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Abstract 

We are pursuing the detection of runways in aerial 
images as part of a project to automatically map 
complex cultural areas such as a major commercial 
airport complex. This task is much more difficult 
that appears at first. _ We use a hypothesize and 
test paradigm. Hypotheses are formed by looking 
for instances of long rectangular shapes, possibly in- 
terrupted by other long rectangles. We use runway 
markings, mandated by standards for runway con- 
struction, to verify our hypotheses. 

I. Introduction 
Our aim is to develop general techniques for automated 
mapping and photointerpretation tasks. We have chosen 
major commercial airports as a test domain that has a 
variety of interesting characteristics. 

Airports contain a variety of objects, such as the trans- 
portation network (runways, taxiways, and roads), a va- 
riety of building structures (hangars, terminals, storage 
warehouses), and a variety of mobile objects (automobiles, 
aircraft, humans). Further, the airport complexes are un- 
der continual change, usually due to expansion. The im- 
ages themselves are rather complex due. to the large num- 
ber of objects present in them. The mapping of this do- 
main, thus, offers a variety of challenging problems. 

Our goal is to map all of the interesting objects in 
the scene and also to devise integrated descriptions that 
include the functional relationships of the objects in the 
scene. In this paper we concentrate on the mapping of 
runways (we are pursuing mapping of buildings in sepa- 
rate work [Huertas and Nevatia, 19871). . The runways and 
taxiways may appear to be modeled easily - namely as 
long, thin, rectangular strips of uniform brigthness. How- 
ever, the real images are much more complex, as shown 
in figure 1, a portion (LOGAN:800 x 2200 resolution) of 
Logan International Airport in Boston, and in figure 2, a 
portion (JFK:1500 x 2600 resolution) of John F. Kennedy 
International Airport in New York. These help illustrate 
the following: 
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Object complexity: Runways have a variety of mark- 
ings. These are applied to the paved areas of runways 
and taxiways to identify clearly the functions of these 
areas, and to delimit the physical areas for safe oper- 
ation and aid pilots. In many cases there are visible 
signs of heavy use, such as tire tread marks, oil spots, 
and exhaust fume smears. Also, runways have shoul- 
ders of various widths. 

Object composition: Runways may not be of uniform 
material. The landing surface and the shoulders may 
be of the same or different for different runways in the 
same airport. Runways may be extended using differ- 
ent materials. In certain geographical locations, the 
runway surfaces develop defects that need to be re- 
Daired: the reuair work. usually in the form of patches 
is not necessarily homogeneous with the original sur- 
face material, and can have random shapes. 

Object functionality: Runway surfaces may be oc- 
cluded by trucks and aircraft. Runways have access 
taxiways and service roads in a variety of positions 
with respect to the runway. Runways can intersect 
with other runways. Also, old runways or portions of 
them may be now used for other purposes. 

One of the major causes of difficulties in detecting 
runways and other objects in real aerial scenes is that the 
low level segmentation rarely give complete and accurate 
results. In our work we have chosen to work primarily with 
the line segments computed from the intensity edges in 
the image. These lines may be fragmented, due in part to 
inadequacies in the line detection process, and in part due 
to actual structures in the image. In general, we assume 
that the images are of fairly good quality and of adequate 
resolution. 

Our method uses the hypothesis formation and veri- 
fication paradigm to detect runways. Our approach uses 
a generic model of the objects of interest derived from the 
following sources of knowledge: 

l Geometry and Shape: We know that we are looking for 
instances of objects whose outlines represent a rect- 
angular shape having a large aspect ratio of length to 
width. We know that runways have ends as opposed 
to nearby straight stretches of highways and roads. 
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l Specific Knowledge of airport design: We know the 
features that make a visible long strip in the image 
an airport runway: the standard markings applied to 
the surfaces, according to FAA specifications. From 
airport engineering we also know the range of angles 
between runways, range of widths and so on. 

l Photometric Knowledge: Intensity data may be of 
some help in’ verifying runway hypotheses when run- 
way markings are non existent or not available due 
to lack of contrast or lack of resolution. Our current 
implementation does not make use of this knowledge 
but only uses the image resolution information. 

In work reported here, our verification step consists 
only of finding the various markings we expect. We have 
not yet combined the different criteria. to give an overall 
confidence value. This process should, ideally, take place 
in the context of the larger system that is also reasoning 
about other objects in the scene, such as the remainder 
of the transportation network, buildings and the mobile 
objects. Location of these objects will mutually affect the 
confidence levels of the descriptions of other objects. Thus, 
the system described here should be viewed as a module 
for the larger system to operate on. 

The software architecture in our system consists of 
collections of functions that operate on linear features on 
the basis of constraints imposed by the object’s geome- 
try. Extensive work on rule based systems for aerial image 
analysis has been reported by McKeown at CMU (see for 
example [McKeown et al, i987]). Their approach however 
is based on region features rather than linear features. 

II. Description of the Method 

A. Formation of Runway Hypothesis 
1. Detection of Line Segments and Apars 

We have chosen to work primarily with line segments 
extracted from the image. Geometric knowledge of the de- 
sired structures indicate that they should be characterized 
by parallel lines of opposite contrast. We call such pairs of 
lines “anti-parallel”, and abbreviate them as upurs. Apars 
form the basic unit of our further analysis. 

We use the USC “LINEAR” line detection system 
[Nevatia and Babu, 19801 to obtain line segments and 
apars. Each linear segment is described by its length, ori- 
entation, contrast, and position of its end points. Addi- 
tionally we also know if a segment connects to another 
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segment at either end. Figure 3 shows the 8262 line seg- 
ments computed from our LOGAN example. The center 
axis lines of 9,498 apars, shown in figure 4, were computed 
from the LOGAN segments by specifying the minimum (in 
our examples, 1 pixel) and maximum (60 pixels) distance 
between the anti-parallel pairs ofbsegments. The range is 
derived from the known image resolution. The apars are 
described by their length, orientation, end points, width 
and color (b&ghter or darkeJ than surround). We also 
know if apars are connected to other apars at either end. 

Figure 3: Line Segments from LOGAN image. 

Figure 4: Anti-Parallels from Segments in LOGAN image 

2. Reduction of Search Space 

Each line segment may contribute to many apars, as is 
the case along runway features where there may be a large 
number of linear features parallel to the runway. This leads 
to a large search space that we reduce by implementing a 
focus of attention mechanism that facilitates the detection 
of “targets” in the presence of a large number of “distrac- 
tars”. We accomplish this by computing estimates of the 
directions and widths of potential runways. Using these 
estimates we extract from the set of apars, those in the 
selected directions and having a range of widths, and form 
sets of apars presumably representing fragments of run- 
ways. 

First, we estimate the direction of the runways by 
computing a length-weighted histogram of the apar ori- 
entations. The histogram for the LOGAN apars is shown 
in figure 5. The three sharp peaks denote the dominant 
orientations of the linear features (including runways) in 
the image. 

To estimate the runway widths we compute a length- 
weighted histogram of the apar widths including only those 
apars oriented in the estimated runway directions. This 
histogram (not shown) typically shows three width groups: 
a group of wide apars including runway and shoulder 
fragments, a middle group including taxiways and service 
roads, and in some cases, narrow shoulders, and a group 
of thin apars including the surface markings. 

Figure 5: Length-Weighted Histogram of Apar Orienta- 
t ions 

Figure 6: Apars representing initial set of Runway Frag- 
ments 

We extract form the set of apars those in the selected 
directions and belonging to the width group for possible 
runways. We construct one set of runway fragments for 
each orientation peak, allowing for a tolerance of 5O on 
both sides of the peaks. The three sets for the LOGAN 
example are combined and shown in figure 6. We show the 
apars as rectangles to depict their width. A comparison of 
the original set of 9,498 apars to the 518 shown in figure 4 
gives, in this example, a 94% reduction in the search space. 

3. Joining Apars on the Basis of Conti- 
nuity 
Apars are usually broken due to noise in the image and 

inadequacies in the low-level processes. However, some of 
the breaks are due to real structures in the image. Gon- 
sider for example where taxiways join runways. One one 
of the boundaries of the runway is continuous while the 
other boundary is broken at the junctions. The runway 
portions on both sides of the junction form collinear apars 
having the same width. We join these apars allowing a 5O 
tolerance in collinearity and 5 pixels tolerance in width. 
The resulting longer apar must have an orientation that 
is compatible with the estimated direction of the runway 
within a small tolerance (5O). 

In some cases, as in our LOGAN example, there is 
sufficient resolution and contrast in the image for the edge 
detector to be able to resolve both boundaries of the white 
side stripes that bound the landing surfaces of some run- 
ways. In these cases the outside boundaries of the side 
stripes result in apars that contain apars resulting from 
the inside boundaries of the same side stripes. We remove 
properly contained apars from the sets. Apars that over- 
lap however are preserved. We also remove apars having 
an aspect ratio smaller than 1, as they are considered un- 
reliable. The result of these processes is shown in figure 
7. 
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Figure 7: Apars joined on the basis of boundary continuity 
and filtered on containment and aspect ratio. 

4. Joining Apars on Collinearity and. Analysis of 
Gap Texture 

Next we join collinear (within 5”) apars that have sim- 
ilar widths (within 5 pixels) on the basis of examining the 
gap between the fragments. Many runway apars may re- 
main fragmented due to noise and occlusion. Consider for 
example where two runways cross or when there are air- 
craft on the runways. 

In general, this process is quite liberal in the analysis 
of the information in the gaps, as long as the resulting apar 
has a direction consistent (within *) with the hypothe- 
sized runway direction. For instance, if the gap contains 
mostly segments that are oriented in the direction of the 
apars, we join them. If the gap contain mostly segments 
oriented at an angle consistent with the angles allowed be- 
tween crossing runways then we join them. However, as 
in our JFK example, repair work, changes in surface ma- 
terial, signs of heavy use, oil spots and tire tread marks, 
can result in basically random arrangements of segments 
(texture) in the gaps. Thus, we also consider the lengths 
of the apar candidates and the size of the gap. A more pre- 
cise way to support these decisions would include the use 
3-D information to determine if the surface is smooth and 
flat. The result of this process for our LOGAN example is 
shown in figure 8. 

Figure 8: Apars joined on segment texture and gap anal- 
ysis. 

5. Final Runway Hypotheses 
At the end of the joining process, short apars are re- 

moved from the sets if they have an aspect ratio smaller 
than 20% This will preserve those apars possibly repre- 
senting partially visible runways. The resulting apars con- 
stitute the instances of the shapes found in the image that 
match our geometric model for airport runways. These are 
shown in figure 9. 

Figure 9: Runway Hypotheses. 

B. Runway Verification 
Hypotheses disambiguation and verification of runways 
is accomplished primarily by detection and identification 
of runway markings. We currently look for centerlines, 
side stripes, threshold marks, touchdown marks, distance 
marks, and blast pad marks. Most of these are shown in 
figure 10 (from [Ashford and Wright, 19841). We have spe- 
cific knowledge of their dimensions and position [Federal 
Aviation Administration, 19801. 

We map these knowledge onto the image’s coordinate 
system for the available image resolution. Fractions of 
pixel indicate lack of resolution and, instead of looking 
for, say two close markings, we look for one wider mark- 
ing, equivalent to the fusion of the individual non-resolved 
markings. 

The visibility of runway markings is primarily deter- 
mined by the following factors: 

Image Resoluttbn: Determines if the markings can be 
resolved. 

Surface Muterid: The contrast between markings and 
background depends on the underlying surface. White 
markings on a dark asphalt surface are quite visible. 
Concrete runways are brighter and perhaps make it 
more difficult to detect the markings. In some cases 
contrast depends also on the material in the runway 
shoulders. 

Uscrge und Upkeep: Tire tread marks, oil spots and 
exhaust fumes obscure the markings along and at the 
ends of runways. On the other hand, tire tread marks 
form quite visible and high contrasting dark regions 
in the center of concrete runways, and can be used for 
verification purposes. Our current technique relies on 
markings detected elsewhere to predict the presence 
of obscured markings. 

The size and position of each runway hypothesis de- 
termines the window where we search for the markings. To 
find them we first look for thin bright apars in the window. 
If necessary we also look at the line segments. Figure 11 
shows the markings found for our LOGAN example. The 
two overlapping (competing) hypotheses in figure 10 are 
disambiguated early because the incorrect hypothesis has 
only a few centerlines compared to those in the hypothesis 
that remains valid. 
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Figure 10: Standard Runway Markings 

Figure 11: LOGAN Runways with Markings Detected. 

1. Detection of Runway Centerlines 
Centerlines are equally spaced along the landing sur- 

face of runways. To detect these we look in the middle 
of the hypothesized runway for bright apars having the 
desired dimensions. We do not enforce the separation con- 
straint between centerlines to allow detection of broken 
or incomplete individual markings due to exhaust burns, 
tread marks, etc. We also look for individual segments 
(that do not form thin apars) down the middle of the run- 
way. 

2, Detection of Side Stripe Markings 
The sides of the landing surface of runways are bound 

by side stripes. They result in thin bright apars. We look 
for these, at or near the boundaries of OUF runway hy- 
potheses, and test that they are oriented parallel to the 
estimated runway direction. These thin apars are often 
broken mostly due to lack of contrast, and we do not at- 
tempt to join them. We however require that the fragments 
be collinear and that they have a consistent width. 

3. Threshold Mark Detection 
The threshold are probably the most important set 

of markings that can be used to verify a runway; they 
give pilots the position of the start and end of the runway. 
Often, these marks are partially worn away by exhaust 
fumes due to their position, so we expect our search to 
look for partial markings. 

At the resolution-in our examples the threshold marks 
appear as white rectangles separated by a dark zone. This 
results in two bright wide apars for each mark and a dark 

apar between them. In our search first look for the bright 
apars. These apars must be oriented in the direction of the 
runway (within a lie tolerance). If we find only one of these 
apars, we hypothesize the position of the missing mark, 
and look in the line segment information for line segments 
to support our hypothesis. If no bright apar is found we 
look for the dark apar. It must meet the length and orien- 
tation constraints for the dark zone between the threshold 
marks. From its position and orientation we predict the 
position and orientation of the two threshold marks, and 
look for support evidence in the set of line segments. 

4. Touchdown Mark Detection 
Touchdown marks are located at a specific distance 

from the threshold marks, on each side of the runway. 
When present, at the resolution in our examples, they gen- 
erate two bright apars and a bright apar between them. We 
look for these, and test them for consistent orientation. 

5. Distance Marking Detection 
Runways have a series of distance markings extending 

from the touchdown marks, equally spaced but of vary- 
ing width. They generate specific bright and dark apars 
that we can look for. We look foti the first (large) pair nf 
distance marks first. For this we rely on the position of 
the threshold marks to predict their approximate position. 
Locating the small distance markings proceeds in a similar 
manner. We estimate their position from the large distance 
marks (if these are available, otherwise we use the position 
of the threshold marks) and do a search in the area for 
apars of the desired characteristics. 

6. Blast Pad Mark Detection 
Blast pad markings are optionally located at the ends 

of runways. They consist of pairs of white lines oriented 
at 45O angles with respect to the runways, and meet at the 
runway central axis. The separation between these pairs of 
lines varies thus, we detect them by looking for thin bright 
apars in the proper configuration. 

III. More Results 
The runways at LOGAN consist of dark asphalt, well main- 
tained surfaces and markings, while JFK present a wide 
variety of problems. We therefore selected a portion of 
this airport as our second example. The level of complex- 
ity of most major commercial airports lies between our two 
examples. 

In our JFK example, the partially visible apparent 
runways have no discernable markings on them. The com- 
plete runway running across the image shows increasing 
amounts of repair work, of a different material than that of 
the original surface. The darker material, however, makes 
some of the markings more visible. On the left side of 
the runway, the end of the runway becomes narrower as it 
turns into a taxiway. The accurate detection of the run- 
way end thus depends on being able to locate the threshold 
markings. As shown below, we were able to locate them. 
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Figure 12: Line Segments from JFK Image. 

Figure 13: Initial Set of Runway fragments in JFK Image 
The line segments computed from the JFK image are 

shown in figure 12. The reduced search space and apars 
representing the initial set of runway fragments is shown 
in figure 13. The rynway hypotheses are shown in figure 
14. Figure 15 shows the results of the verification process. 

IV. Conclusion 
We have described a technique, based on geometry and 
shape as the sources of knowledge suitable to form and 
test hypotheses representing instances of a known object 
shape, airport runways, using linear features. 

We presented results on two very different airports 
to show the strength of the hypotheses formation process. 
Together with a sound search space reduction mechanism, 
and an object-specific feature verification technique, our 
method represents the state-of-the-art in runway detection. 
We have tested the technique on images of several major 
airports, varying in complexity between our two examples, 
with very encouraging results. In all our test the system 
parameters were the same. 

Our basic technique can be easily extended to use 
the intensity image if necessary, feedback mechanisms, and 
analysis of non-standard markings. We point out that our 
hypotheses formation/verification technique can be useful 
for similar tasks, such as road detection and in general, 
transportation network detection. 
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Figure 14: Runway Hypotheses. 

Figure 15: JFK Runway and Markings Detected. 

We have not yet combined the different criteria to give 
confidence values. This process should, ideally, take place 
in the context of the larger system that is alsoreasoning 
about other objects in the scene, such as the remainder 
of the transportation network, buildings and the mobile 
objects. Location of these objects will mutually affect the 
confidence levels of the descriptions of other objects. Thus, 
the system described here should be viewed as a module 
for the larger system to operate on. 
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