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ABSTRACT 

This paper develops a theory for path planning 
and following using visual landmark recognition for the 
representation of environmental locations. It encodes 
local perceptual knowledge in structures called 
viewframes and orientation regions. Rigorous represen- 
tations of places as visual events are developed in a 
uniform framework that smoothly integrates a qualita- 
tive version of path planning with inference over tradi- 
tional metric representations. Paths in the world are 
represented as sequences of sets of landmarks, 
viewframes, orientation boundary crossings, and other 
distinctive visual events. Approximate headings are 
computed between viewframes that have lines of sight 
to common landmarks. Orientation regions are range- 
free, topological descriptions of place that are 
rigorously abstracted from viewframes. They yield a 
coordinate-free model of visual landmark memory that 
can also be used for path planning and following. With 
this approach, a robot can opportunistically observe 
and execute visually cued “shortcuts”. 

1. INTRODUCTION 

The questions that define the problems of path 
planning and following are: ‘<Where am I?“, “Where 
are other places relative to me?“, and ‘LH~~ do I get to 
other places from here?“. A robot that moves about 
the world must be able to compute answers to these 
questions. This paper is concerned with the structure 
and processing for robotic visual memory that yields 
visual path inference. The input data is assumed to be 
percepts extracted from imagery, and a database, i.e., 
memory, of models for visual recognition. A priori 
model and map data is only relevant insofar as it pro- 
vides a basis for runtime recognition of observable 
events. This is distinguished from path traversability 
planning where the guidance questions concern comput- 
ing shortest distances between points under constraints 
of support of the ground or surrounding environment 
for the robotic vehicle. 

Existing robot navigation techniques include tri- 
angulation [hfatthies and Shafer, 19861, ranging sensors 
[Hebert and Kanade, 19861, auto-focus [Pentland, 19853, 
stereo techniques [Lucas and Kanade, 19841, dead 
reckoning, inertial navigation, geo-satellite location, 
correspondence of map data with the robot’s location, 
and local obstacle avoidance techniques. These 
approaches tend to be brittle Bajcsy et, al., 19861, accu- 
mulate error [Smith and Cheeseman, 19851, are limited 
by the range of an active sensor, depend on accurate 

measurement of distance/direction perceived or trav- 
eled, and are non- 
ceptual models. 

perceptual, or only utilize weak per- 

Furthermore, these theories are largely concerned 
with the problem of measurement and do not centrally 
address issues of man or visual memory and the use of 
this memory for inference in vision-based path planning 
or following. Exceptions to this are the work of IDavis, 
19861, ;McDermott and Davis, 1984], and [Kuipers, 
19771. Davis addressed the nroblem of renresentation 
and assimilation of 2D geomeiric memory, but assumed 
an orthographic view of the world and did not consider - _ 
navigation or guidance. McDermott and Davis 
developed an ad hoc mixture of vector and topological 
based route planning, but assumed a map, rather than 
vision derived world fin their assumptions of knowledge 
of boundaries, their ‘shapes, and spatial relationship;), 
had no formal theory relating the multiple levels of 
representation, and consequently did not derive or 
implement results about - path- execution. Kuipers 
developed qualitative techniques for path planning and 
following that were the inspiration for our approach. 
He assumed capability of landmark recognition, as we 
do, but relied on dead-reckoning and constraint to 
one-dimensional (road) networks to permit path plan- 
ning and execution. 

We develon renresentation and inference for rela- 
tive geographic- position information that: build a 
memory of the environment the robot passes through; 
contains sufficient information to allow the robot to re- 
trace its paths; can be used to construct or update an a 
posterior; map of the geographic area the -robot has 
passed through; and can utilize all available informa- 
tion, including that from runtime perceptual inferences 
and a priori map data, to perform path planning and 
following. The robust, qualitative properties and for- 
mal mathematical basis of the representation and infer- 
ence processes presented herein are suggestive of the 
path planning and following behavior in animals and 
humans [Schone, 19841. However, we make no claims of 
biological foundations for this approach. 

2. TOPOLOGICAL LANDMARK NETWO 
REPRESENTATIONS 

.A viewframe encodes the observable landmark 
information in a stationary panorama. To generate a 
viewframe, relative solid angles between distinguished 
points on landmarks are computed using a sensor- 
centered spherical coordinate system. We can pan from 
left to right, recognizing landmarks, L, . storing the 
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A natural environmental representation based on 
viewframes orientation regions and LPB crossings, 
recorded while following a path, is given by a list of the 
ordered sequence of viewframes collected on the path, 
and another list of the set of landmarks observed on 
the path. For efficiency, the landmark list can be 
formed as a database that can be accessed based on 
spatial and/or visual proximity. 

When a new viewpath is added to the database of 
perceptual knowledge, additional links between 
viewpaths are constructed based on landmarks seen on 
both paths. Using coarse range estimates to common 
landmarks, viewframe headings are computed between 
viewframes on different viewpaths. This structure is 
pictured in Figure 7. Figure 7(a) shows two viewpaths, 
while Figure 7(b) h s ows the paths augmented with the 
additional links. It is this augmented visual memory 
over which path plans are generated prior to path exe- 
cution. 

a 

b 

Figure 7: Visual Memory Linking 

The top level loop for landmark-based path plan- 
ning and following is to: determine a destination-goal, 
compute and select a current heading, and execute the 
heading while building up an environmental representa- 
tion. The destination-goals implement a recursive 
goal-decomposition approach to perceptual path plarr- 
ning. The concept underlying the path 
planning/following strategies encoded in these rules is 
to mix the following approaches as knowledge is avail- 
able or can be inferred: 

o find landmarks in common between viewframes 
between point of origin and viewframe- 
destination and compute vector (i.e., direction 
and approximate range) headings between 
viewframes 

e locate and get on the correct side of LPB’s 
specified in an orientation-destination, or 

o associate visible and goal landmarks with map 
data and compute a metric heading between 
current location and goal 

Each of these strategies provably reaches its goal, up to 
the perceptual re-acquisition of landmarks and the 
traversability of intervening terrain. 

if viewframe goal landmarks visible 
-- > compute viewframe-heading 

if at least one LPB has an incorrect orientation 
relative to our viewframe-destination-goal 

then follow heading for approximate distance 
estimated by the viewframe-heading 

else maintain heading by control-feedback 
path following on relative angles between 

landmarks 
build a new viewpath to destination goal, using 

the existing landmark list where possible 

if viewframe goal landmarks not visible and 
viewpaths exists 

--> make a viewframe of the currently visible 
region 

chain back through viewpaths until common 
landmarks are located 

chain forward through viewframes setting up 
intermediate destination-goals 

recursively execute viewframe headings ‘1) reach 
the destination goals corresponding to 

visible landmarks 
if viewframe goal landmarks not visible and no 

viewpath exists 
--> set goal to find a metric heading 

We have implemented these rules with routines 
that use A* to plan an initial route to a destination 
based on data in visual memory. This route is exe- 
cuted using vision, with re-planning based on the 
currently perceived viewframe at each step. Figure 8(a) 
shows the plan over visual memory to move between 
two points. The executed route is shown in Figure 
8(b). Notice how much smoother it is. Figure 8(c) 
shows an original plan, while 8(d) shows a dramatic re- 
plan based on observing a “short-cut” at runtime. 

4. SUMMARY AND FUTURE WORM 

A rigorous theory of qualitative, landmark-based 
path planning and following for a mobile robot has 
been developed. It is based upon a theory of represen- 
tation of spatial relationships between visual events 
that smoothly integrates topological, interval-based, 
and metric information. The rule-based inference 
processes opportunistically plan and execute routes 
using visual memory and whatever data is currently 
available from visual recognition, range estimates and a 
priori map or other metric data. 

This document was prepared by Advanced Deci- 
sion Systems (ADS) of Mountain View, California, 
under U.S. Government contract number DACA76-85- 
C-0005 for the U.S. Army Engineer Topographic 
Laboratories (ETL), Fort Belvoir, Virginia, and the 
Defense Advanced Research Projects Agency (DARPA), 
Arlington, Virginia. The authors wish to thank Angela 
Erickson for providing administration, coordination, 
and document preparation support. 
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Figure 8: Path Planning and Following Results 
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