and M. Nathan, 1985. “A Rule Based
System for Pattern Recognition that Exploits Topological
Constraints”, Proceedings of IEEE CVPR85, June 1985.

Minton, S., 1985.
Problem Solving”.

“Selectively Generalizing Plans for
Proceedings IJCAI-85, Los Angeles,

CA, 1985, pp 596599.

Sacerdoti, E.. 1977. A Structure for Plans and Behavior,
North-Holland, New York, 1977.

Simmons, R., 1985. Knowledge Intensive Plan Debugging,
Internal Report, MIT AI Laboratory, January 3, 1985.

Tate, A., 1977. “Generating Project Networks”,
Proceedings IJCAI-77, Cambridge, MA, 1977, pp
888-893.

Wilkins, D., 1984.
Representation and

“Domain-Independent Planning:
Plan Generation”,

Intelligence 22, 1984, pp 269-30 1.
Artificial

IV. Conclusions

We have shown that current artificial intelligence
technology can be applied to provide a powerful system

Van Baalen, J., 1984. “Exception Handling in a Robot
Planning System”, IEEE Workshop on Principles of
Knowledge-Based Systems, Denver, CO, December 1984.
Not Published - late submission.

676 Robotics

