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Abstract 

This report discusses the Martin Marietta Intelligent 
Task Automation Project (ITA). The purpose of 
the ITA project is to integrate Artificial Intelligence 
(AI) task planning, path planning, vision, and 
robotics technologies into a system designed to 
autonomously perform manufacturing tasks in 
dynamic or unstructured environments. The 
application domain chosen for primary 
demonstrations is dimensional measurement of an 
F-l 5 bulkhead. The overall goal is to be able to 
perform the inspection an order of magnitude faster 
than the current manual method, which takes about 
24 hours for about 1000 inspection points. The 
project was conducted in two phases. Phase I, 
completed in December 1984, demonstrated the 
readiness of the technologies in each of the areas 
making up the ITA system. Phase II, which was 
mostly complete in June 1987, demonstrated that 
the technologies can be integrated into a working 
system and that the system can be transferred to 
other applications. The architecture of the ITA 
system is discussed with an emphasis on the AI 
components making up the system. The 
strengths and weaknesses of the architecture and AI 
techniques applied are discussed. 

I. Introduction 

Artificial Intelligence and Robotics technologies have 
advanced to the state where combining them into an 
intelligent system for performing industrial tasks is 
feasible. The purpose of this paper is to give a broad 
overview of the Martin Marietta Intelligent Task 
Automation (ITA) project so the reader can gain an 
understanding of its overall architecure and the AI 
technologies applied. 

Phase I, which started in January 1983, 
demonstrated the readiness of component technologies 
of the ITA system. Sequence planning (the “traveling 
salesman” problem), task planning, and path planning 
systems were developed and demonstrated. Vision 
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capabilities demonstrated included edge extraction and 
classification, planar region extraction, object 
recognition [Magee and Nathan, 19851, and dimensional 
measurement, all from laser scanner range data. Plan 
execution was demonstrated by performing a tool pickup 
and several measurement actions using a Cincinnati 
Milacron T3-746 arm and the 6 degree of freedom 
control system developed during the program. An 
approach to the problems of execution monitoring and 
exception handlin 
[VanBaalen, f 

was also developed and implemented 
1984 . 

Phase II, which started in December 1985, 
demonstrated that the technologies developed in Phase I 
could be integrated into a working system. Most of the 
code developed for Phase I was rewritten under Phase II 
to incorporate lessons learned. Figure I illustrates the 
hardware configuration for the bulkhead inspection 
demonstration task. 

The ITA Phase II system architecture is a heterogenous 
hierarchical planning and plan execution system 
consisting of a sequence level, a task level, a geometric 
level, and a physical level. The software consists of the 
thirteen components (boxes) shown in Figure 2. These 
components access the seven knowledge bases 
(cylinders) shown. The general sequence of operations 
is as follows. 

Measurements to be performed are entered using the 
Offline Measurement Entry component. The 
measurement specifications are preprocessed to generate 
the measurement knowledge base, the sequence plan, 
and the Operation Planner MACROPS (generalized 
plans) using the ITA system in Offline Simulation mode. 
Though not strictly necessary, preprocessing improves 
the speed of online operations in a production 
environment. Offline simulation also provides a safe 
means for verifying correct system operation. When 
started up online via the System Monitor, Top Level 
executes the sequence-level plan by getting the next 
measurement to be performed from the Sequence 
Planner, getting a task plan to perform the measurement 
from the Operation Planner, passing the operation plan 
to the Plan Executive/Monitor for execution, and 
passing the result of plan execution back to the System 
Monitor for archiving. The Plan Executive/Monitor 
uses the Geometric Reasoner to translate qualitative 
parameters of the plan to quantitative values. It sends 
commands for robot actions and ultrasonic 
measurements to the Path Planner. The Path Planner 

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved. 



uses the Collision Avoidance component to determine if 
a proposed path intersects with any object in the 
workspace, and sends commands to the Robot Controls 
component to execute a path plan. Commands for 
Scanning Laser Ranging Assembly (SLRA) 
measurements are sent by the Executive to the Vision 

component. If either the Path Planner or Vision 
component returns an error message for a command 
result, the Executive invokes the Exception Handler to 
diagnose the problem and generate a recovery plan. A 
description of each component follows. 
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The Offline components are used to enter and edit 
specifications of the measurements to be performed to 
inspect a part, to generate problem sets for testing the 
path planner, and to provide a 3-D graphics simulation 
capability for display of path planner output. The 
simulation may be driven instead of the actual robot for 
overall system verification. Measurement specifications 
are entered using a graphics display of the bulkhead to 
select measurement locations, and using a menu-oriented 
interface for entering additional 
dimension and tolerance. 

parameters such as 

The System Monitor serves as the user interface to 
the ITA online system, and may also be used to monitor 
preprocessing activities. Commands are included for 
starting, stopping, interrupting, and continuing inspection 
activities, and for displaying the results of the inspection. 
Graphics interfaces are provided for the Sequence 
Planner, the Operation Planner, the Plan 
Executive/Monitor, the Exception Handler, and the Path 
Planner to allow for detailed examination of system 
activities. 

The Top Level component executes sequence-level 
plans as described above. Top Level also watches for 
STOP and INTERRUPT commands from the System 
Monitor and will either halt all system activity 
immediately or interrupt activity after the current plan 
completes execution accordingly. 

The Sequence Planner generates a sequence plan 
from an unordered set of measurement specifications. It 
also looks up the next measurement goal in the stored 
sequence plan on request from Top Level. Generating a 
sequence plan consists of partitioning remaining 
measurements into groups according to the measuring 
tool to be used, and then ordering the points within each 
group. Partitioning of measurements is performed using 
a set of rules coded in MRS (Meta-Level Representation 
System) [Genesereth, et al.. 19841 for tool selection. 
Measurements that are already done or that cannot be 
done because of the unavailability of the correct tool are 
placed in separate groups. Ordering of the measurement 
points is accomplished using a near-optimal solution to 
the traveling salesman problem known as the “Convex 
Hull” algorithm followed by 2-Optimal Edge Exchange 
and Peephole optimizations [Golden, et al., 19801. 
Looking up the next step consists of popping the next 
measurement specification off the stored sequence plan, 
and verifying the required resources are available. If 
not, resequencing is performed and the next 
measurement (if any) from the new 
returned. 

sequence is 

The Operation Planner consists of a Task Planner, a 
Plan Generalization component that creates a 
macrop-operator (MACROP) from a plan, and a 
MACROP Lookup component that finds and instantiates 
a MACROP for a given initial state and goal conditions. 
The Operation Planner first tries MACROP Lookup. If 
no applicable MACROP can be found, the Task Planner 
is called on to generate the plan from scratch. The plan 
is then generalized and stored as a MACROP for future 
reference. 

The Task Planner is a hierarchical, nonlinear, 
backward chaining planner that uses hill climbing search 
(backtracking is chronological). For a treatmerfb7;f 
related planners see ABSTRIPS [Sacerdoti, . 

Nonlin [Tate, 19771, Noah [Sacerdoti, 19771. and SIPE 
[Wilkins, 19841. The Task Planner is hierarchical in the 
sense of ABSTRIPS - goals are weighted and only the 
highest level unsatisfied goals are worked on. Nonlinear 
plans are achieved by (1) allowing operators to be 
ordered in parallel with other operators in the plan if 
there are no interactions and (2) allowing serendipitious 
goal reduction. Deductive operators are used to replace 
explicit delete lists in the operator descriptions. Unary 
and n-ary constraints on operator variables are provided 
to generate and to test candidate bindings for operator 
variables, respectively. Figure 3 shows an operator 
declaration and a deductive operator for the ITA 
domain. 

;;; Operator for Ultrasonic Measurements: 

(static-operator 
:name-and-format (us-measure Stool Sann Sid) 
zpreconditions 

((couplant-applied (goal-point (meas Sid))) 
(at Sam (in-contact-point (meas Sid))) 
(holding $arm Stool)) 

: adders 
((measured Stool Sarm (meas Sid))) 

:unary-constraints 
((type Sa2-m arm) 
(type Stool us-tool)) 

:n-ary-constraints 
((can-lift Sarm Swl) 
(weight Stool $w2) 
(<= SW2 Swl)) 

:resources (Stool Sarm) 
:message-pattern 

(MEASURE (min-value (meas Sid)) 
(max-value (meas Sid))) 

:command-stream (command-stream path-planner Sarzn) 
:reply-pattern (VALUE Sval) 
:result-pattern (dimension $id Stool Sval 0.0)) 

;;; Propositions denied when a tool is picked up: 

(deductive-operator 
:name-and-format (holding Sann Stool) 
:denied ((location Stool $arm in-rack) 

(holding Sarm (n= Stool)))) 

Figure 3: Example of Static and Deductive Operators 

Plan Generalization involves replacing certain 
constants in a plan by variables, finding overall 
preconditions and adders of the plan, collecting unary 
and n-ary constraints, and creating additional resource 
constraints. Figure 4 shows an example of a generalized 
plan. MACROP Lookup is a straightforward process of 
comparing each MACROP to the given initial state and 
goal conditions, and then determining if the constraints 
are satisfied. The MACROP is then plugged with the 
bindings found. MACROP Lookup is roughly two 
orders of magnitude faster than generating the same 
plan from scratch (- 0.1 set versus w 10.0 set for a 
typical ITA domain plan). This capability is essential 
for meeting the production environment timing 
constraints of the ITA project. 
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;;; MACROP for Ultrasonic Measurement sequence: 

(macrop 
:name-and-format (MEASURED $IDl STOOL1 S-1 SID2) 
:purpose 

((MEASURED STOOL1 $ARMl (MEAS $ID2))) 
:p&onditions 

((AT $ARMl (IN-CONTACT-POINT (PILEAS $IDl))) 
(HOLDING $ARMl $TOOLl)j 

:adders 
((AT S-1 (IN-CONTACT-POINT (MEAS $ID2))) 
(MEASURED STOOL1 $ARMl WAS $ID2))) 

:unary-constraints 
((TYPE STOOL1 US-TOOL) 
(TYPE $ARMl ARM)) 

:n-ary-constraints 
((CAN-LIFT $AlWl $Wl) 
(WEIGHT STOOL1 $W2) 
(<= SW2 $Wl)) 

:resources (STOOL1 SARMl) 
:plan 

((1 (MOVE-RETRACT $ARMl $IDl) NIL) 
(2 (MOVE $ARMl (MEAS $IDl) (MEAS $ID2)) (1)) 
i3 (APPLY-COUPLANT $ARMl $ID2) (2)) 
(4 (MOVE-CONTACT $ARMl $ID2) (3)) 
(5 (US-MEASURE STOOL1 $ARMl $ID2) (4)))) 

Figure 4: Example of a MACRQP 

The Geometric Reasoner is responsible for 
creating, accessing, and maintaining the Measurement 
Knowledge Base (MKB). The MKB contains 
information about where the arm can be positioned to 
perform each measurement, the approach position in 
free space for ultrasonic measurements, and parameters 
for performing SLRA measurements such as patch sizes 
and locations in the field of view. This information is 
derived from geometric constraint and preferrence 
information. 

The Plan Executive/Monitor executes a plan by 
sending commands to the Path Planner, which controls 
robot motion and ultrasonic measurements, and to 
Vision, which controls SLRA measurements. The 
Executive splits a plan into separate command streams, 
one for each independently controllable sensor or 
effector. The Path Planning component uses a 
lookahead queue to do smoothing where continuous 
motion is possible over several commands, so it receives 
all of its commands from a plan at once. To 
synchronize a commanded process that uses a lookahead 
queue with other processes, the Executive inserts WAIT 
commands before any command that has a predecessor 
belonging to another command stream. The Executive 
sends a CONTINUE command for a WAIT command 
when the appropriate predecessor commands have been 
completed. The reply to a command can be either a 
normal reply or an exception reply. A command may 
also “time out” if a reply is not sent within a reasonable 
period of time. When an exception reply or timeout 
occurs, execution of the plan is stopped, and all relevant 
information about the exception is passed to the 
Exception Handler. 

The Exception Handler is responsible for diagnosing 
the cause of the exception, updating the world model to 
correspond to the current state of the world, and 
generating a recovery plan. For diagnosis, the Exception 

Handler is given a knowledge base- @IRS rules) 
containing information about possible causes for each 
fault, the number of times each exception has occured, 
the assertions that each available test can verify, 
preconditions of each test, and an estimated cost for 
each test. When an exception message is received, the 
certainty of assertions associated with possible causes is 
reduced. Tests are selected, executed, and the results 
interpreted until a single cause is isolated. The next test 
to execute is selected by dynamically generating a 
near-minimal decision tree according to fault frequency, 
test cost, and test precondition information. Replanning 
is done by the Operation Planner using the current state 
for the initial state and the original goals of the failed 
plan for the goal conditions. 

The Path Planner functions as the interface between 
the task plan Executive/&Ionitor and the real-time robot 
controller. The Path Planner first verifies that the goal 
position is reachable. It then generates collision-free 
paths for the robot using a dual-level algorithm. First, a 
potential collision-free path for the end effectoq, 
(modeled as a point) is found using the “visibility lines” 
method [Lozano-Perez, 19791 with goal optimization for 
producing graph nodes, and A* search for selecting the 
node sequence. The prospective path is then checked at 
incremental positions to see if any collisions involving 
intermediate links of the arm will occur. If a collision 
could occur, new intermediate subgoals are proposed 
and evaluated until a collision free path is found. A 
third trajectory-planning phase, involving profile 
smoothing and velocity selection, is handled in the Robot 
Controller. 

The Collision Avoidance Model is the geometric 
representation of the workcell (objects, tools, robot 
parts) used by the Path Planner. The Collision 
Avoidance Model provides for determining if a point or 
line segment intersects any worlccell object, if a robot in 
a particular position intersects its own links or a 
workcell object, and for updating the model to reflect 
changes in the real world. The basic representation 
structure is a region tree. A region tree (actually a 
directed graph) is a hierarchical structuring of part of 
space into arbitrarily oriented regions. A region can be 
a sphere, tube (cylinder with spheres of the same radius 
at both ends), or a rectangular parallelepiped. At the 
leaves are solid regions representing actual workcell 
objects. Regions need not completely contain their 
children, but all regions except for roots must be 
completely contained in some set of ancestors. Region 
tree nodes contain shape, size, position, orientation, and 
solidity information. 

The Vision component is responsible for processing 
SLRA images to obtain dimensions for the observed 
parts of the bulkhead. The SLRA was developed by the 
Environmental Research Institute of Michigan (ERIM) 
under subcontract to Martin Marietta Corporation during 
Phase I of the ITA contract. It uses a modulated laser 
light source to determine the range to the target. The 
range is computed by determining the phase change that 
results when the light travels from the sensor to the 
target and back. The resulting 3-D range inform&ion 
can be used for dimensional measurement and object 
classification. Each measurement involves positioning 
rectangular patches in the image to correspond to 
critical areas of the part being measured. Measurements 
are obtained by a variety of techniques, depending on 
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the type of measurement to be performed. These 
techniques include edge detection, computing surface 
normals, and curve fitting. 

III. Results and Analysis 

Phase II demonstrations have shown the ITA system 
works as an integrated whole. Several runs of the 
measurement process were performed, both simulated 
and with the actual robot arm and measuring tools. The 
system was shown to be able to handle bad measurement 
and broken measurement tool exceptions properly. In a 
separate research task funded under the ITA program, 
coordinated dual-arm control algorithms were 
demonstrated. (Further details, not available at the time 
of writing, will be given at the conference.) 

Although major strides were made in building an 
integrated intelligent robot system, the system is still not 
as flexible nor as powerful as we would like for truly 
general-purpose manipulator automation. For example, 
to make the system more flexible, the Top Level 
component, which is currently hard coded for the 
inspection domain, should be replaced by a high-level 
planner that can call on special- purpose functions such 
as the current sequence planner as tools. 

Because of the heterogenous hierarchical 
architecture used, the task planner only has to plan for a 
single measurement at a time. This makes the task 
planner’s job much easier. In fact, we have found the 
branching factor of the ITA measurement domain to be 
less than that of the standard blocks world domain for 
task planning. Even so, ITA task plans share many 
subsequences. We would like to add the capabilities of 
selectively generalizin 
plan as in Morris f 

interesting subsequences of a 
Minton, 19851, and of using 

MACROPs in addition to primitive operators for 
constructing a task plan. We are also looking into 
incremental task plan revision techniques [Simmons, 
19851 as an alternate means of replanning following an 
exception under a research task associated with the ITA 
project. Overall, richer representations of domain 
objects and robot actions are needed to allow more 
powerful. knowledge-based task planning for more 
difficult domains. 

We have fo;;ia;k;t truly robust exception handling 
in robotics requires powerful sensory 
capabilities, espeicially vision. Reasoning can do little to 
replace perception when it comes to determining the 
state of an environment subject to external influences. 
Our choice of a break-and-resume approach to exception 
handling was based on the (correct) assumption that 
high-level sensing operations could not generally be 
done in real time. Given a fast vision system for 
real-time hand-eye control, many problems that are now 
treated as exceptions (e.g., bumping into something 
because of positioning inaccuracy) could be easily 
avoided. We hope that a second arm and a more 
general vision component can be added back to the 
system in follow-on work. Object recognition research 
conducted during Phase I could be applied to such an 
effort. 

for controlling an industrial robot in a real-world 
domain. Being able to integrate such a system is very 
much a team effort and requires organizational 
commitment as well as technological expertise. Martin 
Marietta is currently assessing the possibility of making 
the Intelligent Task Automation system available as a 
test bed for outside research in the areas of planning, 
compliant and multi-arm controls, and integrating vision 
with robotics. 
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