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Abstract 
We address the problem of interpreting image velocity fields 

generated by a moving monocular observer viewing a stationary 
environment under perspective projection to obtain 3-D information 
about the relative motion of the observer (egomotion) and the rela- 
tive depth of environmental surface points (environmental layout). 
The algorithm presented in this paper involves computing motion 
and structure from a spatio-temporal distribution of image velocities 
that are hypothesized to belong to the same 3-D planar surface. 
However, the main result of this paper is not just another motion and 
structure algorithm that exhibits some novel features but rather an 
extensive error analysis of the algorithm’s preformance for various 
types of noise in the image velocities. 

Waxman and Ullman [83] have devised an algorithm for com- 
puting motion and structure using image velocity and its 1st and 2d 
order spatial derivatives at one image point. We generalize this result 
to include derivative information in time as well. Further, we show 
the approximate equivalence of reconstruction algorithms that use 
only image velocities and those that use one image velocity and its 1st 
and/or 2”d spatio-temporal derivatives at one image point. The main 
question addressed in this paper is: “How accurate do the input 
image velocities have to be?’ or equivalently, “How accurate does 
the input image velocity and its I~ and 2& order derivatives have to 
be?“. The answer to this question involves worst case error analysis. 
We end the paper by drawing some conclusions about the feasibility 
of motion and structure calculations in general. 

I.1 Introduction 
In this paper, we present a algorithm for computing the motion 

and strncture parameters that describe egomotion and environmen- 
tal layout from image velocity fields generated by a moving mono- 
cular observer viewing a stationary environment. Egomotion is 
defined as the motion of the observer relative to his environment and 
can be described by 6 parameters; 3 dvth-scaled translational 
parameters, Z and 3 rotation parameters, o. Environmental layout 
refers to the 3-D shape and location of objects in the environment. 
For monocular image sequences, en$ronmental layout is described 
by the normalized surface gradient, a, at each image point. To deter- 
mine these motion and structure parameters we derive nonlinear 
equations relating image velocity at some image int ?(?*,t ‘) to the 
underlying motion and structure parameters at (P,c). The computa- P 
tion of egomotion and environmental layout from image velocity is 
sometimes called the reconstruction problem; we reconstruct the 
observer’s motion, and the layout of his environment, from (time- 
varying) image velocity. A lot of research has been devoted to 
devising .mmnstruction algorithms. However, a little addressed issue 
concerna their performance for noisy input: how accurate does the 
input image velocity have to be to get useful output? 

1.2 Previous Work 
The most common approach to monocular reconstruction 

involves solving (generally nonlinear) systems of equations relating 
image velo&y (or image displacement) to a set of motion and strut- 
tme parameters ([Longuet-Higgins 811, ITsai anti Humg 8% 
Cprazdny 791, moach and Aggarwal 803, IWebb and Aggarwd 8l]~ 
Fang and Huang 84a,b], [Buxton et al 841, IWlliam 89 
[Dres&ler and Nagel 821, Lawton 831). SOme of the issues that anse 
for these algo&hms am the need for good initial guesses of me solu- 
tions, the possibility of multiple solutions and the need for accurate 
input. The latter is by far the most important issue if the recons@uc- 
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tion approach is to be judged a success. AS Waxman and Ullman 
[85] and others have noted, reconstruction techniques that use image 
velocities of neighbouring image points require accurate differences 
of these similar velocities. That is, solving systems of equations 
effectively requires subtraction of very similar quantities: the error in 
the quantities themselves may be quite small but since the magni- 
tudes of these differences are quite small, the relative error in the 
differences can be quite large. Hence, such techniques can be 
expected to be sensitive to input errors. 

A second approach to reconstruction involves solving nonlinear 
systems of equations relating local image velocity information (one 
image velocity and its 1” and 2”’ order spatial derivatives) to the 
underlying motion and structure parameters (&onguet-Higgins and 
Prazdny 801, waxman and Ullman 851). The rationale is that using 
local information about one image point means that the problem of 
similar neighbouring image velocities can be averted. However, this 
is replaced with the problem of computing these 1” and 2& order spa- 
tial derivatives. Waxman and Wohn [85] propose that these deriva- 
tives be found by solving linear systems of equations: where each 
equation specifies the normal component of image velocity on a 
moving non-occluding contour in terms of a Talyor series expansion 
of the x and y components of image velocity. In effect, their recon- 
struction algorithm divides the computation into two steps: use a 
normal velocity distribution to compute image velocity and its 1”’ and 
2” order spatial derivatives at an image point and then use these as 
input to an algorithm that solves the non-linear equations relating 
motion and structure to the image velocity and its 1* and 2& order 
derivatives. 

Only recently, have researchers begun to address the use of 
temporal information, such as temporal derivatives, in reconstruction 
([Subbarao 861, [Bandyopadyay and Aloimonos 851). We note that 
others’ use of temporal derivative information and our use of time- 
varying image velocities are effectively equivalent; image velocity 
fields (at least locally) can be derived from one image velocity and 
its 1” and/or 2& spatial and temporal derivatives and vice-versa. 
Indeed, image velocity fields am often used in the derivation of spa- 
tial and temporal image velocity information. 

It is somewhat disappointing that almost none of these recon- 
struction techniques have been successfully applied to flow fields 
calculated from realistic scenes. Primarily, the problem is the 
difficulty in computing accurate flow fields. There has been little or 
no error analysis in previous monocular reconstruction work, 
although some researchers, such as [waxman and Ullman 851, 
puxton et al 841, [Aloimonos and Rigoutsos 861, [Snyder 861 and 
[Subbarao 861 have begun to consider the inherent sensitivity of their 
algorithms to random noise in the input. See [Barron 84,871 for a 
more detailed survey of reconstruction techniques and their prob- 
lems. 

1.3 Underlying Assumptions 
In order to relate a spatio-temporal distribution of image velo- 

cities to the motion and structure parameters at some image point we 
need to make some assumptions: 
(a) 3-D objects are assumed to be rigid. The rigidity assumption 
ensures that the image velocity of an object’s point is due entirely to 
the point motion with respect to the observer and not due to changes 
in the object’s shape. 
(b) The 3-D surfaces of objects can be described locally as a plane. 
The local planarity assumption means curved surfaces are treated as 
collections of adjacent planes. 

(c) The observer rotates with a constant angular velocity for some 
small time interval. Webb and Aggarwal [Sl] call this the fixed axis 
assumption. 
(d) The spatio-temporal distribution of image velocity results from 
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3-D points on the same planar surface. We call this the same surface 
assumption. 
(e) The observer translates with a constant speed (and possibily con- 
stant acceleration). 
The use of a spatio-temporal distributions of image velocity means 
motion and structure is computed using local spatio-temporal data; 
thus we are not necessarily restricted to stationary environments as 
we can treat each independently moving surface as stationary rela- 
tive to the moving observer. Similarly, the constraints on the motion 
need only be satisfied for short time intervals. 

In [Barron et al 87a] we treated violation of these assumptions 
as one type of error in the input data. The use of the local planarity 
and fixed axis assumptions means that the point-to point correspon- 
dence problem does not have to be solved, i.e. we do not have to use 
velocities of the same 3-D points at different time intervals, as it is 
now mathematically possible to relate image velocities distributed in 
space and time at any point and time on a 3-D planar surface to the 
motion and structure parameters of any other point on the planar sur- 
face at any other time (where these assumptions are reasonably 
satisfied) (‘1. Other researchers, such as [Kanatani 851 and 
[Aloimonos and Rigoutsos 861, have also advocated a 
correspondence-less approach. The computation of image velocity 
may require the solving of correspondence although there is a group 
of techniques based on the relationship between spatial and temporal 
grayvalue gradients, for example, [PIorn and Schunck 811, for deter- 
mining image velocity without the need to compute correspondence. 

results for-the monocular algorithm presented in this paper. Some of 
the more important ones are: 

In a previous paper [Barr-on et al 87a] we presented a Grst set of 

individual image velocities when a moving monocular observer 
views a planar surface. The main results of the paper are contained in 
the error analysis. In particular: 
(1) We conduct a scaled best, random and worst case error analysis 
for a set of related motion and structure combinations when image 
velocities are used as input. (The errors are scaled for comparison 
purposes.) We investiga2 the+unplification of input errors for the 
whole solution and for-g, a and o along with the relationship between 
worst case image velocity error and the error in the Taylor series 
expansion coefficients. We also investigate the algorithm’s perfor- 
mance when there is a maximum ofX% worst case error in any of the 
image velocities. 
(2) We conduct best and worst case error analysis by adding worst 
case error directly to the Taylor series expansion coefficients. We are 
interested in how the algorithm performs when there is a maximum 
of x% worst case error in any of the Taylor series coefficient pairs. 
(In general, the worst case error directions for the image velocities 
and the Taylor series coefficients are different.) 

2 Mathematical Preliminaries 
In this section we present a brief description of our algorithm. 

Complete details are in marron 871. 

2.1 Notation 

2.2 PhysicA Setup 

We use notation ?(t;@ to indicate a 3-D point measured at time 
t with reyct to a coordinate system ?(T). Similarly, X3(?,t;~) is the 
depth of P(t 3). ?(&) is the image of &;t). 

(1) The use of a spatio-temporal distribution of image velocity rather 
than a purely spatial distribution of image velocity generally reduced 
the amplification of input to output error. As well, increasing the 
spatial extent of the image points where image velocity are measured 
also reduced error amplification. 
(2) It appears that the accuracy with which image velocities can be 
computed is much more important that the satisfaction of the various 
assumptions. The solutions are not especially sensitive to small vio- 
lations of the assumptions. 
(3) The error in the initial guess (required for Newton’s method) can 
be quite large (100% and more) and convergence can still be 
obtained for most cases when image velocity error is present. 
(4) For exact image velocities, we found multiple solutions even 
though theoretical results suggested unique solutions. The analysis 
showed that it is possible for 2 distinct sets of flow fields to have 4 
image velocities in common. 
(5) We conducted a best, random and worst case error analysis for a 
related set of motion and structure parameters. (The 3 error types 
were scaled for comparison purposes.) The difference between the 
best, random and worst case results was significant. This suggests 
that tests based on a random noise alone are inadequate. 
(6) The use of time allowed us to analyze motion and structure com- 
binations that were singular at one time. For example, the motion 
and structure: 8=(0,0, lOOO), j&(0,0,1) and &(0.2,0,0) is unanalyzable at 
time 0 but can be solved given image velocities distributed over a 
short time interval. 

We have also devised a binocular reconstruction [Barron et al 
87b] that contains the monocular algorithm presented in this paper as 
a special case. 

15 Contributions of this Paper 

The algorithm presented in this paper involves solving non- 
linear system of equations that relate a spatio-temporal distribution 
of image velocity to a set of motion and structure parameters at some 
image point at a particular time. We conduct a Taylor series expan- 
sion analysis and show the equivalence of using a mean image velo- 
city and its 1” and/or P order spatio-temporal derivatives to using 4 
(1) Of course, we must still be able to solve surface correspondence, i.e. we 
must be able to group together alI image velocities distributed locally in space 
and time that belong to the same planar surface. See [Adiv 841 for one ap- 
preach to this problem. 

Figure 2.1 The Observer-Based Coord%ate System 8=(Ul,U2,U3) is the 
observer’s 3-D translational velocity while =(q, 
city. The image plane is at depth 1. The image of 3 

,oj) is his 3-D rotational velo- 
is located at?=(yy,yz,l). The 

origin of the image plane is (0,O.l). The X3 axis is the line of sight. 

We adopt a right-handed coordinate system as in Longuet-Higgins 
and Prazdny [80] which is shown in Figure 2.1. g=(U, , u,, u,) is the 
translational veloci 
coordinate system 9 

of the+ observer, centered at the origin of the 

observer. 
(t) and w(q,w,q) is the angular velocity of the 

2.3 The General Monocular Image Velocity Equation 
We can write an equation relating image velocity at some 

image point ?(?j,t ‘) to the monocular motion and structure parame- 
ters at some image point Y&t) as 

where ?$ and 3. am 3-D points on the same planar surface and gen- 
erally ?(&)&$,,t ‘). In the above equation 

(2.3-2) 

and 
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YlY2 --w-Y?) Y2 

Az&h>)= U+Y;) -y1y2 -YI , I 1 0 0 0 
(2.3-3) 

h(?(F,f)) is the perspective+csrrect9n function that specifies the 
~(&;t) = 

I Ij,:%%.w)I 12 
(2.4-lb) 

ratio between the depthzf ~(t;t),+(~,ts andsits 3-D distance from and 
the observation point, 1 \p(t,t) 1 12=(~(r7).p(t;r)) , i.e. I \ 

(2.3-4) 

and ~‘(?(?,t),t;t) is the distance-scaled translational velocity of the 
observer, 

Ti@(%),f ;t) = & 7) --) 
I lN7)I I2 * 

(2.4-5) 

One of the advantages of using a single instantaneous image velocity 
field is that no assumptions about the observer’s motion, for example 
his acceleration. have to be made. However, the use of a spatio- 
temporal distribution of image velocities requires that we mla-m the 
motion and structure oaramekrs at one time 6 those at another time. 
Hence. we need to make assumptions about the observer’s motion. 
In this-paper, we consider two skcific types of motion, although we 
emnhasize that our treatment can be generalized to other motions as 
weil. The two types of motion consid&ed are: 
Type 1: (Linear Motion, Rotating Observer): A vehicle is moving 
with constant translational velocity and has a camera mounted on it 
that is rotating with constant anguiar velocity. 
Type 2: (Circular Motion, Fixed Observer): A vehicle with a fixed 
mounted camera is moving with constant translational and angular 
velocitv. 
a,(~,r,t’)=RT(c4t’)R(~,,t) and Q,(&,t’)=I,(the identity matrix), for 
Types 1 and 2 motion repctivel . R(~c) is an ortho onal matrix 
specifying the rotation 1 IoIl 2 t of 9 (t) with respect to 9 (0). S,, the 
monocular spatial scaling fwnction, 

(2.3-6) _ X,($) . 

swcifies the denth ratio of two 3-D noints, z and p”; on the same 
pianar surface & the same time. The *monowiar tekporal scaling 
function, 

(2.3-7) 

. . . . I . ., . 
=+3 

NPkJ”, V)~RT(&“)R(&) ~(~,t)-~(~,t,t”;t)~(~(~,t) 

(2.4-1~) 

In (2.4-1~) we use ~e~otation~~=(~I,.ol,,.ol,,) in (2.4-1~). Obviously, 
when z(?,,t ;t)= Tt(I’(PJ),t ;t) 

I I~eh>~ 7) I I2 ’ 
the solution is unique as the dual 

solution reduces to the first solution. Subbarao and Waxman [85] 
have also showed the uniqueness of the motion and structure param- 
eters over time as well. 

These theoretical results suggest that the possibility of multiple 
(non-dual in the spatial case) solutions is non-existent. However, 
they only hold when the whole flow field is considered. It is possible 
for two distinct image velocity fields to have four common image 
points at four times with the same the image velocity values. Hence, 
the analysis of the four image velocities may give rise to any of the 
sets of motion and structure parameters having those four image 
velocities in common. An example of such a situation is shown in 
[Barron et al 87a]. 

2.5 Singularity 
If Z$,(O,O,O) then the system of equations is singular. In fact, 

when i&o, its condition number becomes very large; very small 
input error causes instability in the solution technique. Also, Fang 
and Huang [84a] and others have shown that the solution does not 
exist using the image velocities at three or more collinear 3-D points 
(as the determinant of the J is 0). We have also observed that the 
solution using two image velocities at each of two 3-D points on the 
same planar surface at two distinct times cannot be obtained. The 
motion of 2 points can be caused by an infinite number of motion 
and structure combinations. As well, there are particular motion and 
structure combinations that cannot be recovered at one time. For 
example, if If=(O,O,a), i&(0,0,1) and &O,b, 0) at time 0, then the values 
of constants a and b can be arbitrarily set to yield the same image 
velocity field; hence, it is impossible to distinguish the translational 
and rotational components of image velocity from each other. Other 
conditions of singularity are under active investigation. 

b 

specifies the depth ratio of two 3-D points, ?‘(&t)=?(&’ ‘) 3 Experimental Technique 

In special cases, equation (2.3-l) reduces to either a purely spa- In this section we discuss the implementation of our algorithm 
tial or a purely temporal image velocity equation when .S,=l or TM=l. and present details of our sensitivity analysis. 
Given eight distinct components of image velocity distributed over 3.1 Implementation 
space and time, but on the same 3-D planar surface, we can construct 
and solve a non-linear system of equations to determine the motion Newton’s method is used to solve the+ systems of non-linear 
and structure parameters. ewations. Since only 2 components of CL are independent, i.e. 

I loll I2=1, we add extra row to the Jacobian matrix, J to ensure the 
2.4 The Non-Uniqueness of the Solutions computed 2 is normalized; hence J is a full rank 9 matrix. The P 

Because we are solving non-linear systems of equations we value of& the measured image velocities is then set to 1. 
need to be concerned about the uniqueness of our solution. Hay [66] 
was the first to investigate the inherent non-uniqueness of the visual 

When2 is known to be zero, i.e. in the case of pure translation 
(Type 1 and Type 2 motions are equivalent here) we solve a 6x6 

interpretation of a stationary planar surface. He showed that for any Jacobian instead of a 9x9 one. We compute a 9x6 Jacobian (the 3 
planar surface there are at most two sets of motion and structure columns corresponding to 2 are not computed). We let the LU 
parameters that give rise to the same image velocity field for that decomposition of J choose the bests 6 rows of J, with the provision 
surface. Hav also showed that given two views of such a surface only that the normalization row is always one of the chosen rows. 
one unique- set of motion an& structure parameters was capable of 
correctly describing the image velocity field. Waxman and IJllman 

3.2 Sensitivity Analysis 

[83] carried this result one step further by showing the dual nature of we Compute an error veceor TfM, which when added to TM, 
the solutions: given one set of motion and structure parameters it is yields the perturbed input, yM’ =TM+?fM. For X% random case error, 
possible to derive a second set in terms of the first analytically. If we Compute four random 2-compon.nt unit vectors, ij, j=l,...,4, and 
this second solution is then substituted back into the equations speci- then compute each i” component of AfM as 
fying the duality, the first solution+@ obtained. Given one set of AAM 
motion and structure parameters,iZ, ,3 and q, we can defve expres- 
sions for the dual solution, ?2, z and ca,, at some point ?(P,t) as I 1 AX.+1 M = $ ij 1 13 1 12, j=l,...,d, i=jti-1. (3.2-l) 
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Thus X% random error is added to each image velocity. Afw is 0, i.e. 
we do not add error to the normalization constant. Using AfM for ran- 
dom error we compute Af- = I I&, 1 12. We use forward and inverse 
c2) iteration on J to compute normal%ed best and worst case error 
directions, &, and &. We cornJute AfM = & Afnomr as X % scaled best 
case image velocity error and AfM = & Af- as X 8 scaled worst case 
image velocig error. In either case AfM is scaled t&) *the same size as 
the random Afar for comparison purposes. When w is known to be 0 
the appropriate 6x6 Jacobian is used in the forward and inverse itera- 
tion calculation. We can also sompute X% relative c orst case image 
velocity error by computing AfM so that the image velocity with the 
largest error is X96. 

We perform a Taylor series expansion of image velocity. In 
the spatial case, we can write 

(3.2-2) 

for small spatial extents. Here2 is given as 

[ 
av, av2 av, av2 a%, a2v 

g's= 
2 

%l1,bm2,-r-,-r-,-r 
ah ay, aY2 ah hay, ahaY2 1 

= @,.?2z?3j)3rz+4?4) 

and A, is given as 
c 

AY:I AYIIAYI 
12 I2Ay11 IZAYIZ AyyI,Ay,2 AyYt2 3‘ 

[ 

AY& AYY~IAY~ 
I2 I2Ay21 I2A~22 Ay2,Ayn AY:~ 3 

A, = 

[ 

AY!, AYSIAY~ * 
12 12Ay31 12Ay32 AYSAY~ AY:Z 3 

AYY:, AY.~IAY’Y~ 
12 12AY41 12Ay42 AY 41 AY 42 A~y”42 

For the spatio-temporal case, we can write 

J)M =A,% 

for small spatio-temporal extents. Here 

z= 1 
av, av2 av, av2 av, av2 

%@lr%2,-r-,-,-,-,- 
ah ah ay, aY2 at at 1 

and 
= @lrji+2*?3r??4) (3.2-6) 

I2 I,AYY,I IZAYIZ I2At1 
12 IzA~21 I2Ayn I,& 

At= I2 IZAy31 z2Ay32 I2&3 . i 1 12 I2Ay41 12Ay42 12b4 

(3.2-7) 

We can compute the Taylor series expansion using both perfect J)M 
and noisyTM’, to get? andTfrespectively. zg is simply?-3 

(3.2-3) 

(3.2-4) 

(3.2-5) 

We compute X% relative best case and x8 relative worst case 
error in A; by performing forward and inverse iteration on A*-‘./ 
wherg .A*_ is an 9x9 matrix computed using A =A3 or A=A, as 

where OR and 0, are 8 component row and column vec- 

all O’s and P is simply @‘,I>. These best and worst 
directions are then scaled so that+there is a maximsm of X% in any 
of the Taylor series coefficients, A&, i=1,...,4 where A& is the error in 
3. When 2 is zero, we cannot conduct this error analysis as the 9x9 
Jacobian is singular. 

C&gut error in the computed solutiondand in its components, 
‘it 2 and o are computed simply as the ~~ norm of their difference 
from the correct solution/component over the L2 norm of the correct 

(2) We note that the best and worst directions so calculated are for the initial 
linear system of equations, JzO=TO. It is possible that the best and worst direc- 
tions for the nonlinear system of equations are different, although we expect 
these directions to be quite close to the computed best and worst directions for 
small input errors. 

solution/component. In purely spatial cases, we also compute tie 
dual of 3 3),, using (3.4) and co$pute the output error as the 
mhhnum Of error in?or$. Siye a’ and -2 specify he sami: sur- 
face gradient, we dwgs “flip” (r’ befog the output error is calcula- 
tio3Jf the ll+i;1Eped a’ is closer to (r. than the original 2, i.e. 
I I~+~‘1 12~ I I~--01’ll2. The error in the various &, i=~ to 4 and $ is 
simply computed as the L2 norm of the difference over the L, norm 
of the correct value. 

4 Experimental Results 
We use the motion and structure described in the table below 

for the experimental results presented in this paper. 

X3 is 2000 in all cases. Image coordinates are measured on a 2.56~256 
display device and so pixel coordinates are scaled by 256 to produce 
the corresponding f coordinates. Thus the solution point, 2, is 
(20,20) in pixels or (0.078125,0.078125,1) in f units. For a temporal 
extent O-t we measure image velocities at the following image point 
offsets and times 

where$?,+(AyiI,Ayi2,0), i=l. to 4. The viewing augle of these points, 
which we call their spatial extent, is computed as the maximum 
diagonal angle subtended by the points, i.e. 33.09. Temporal extent 
O-t is varied by varying t from 0 to 1 or 0.3 to 1 in 8 equal steps; a 
temporal extent of O-O corresponc$ to the purely spatial case. (As we 
have already pointed out, when co=(0,0.2,0), the motion is singular for 
temper-. extent O-O but is can be solved at other temporal extents. 
When o 1s known to be zero we+ca+n solve this motion for temporal 
extent O-O provided we enforce cu=O.) Image velocity error is varied 
from O-l .4% in 0.2% steps while Taylor series cofficient error is 
varied from 0- 14% in 2% steps. 

In the first experiment we vary image velocity error against 
temporal extent. Tables 1, 2 and 3 shows the overall amplification 
factors (3), their standard deviations and the number of solved runs 
when the image velocity error was n3t O%_lout of a maximum of 56) 
computed for the 3 motions for?,?, a and w for all solved runs. Best 
case results are quite good, especially when compared with the 
corresponding random and worst case results. Random output is 
about % the worst case output error. We include random results only 
to show the inadequacy of an error analyisis that only involves pr- 
forming a few runs with random noise in the input. Unless a particu- 
lar run is made n times (n a sufficiently large integer) for random 
noise in the input we cannot draw any useful conclusions. The larg- 
est output error for these n runs should approach worst case results 
while the average output error for the n runs comprises average case 
results. Table 4 shows the overall amplification factors for the 3 
motions when O-1.4% relative worst case image velocity error is 
used instead. These results indicate that worst case error of 1.4% and 
smaller can produce unusable output. It seems that we need image 
velocity measurements to be quite accurate. 

An examination of the error velocity means and differences for 
he above runs confirms the hypothesis about image velocity error 
presented in section 1.2. For best case results, tlhe error in the means 
is larger t&n the error in the differences while for worst case results 
he error in the differences is larger. In another experiment (see [Bar- 
mn 871) we a&j4 worst case error directly to the means and differ- 
ences of the image velocities. The results further confirm’the 
hypothesis as worst case mem error produced very small error 
amplification while worst case difference error produced much larger 
ones. Indeed, even when large worst case mean error was used (UP 

(3) Overall amplification factors are computed as the average of output error di- 
vi&d by input emor for all solved runs where hI.PUt mOr is not 0%. 
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to 49% error in image velociGes) worst case mean amplification fac- 
tors were still less than 1. In fact, worst case mean error results are 
almost as good as best case error results. 

The second experiment involves adding relative best and worst 
case error to the Taylor coefficients, 2, and then computing motion 
and structure from the resulting image velocity fields. Preliminary 
results am presented in Table 5 for the 2”’ and 3ti motions. The stan- 
dard deviations are much larger here. This is because the magnitude 
of the input error increases significantly in time; hence, the output 
error also increases in time. For the smaller temporal extents the 
amplification is typically 2-3. Again we note that mean error (inzl) 
is larger in best case results than in worst case results while deriva- 
tive error (in22, z3 and z4 is larger in worst case results than in best 
case results. These and earlier results suggest that adding error to 
velocity means has only a minimal effect on the error amplification 
but that adding error to the velocity differences/derivatives has a 
much greater effect on the error amplification. 

It is interesting to note the relationship between image velocity 
error and error in the Taylor coefficients for that same image velocity 
field. Table 6 shows the error in $1, Tf2, 23, 24 and 3 for temporal 
extents O-Q.3 and O-l for the 3 motions when 1.4% scaled worst case 
image velocity error is present in the input. Its seems that error inz4 
is by far the largest. Overall the error in zis 2-3 times the error in 
the image velocities (4-6 times if we look at the ~~ norm error in the 
input) while the error in the various 2 can be lo- 15 times larger. 
[Waxman and Ullman 851 note that in the spatial case recovery of 
motion and structure when there is large error in24 is quite robust. 

Changing 7, to (0,O) from (20,20), we conduct a last set of tests 
for the 3d motion, varying spatial extent (the magnitudes of the coor- 
dinates of the four comers on the square) to have values lo, 14’ and 
70' (the full image). We vary t from 0.3 to 1 for these tests. Tables 7 
and 8 show the overall amplification factors for these tests. We can 
solve most of the runs, even when the spatial extent is only 1’ and 
the relative error is 14%. Of course, the corresponding image velo- 
city error is quite small. As expected, best case results are quite 
good. On the other hand worst case results are not nearly as good. 
Large amplification factors means that (effectively) the output is not 
useful even when a solution is obtained as is the case for most of the 
runs. Again, the magnitude of the actual image velocity error 

increased with time and is entirely due to the error in 34=-$. The 

errors in ?1, Z2 and & are quite small relative to this error. When the 
spatial extent is either l& or 70° we observe an improvement in time. 

5 Conclusions 
The results of the above experiments suggest that reconstruc- 

tion algorithms that use individual image velocities need them to 
within 1% or better or equivalently those algorithms that use local 
image velocity information (for example, [waxman and Ullman 831) 
need their input to within 10% accuracy. Derivative information is 
usually calculated directly from velocity fields, for example by using 
a least squares computation to related normal image velocity to the 
g’s (see Waxman and Ulhnan 1831). Current techniques for measur- 
ing image velocity cannot produce this required accuracy. This may 
appear to call into question the feasibility of the reconstruction 
approach. However, an alternative approach is suggested from the 
experimental results: 
(1) Compute one mean image velocity that corresponds to 31=3, (as 
we have seem the error in this velocity can be quite large) using one 
of the many conventional image velocity measurement techniques 
available (for example [Horn and Schunlc 811 or [Barnard and 
Thompson 801). 
(2) Use separate techniques to measure spatio-temporal derivative 
information directly from raw time-varying intensity data. It may 
well be that such techniques will be able to measure the derivative 
information within the required accuracy. We advocate the design of 
such measurement techniques as a new research area. 
The derivative data could then be used directly in the motion and 
structure calculation (such as Waxman and Ullman’s algorithm) or 
first be converted into time-varying image velocity fields which, in 
turn, are used as input to, say, the algorithm presented in this paper. 
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Table 2: Scaled Random Error Amplification Factors 

Motion f St. Dev. -it St Dev. d St Dev. 3 St Dev. Runs 

1 4.066 0.163 0.476 0.017 4.532 0.182 - - 56 

2 15.792 0.067 15.653 0.953 13.159 0.498 38.380 2.234 5.5 

3 8.499 0.035 3.344 0.195 9.183 0.373 9.947 0.537 56 

I Table 4: Relative Worst Case Error Amplification Factors 

Motion 

2 

3 

Table 5 Amplification Factors for Taylor Series Coefficient Error 

Best Case Error St. Dev. RUnS Worst Case Error St. Dev. 

0.093 0.046 56 7.955 3.244 

0.179 0.086 56 5.072 2.136 

RIlns 

33 

54 

Table 6 Error in Taylor Coefficients for 1.4% Scaled Worst Case Error 

Motion Temporal Extent z ;bz 23 24 t 
1 o-o 0.10 2.25 1.13 0.32 0.98 
1 1 O-l 1 1.162 1 0.81 1.21 1.32 1.19 

2 O-O.3 2.27 2.60 4.07 17.55 4.86 

2 O-l 1.93 2.57 4.41 28.61 3.80 

3 O-O.3 3.66 2.10 5.69 21.12 6.99 

3 O-l 3.29 1.47 5.28 7.20 4.12 

1 Table 7: Amplification Factors for Relative Best Case Error 1 

Spatial Extent Amplification St. Dev. Runs 

lo 1 0.567 1 0.295 t 56 

14O 0.144 0.069 56 

7o” 0.147 0.070 56 

Table 8: Amplification Factors for Relative Worst Case Ermr 11 
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