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ABSTRACT

This paper develops a theory for path planning
and following using visual landmark recognition for the
representation of environmental locations. It encodes
local perceptual knowledge in structures called
viewframes and orientation regions. Rigorous represen-
tations of places as visual events are developed in a
uniform framework that smoothly integrates a qualita-
tive version of path planning with inference over tradi-
tional metric representations. Paths in the world are
represented as sequences of sets of landmarks,
viewframes, orientation boundary crossings, and other
distinctive visual events. Approximate headings are
computed between viewframes that have lines of sight
to common landmarks. Orientation regions are range-
free, topological descriptions of place that are
rigorously abstracted from viewframes. They yield a
coordinate-free model of visual landmark memory that
can also be used for path planning and following. With
this approach, a robot can opportunistically observe
and execute visually cued ‘‘shortcuts’.

1. INTRODUCTION

The questions that define the problems of path
planning and following are: “Where am I?”, “Where
are other places relative to me?”’, and “How do I get to
other places from here?”. A robot that moves about
the world must be able to compute answers to these
questions. This paper is concerned with the structure
and processing for robotic visual memory that yields
visual path inference. The input data is assumed to be
percepts extracted from imagery, and a database, i.e.,
memory, of models for visual recognition. A priori
model and map data is only relevant insofar as it pro-
vides a basis for runtime recognition of observable
events. This is distinguished from path traversability
planning where the guidance questions concern comput-
ing shortest distances between points under constraints
of support of the ground or surrounding environment
for the robotic vehicle.

Existing robot navigation techniques include tri-
angulation Matthies and Shafer, 1986, ranging sensors
Hebert and Kanade, 1986], auto-focus [Pentland, 1985],
stereo techniques |[Lucas and Kanade, 1984], dead
reckoning, inertial navigation, geo-satellite location,
correspondence of map data with the robot’s location,
and local obstacle avoidance techniques. These
approaches tend to be brittle Bajcsy et al., 1986], accu-
mulate error [Smith and Cheeseman, 1985, are limited
by the range of an active sensor, depend on accurate

measurement of distance;direction perceived or trav-
eled, and are non-perceptual, or only utilize weak per-
ceptual models.

Furthermore, these theories are largely concerned
with the problem of measurement and do not centrally
address issues of map or visual memory and the use of
this memory for inference in vision-based path planning
or following. Exceptions to this are the work of Davis,
1986], McDermott and Davis, 1984}, and (Kuipers,
1977|. Davis addressed the problem of representation
and assimilation of 2D geometric memory, but assumed
an orthographic view of the world and did not consider
navigation or guidance. McDermott and Davis
developed an ad hoc mixture of vector and topological
based route planning, but assumed a map, rather than
vision derived world (in their assumptions of knowledge
of boundaries, their shapes, and spatial relationships),
had no formal theory relating the multiple levels of
representation, and consequently did not derive or
implement results about path execution. Kuipers
developed qualitative techniques for path planning and
following that were the inspiration for our approach.
He assumed capability of landmark recognition, as we
do, but relied on dead-reckoning and constraint to
one-dimensional (road) networks to permit path plan-
ning and execution.

We develop representation and inference for rela-
tive geographic position information that: build a
memory of the environment the robot passes through;
contains sufficient information to allow the robot to re-
trace its paths; can be used to construct or update an a
posteriori map of the geographic area the robot has
passed through; and can utilize all available informa-
tion, including that from runtime perceptual inferences
and a priori map data, to perform path planning and
following. The robust, qualitative properties and for-
mal mathematical basis of the representation and infer-
ence processes presented herein are suggestive of the
path planning and following behavior in animals and
humans [Schone, 1984]. However, we make no claims of
biological foundations for this approach.

2. TOPOLOGICAL LANDMARK NETWORK
REPRESENTATIONS

A viewframe encodes the observable landmark
information in a stationary panorama. To generate a
viewframe, relative solid angles between distinguished
points on landmarks are computed using a sensor-
centered spherical coordinate system. We can pan from

left to right, recognizing landmarks, L,. storing the
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solid angles between landmarks in order, denoting the
angle between the i-th and j-th landmarks by Ang,;.
The basic viewframe data are these two ordered lists,
(L.L...) and (Ang,y.Ang,s,...). The relative angular
displacement between any two landmarks can be
computed from this basic list. The solid angular error is
measured by e, between landmarks ¢ and ;. Finally,
range estimates for landmarks are recorded as intervals
in viewframes. We only require that the true range lie
between the bounds specified for the estimate. The
range interval associated to landmark L; is denoted
T, 1,7, 9]- We now explain how it is possible to localize
ourselves in space relative to these observed landmarks.

We begin by noting that the set of points in 3-
space from which we can observe an angle of ,;
between landmarks L; and L; is constrained to a
closed torus-like surface; a cut-away of this surface is
pictured in Figure 1{2). In terms of the variables pic-
tured in Figure 1(b), we compute:
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The first equation is the polar form for a circle with
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has singularities where r, or f, are equal to zero. Thus
we obtain the figure eight like shape pictured in Figure
1{b). Rotating the circular arcs in 3-space about the
axis defined by the line segment joining L, and L ,, we
obtain the figure pictured in Figure 1(a).

Figure 1(b) shows how varying the sensor location
along the circular arc is equivalent to varying the abso-
lute ranges to the two landmarks. If we can bound the
ranges to the landmarks, then we can localize ourselves
along the circular arc accordingly. This is logically
equivalent to establishing a local coordinate frame
between the landmarks, and bounding our location
relative to that frame. If we can register the landmarks
with a priori map data, then we can know and use the
distance between the landmarks, but this is not neces-
sary.

Figure 1: Constant Angle Toroid
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Error in angular measurement of the 0
corresponds to different choices of concentric circular
arcs each of which contains L, , L; and the sensor focal
point. If we union these arcs together, we obtain the
localization, Loc,;, of the sensor relative to the two
landmarks. Because our localization must be true rela-
tive to all observed landmark pairs simultaneously, the
intersection of the Loc,, over all i >, give our best
localization.

Several simulations of landmark acquisition
scenarios and extracted viewframes, orientation regions,
viewframe localizations and viewpaths from them have
been implemented. Figure 2(a-e) shows the simulated
landmark data over which viewframe localizations have
been extracted. Figure 2(a) shows an image take at the
Martin Marietta Autonomous Land Vehicle develop-
ment site. Figures 2(b)-(e) show various displays of the
30 meter U.S. Army Engineer Topographic Laboratories
terrain grid data gathered over the area in the image.

Figure 2: Landmark Data



Figures 2(b) and (e) show two different perspectives on
a wire-frame view of the elevation data. The displays
include paint for terrain type overlay, and a building
present on the site. Figure 2(¢) is an orthographic
representation of the same grid data, while Figure 2(e)
is a painted perspective display. Here the coarse quant-
ization of the road area in the foreground is evident.
The circles on Figure 2(c) indicate three manually
selected landmark points representing two peaks and
the building. The x-ed circle on the right is the loca-
tion of the simulated sensor.

Figures 3(a-d) show perspective and orthographic
views of the viewframe localizations obtained relative
to pairs of landmarks. Range intervals of 50% the true
range were used. Because the landmarks are approxi-
mately 50 pixels from the sensor, this corresponds to
range intervals 800 meters long for landmarks 1600
meters away. Angular errors of .1 radian were used. In
a 15 degree field of view for an image 512 pixels wide,
this is approximately a 65 pixel error. Both errors are
far greater than we expect in practice. The intersection
of the landmark pair localizations, resulting in the
viewframe localization, is shown in Figures 3(c) and (d).

If we drop the range information in viewframes,
we are left with purely topological data. If we draw a
line between two (point) landmarks, and project that
line onto the surface of the ground, then this line
divides the earth into two distinct regions. If the land-
marks are visible, we can observe which side of this line
we are on. The “virtual boundary” created by associ-
ating two observable landmarks together thus divides
space over the region in which both landmarks are visi-
ble. We call these landmark-pair-boundaries (LPB’s),

=

Figure 3: Viewframe Localization

and denote the LPB constructed from the landmarks
L, and L, by LPB(L ,,L,).

We define:

orientation-of-LPB(L |,L ,} =

Tl Op <
sign(m-©p) = 0 if Op=mn
- if O, >

where O, is the relative azimuth angle between L
and L, measured in an arbitrary sensor-centered coor-
dinate system. It is a straightforward to show that this
definition of LPB orientation does not depend on the
choice of sensor-centered coordinate system. LPB’s give
rise to a topological division of the ground surface into
observable regions of localization, called orientation
regions. Figure 4(a-b) shows two possible views of the
LPB’s implicit in a viewframe. Although ranges to the
landmarks vary between Figures 4(a) and (b), the topo-
logical information of the sensor location and adjacency
of LPBs are preserved. If we regard the boundaries of
regions as fattened wireframes, then the orientation
regions may be thought of as (topological) holes in the
surface of the earth. The shape formed by cutting the
orientation ‘regions out of the surface of the (hollow)
earth is topologically equivalent to a (two) sphere with
finitely many holes cut out of it. The number of holes
is the number of orientation regions. It can be shown
(see [Massey, 1967]) that two shapes induced by orien-
tation regions are topologically equivalent if and only if
they have the same number of orientation regions. The
total number of regions created by N LPB’s is equal to:

number-orientation-regions =

N + (number-of-crossings-with-multiplicites) + 1

?: Here the multiplicity of a crossing is defined as 1, if two

LPB’s cross, and, in general, as (number-of-LPBs-

crossing - 1) for two or more LPB’s.

a b
Figure 4: Viewframe Orientation Regions

Figure 5(a) shows the LPB’s formed by three
landmarks. They are overlaid on a blotch indicating
the space in the elevation grid visible from the current
location of the simulated sensor. Figure 5(b) shows the
LPB's formed by seven landmarks in the same region.
Seven landmarks give rise to 162 orientation regions.
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Figure 5: LPB’s Formed by Three and Seven Landmarks

3. INFERENCE FOR PATH PLANNING
AND FOLLOWING

A heading is defined to consist of: a type; a
sensor-centered coordinate system vector; a
destination-goal; a  direction-function; and a
termination-criteria. The type of a heading specifies
the coordinate system that the direction conditions are
computed in. A metric-heading-type corresponds to an
absolute coordinate system, induced by a correspon-
dence of sensor position to a priori map data, from an
inertial sensor, geo-satellite location, dead-reckoning
from a known initial position, etc. A viewframe-
heading-type refers to headings computed between
viewframes that share common visible landmarks. This
corresponds to reasoning within a local landmark coor-
dinate system. An orientation-heading-type is a
coordinate-free heading based on observed relationships
with LPB’s. Heading types, destination-goals,
direction-functions and termination criteria are sum-
marized in Table 1. In the following we focus on quali-
tative path inference using orientation regions.

Orientation-headings are conjunctions of specifiers
for crossing LPB’s. These crossings correspond to the
visually observable events of L; occluding L, (or hav-
ing identical azimuth angle in the sensor centered coor-
dinate system), L, and L, being separated by 180
degrees, or L, occluding L ;. We denote these three
possibilities by I[L{ Lo}, 6{L, Ly and r[L; L,j. We
use a [L, L] to mean *“head toward landmark L ,".

Quantizing the LPB into ‘left-between-right”
creates a quantity space in the sense of [Hayes, 1979].
LPB crossings are quantities in the sense of [Forbus,
1984], if we represent them as distance of the robot
from the LPB. The derivative part of the Forbus-
quantity is then the rate at which the robot is
approaching the LPB. The landmarks themselves give
rise to partitions of great circles of the earth (modeled
as a perfect sphere). These partitions, in turn, give rise
to quantities along the robot's path in the sense of
[Kuipers, 1986}. That is, the crossing of a LPB creates a
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Table 1: Heading Specifications

HEADING
JYPE
FIELD METRIC VIEWFRAME ORIENTATION
d goal | polyg! d in orientation region
absolute coordinate
system
direction function { distance of current if sensor-centered reduce LPB set
estimated point vector-range set to unique LPB and
focation to destination | then, differance of track until orientation
polygon curvent location to reversal
vector destination
relative to point where
heading set
or
maintain visibifity
of goal landmarks and
hillclimb on relative
angles
termination estimated orror in if range set then reduced LPB set is nuil
criteria current location estimated error in or
exceeds threshold relative location lose sight of goal LPB
o e thrachald i
goal achisved or or
lose sight of must reverse a goal
landmarks in goal LP8 to continue
viewframe o
goal achieved

or
hili climbing to relative
angles fails

or
goal achieved

“landmark value” in the quantity space of the robot’s
location. (Caution: The term “landmark” is being over-
loaded.)

A top level orientation-heading consists of a goal
to execute the crossings to get on the correct sides of
the LPB’s corresponding to visible landmarks that are
also listed in the destination-goal. A production system
can be used to reduce a conjunction of LPB crossings
to a single LPB crossing condition; if relevant, the pro-
duction system deduces that the specified conjunction
of headings is impossible. The production system
theory is based on a binary operation between pairs of
orientation-headings. Because the operation is associa-
tive and commutative, the production system can be
executed on a conjunction of orientation-headings, two
at a time, in any order. The six possibilites for the pro-
ductions for combination of headings for two landmark
pairs [A B and [C D] are listed in Figure 6.

VIEWFRAME ORDER OF LANDMARKS
snacttor | spocier ABCD | ACBD | ACDB | iso CDAB CAD_B—
r r r[CD) | r[BD) | riDB) | ¢r[BD) | ¢[AB]) | r[DB]
r ] bBC | - - - - .
T b |blCDI|oBO]| - |oBO] | -~ -
[ a alCC - - - - -
] ; - - p ~ | oDA | -
] 1 TIAB) | 11AC] | IAC] | VICAl | [CD] | I[CA]
T b = - ~— | b[CA] | BICD] | BICA]
] a - - - - a[oD) -
b ; - — |bDB| - [Db[AB]|b[DB]
) ] BIAE] | DIAC] | DIACT | - - =
b b —~ | bICB |bICDI | BIAB] [ - |DbIAD]
b a - - a[CC] - - -
a r - - - - ajAA] -
a ] alAA] | - - p - =
a b - - = | alAA] | -~ =
a a - - - - - -

Figure 6: Orientation Heading Binary Productions



A natural environmental representation based on
viewframes orientation regions and LPB crossings,
recorded while following a path, is given by a list of the
ordered sequence of viewframes collected on the path,
and another list of the set of landmarks observed on
the path. For efficiency, the landmark list can be
formed as a database that can be accessed based on
spatial and/or visual proximity.

When a new viewpath is added to the database of
perceptual knowledge, additional links between
viewpaths are constructed based on landmarks seen on
both paths. Using coarse range estimates to common
landmarks, viewframe headings are computed between
viewframes on different viewpaths. This structure is
pictured in Figure 7. Figure 7(a) shows two viewpaths,
while Figure 7(b) shows the paths augmented with the
additional links. It is this augmented visual memory
over which path plans are generated prior to path exe-
cution.

Figure 7: Visual Memory Linking

The top level loop for landmark-based path plan-
ning and following is to: determine a destination-goal,
compute and select a current heading, and execute the
heading while building up an environmental representa-
tion. The destination-goals implement a recursive
goal-decomposition approach to perceptual path plan-
ning. The concept underlying the path
planning/following strategies encoded in these rules is
to mix the following approaches as knowledge is avail-
able or can be inferred:

e find landmarks in common between viewframes
between point of origin and viewframe-
destination and compute vector (i.e., direction
and approximate range) headings between
viewframes

o locate and get on the correct side of LPB’s
specified in an orientation-destination, or

e associate visible and goal landmarks with map
data and compute a metric heading between
current location and goal

Each of these strategies provably reaches its goal, up to
the perceptual re-acquisition of landmarks and the
traversability of intervening terrain.

if viewframe goal landmarks visible
--> compute viewframe-heading
if at least one LPB has an incorrect orientation
relative to our viewframe-destination-goal
then follow heading for approximate distance
estimated by the viewframe-heading
else maintain heading by control-feedback
path following on relative angles between
landmarks
build a new viewpath to destination goal, using
the existing landmark list where possible

if viewframe goal landmarks not visible and
viewpaths exists
--> make a viewframe of the currently visible
region
chain back through viewpaths until common
landmarks are located
chain forward through viewframes setting up
intermediate destination-goals

recursively execute viewframe headings *o reach

the destination goals corresponding to
visible landmarks
if viewframe goal landmarks not visible and no
viewpath exists
--> set goal to find a metric heading

We have implemented these rules with routines
that use A* to plan an initial route to a destination
based on data in visual memory. This route is exe-
cuted using vision, with re-planning based on the
currently perceived viewframe at each step. Figure 8(a)
shows the plan over visual memory to move between
two points. The executed route is shown in Figure
8(b). Notice how much smoother it is. Figure 8(c)
shows an original plan, while 8(d) shows a dramatic re-
plan based on observing a “short-cut’ at runtime.

4. SUMMARY AND FUTURE WORK

A rigorous theory of qualitative, landmark-based
path planning and following for a mobile robot has
been developed. It is based upon a theory of represen-
tation of spatial relationships between visual events
that smoothly integrates topological, interval-based,
and metric information. The rule-based inference
processes opportunistically plan and execute routes
using visual memory and whatever data is currently
available from visual recognition, range estimates and a
priori map or other metric data.
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Figure 8: Path Planning and Following Results
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