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Translation-, rotation-, and scale-invariant 
recognition of multiple, superimposed, partially 
specified or occluded objects can be accomplished 
in a fast, simple, distributed and parallel fashion 
using localizable features with intrinsic orientation. 
All known objects are recognized, localized, and 
segmented simultaneously. The method is robust 
and efficient. 

Classification of signals on the basis of their shape is a 
fundamental problem in biological and machine informa- 
tion processing. Interactive activation models view this 
process as a continuous transaction between the incom- 
ing information and stored knowledge. For example, 
McClelland and Rumelhart (1981) developed an interac- 
tive activation model of perceiving letters within the con- 
text of words. When a stimulus (a particular spatial 
distribution of features) is presented to the system, the 
relevant letter units are activated. The Jetter units then 
activate word units that in turn reinforce the activation of 
the appropriate letter units. In this model, the connec- 
tions between the letter and word units are fixed. In a 
more recent model (McClelland, 1986) the connections 
are “programmable” in the sense that they can be 
switched on and off by multiplicative signals from the 
“knowledge” modules. The model uses both the bottom- 
up and the top-down processing simultaneously to home 
in on a consistent interpretation of the stimulation. An 
important feature of such models is parallelism: process- 
ing occurs both between and within levels 
simultaneously. This is one of the few known methods 
permitting large scale exploitation of mutual, often only 
partially valid constraints in a distributed and parallel 
fashion. 

Such connectionistic approach is powerful but unfor- 
tunately it also has some drawbacks. The sheer number 
of connections and units necessary to implement a full 
scale “programmable” similitude-invariant (i.e., 
translation-, rotation-, and scale-invariant) pattern 
recognizer is simply enormous. Another problem is that 
these models usually implicitly assume that the segmen- 
tation (i.e. the knowledge of what features belong to the 
same object) has already been achieved. For example, 
most word recognition systems of the connectionist 
variety (e.g. McClelland, 1986) use the spatial locality 
constraint: a feature at a position x cannot possibly 

interact with a feature at y because they are separated by 
more than z units (i.e. they cannot belong to the same let- 
ter). In other words, not only the segmentation but also 
the scale is given (e.g. Hinton 81 Lang, 1985). In general, 
however, different objects may be superimposed or 
occlude each other, and spatially widely separated 
features may cooperate to define an object. The problem, 
then, is not the recognition of an isolated object (for which 
many techniques are available [e.g. Hu, 1962; Casasent & 
Psaltis, 19761) but recognition of multiple objects without 
a prior segmentation or knowledge of which objects are 
present in the image. 

Sometimes, segmentation can be achieved on the 
basis of “peripheral” information without the involvement 
of pattern specific evidence. For example, a selective 
attention mechanism may (at least partially) extract one 
voice from the jumble of noise and other voices at a party 
(the cocktail party effect [Cherry, 19531) based on 
stimulus onset synchrony or other distinguishing com- 
ponents(e.g. pitch) of onesound. Similarly, in motion and 
stereopsis, objects oan be separated from the back- 
ground and each other using only motion or disparity 
information without being recognized first (Julesz, 1971; 
Prazdny, 1965). Often, such peripheral segmentation 
based on similarity of a local signal quality is not sufficient 
and more central evidence based on the geometrical/ 
topological disposition of the individual features has to be 
invoked. In short, in many (and perhaps most) situations, 
segmentation, recognition and localization of objects 
occur simultaneously as the perceptual system tries to 
“explain” the world. 

This paper presents a simple but surprizingly power- 
ful technique for position-, rotation-, and scale-invariant 
pattern recognition of two-dimensional objects. It is 
based on parallel distributed processing and uses 
message passing instead of fixed connections as the 
primary means of communication. In general, message 
passing is more economical, versatile, and powerful than 
“programming” through conjunctive connections. 

FE LS. 

People and animals (Hollard & Delius, 1982; Rock, 
1973) can recognize objects from a variety of viewpoints 
even when the objects were never seen from those view- 
points previously. The problem addressed in such task 
can be stated simply: given a set of model objects, each 
specified independently and in isolation, locate 
(possibly) occluded, overlapping and/or partially 
specified instances of the models in an image (described 
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Given such encoding, the recognition process is sur- 
prizingly simple mainly because the relational specifica- 
tion does not involve absolute locations or angles (i.e. the 
relational coding takes care of the position and rotation 
invariance). First, image features are extracted. Each fea- 
ture is associated with a processor or unit that can send 
to, and accept messages from all other feature pro- 
cessors. Each processor, i, has also access to the 
knowledge sources (the model catalogue) and can deter- 
mine a set of admissible correspondences{cijkj between 
itself and the model features. A model is instantiated 
when a match Cijk is found that maps an image feature 
(processor) i to a feature j of model k. Two features match 
if they are of the same type (e.g., both are a corner) and 
have approximately the same value (in our implementa- 
tion, the image and model corner angles have to be within 
x degrees of each other, where x is a user defined 
parameter). Each putative correspondence Cijk 
immediately allows the demployment of the knowledge 
because each model contains information about all other 
object features relative to the local reference frame of the 
model feature j. Thus, each Ci’k results in a Set of 
messages being broadcast (FIGURE 2a). Each direction 
can be thought of as priming or gating signals along 
which information is propagated that can be “digested” 
only byspecific“receptors”within its path. Each message 
stipulates exactly which feature with what orientation is 
expected at each direction; features outside the “atten- 
tion” beams are ignored (this is in many ways analogous 
to an expectation driven parsing). This is a very general 
way to obtain programmable “connections” not available 
in the contemporary connectionist schemes. Connec- 
tions are not fixed but rather generated “on the fly”. It is 
similar in many ways to the earlier proposals of Waltz 
(1978). 

A message is accepted by a processor if the feature 
type, value, and direction specified by the message agree 
with the processor’s feature specification. When a 
message is accepted it is in effect a vote for a particular 
correspondence c&c of the feature processor a that 
accepted the message. It can be thought of as arguing: 
“the sender of this message says that if you accept this 
then you are feature b of model c”. Accepting a message 
also immediately defines the scale of the object relative to 
the model: the scale is simply the ratio of the original 
model distance to the signalled distance between the 
sender and the receiver. 

FlGURE 2. 

Messages generated by the correct feature-to-model 
correspondence. Each admissible correspondence, Cijk, bet- 
ween an image feature i and a feature j of model k generates a 
set of messages along directions determined by the local 
reference frame imposed by the image feature i and the rela- 
tive directions of all other features of the object k with respect 
to the feature j. Each message in effect says: “if the image fea- 
ture i (oriented along angle a) is the feature j of model k then 
the feature x of the same model (which lies at an angle p rela- 
tive to j) has to lie somewhere along a + p.” Each message, 
denoted by a small angle in the figure, can be caught only by a 
processor whose feature is sufficiently similar (in type, value, 
and orientation) to the message specification. An “attention” 
beam (instead of a single radial) centered at the predicted 
direction is used to overcome various forms of noise 
(measurement errors and deformations). 

Each processor i monitors the support for all feasible 
correspondences Cijk. After accepting all relevant 
messages and updating its state accordingly it chooses 
that C*ijk (and the associated scale s*ijk) with the largest 
support asthe “correct” correspondence. All subsequent 
messages are sent only on the basis of this best 
“hypothesized” correspondence C*ijk (this is a “winner- 
takes-all” computation). The knowledge of the “correct” 
scale s*ijk enables the transmitting processor to con- 
siderably narrow the message target area: instead of the 
“attention beams” small regions around the predicted 
locations are used (FIGURE 2b). That is, the first iteration 
uses the “attention beams” for message propagation 
while all subsequent iteration use the more refined 

When the scale is known the message delivery area can 
considerably narrowed to a region around the predicted 

feature location. The message specification (the type/value 
pair and the feature direction) is denoted by the thick 
lines. 

estimates based on the knowledge of s*i’k and the model 
distance, d*iak between i and a under k. f he radius of the 
message area is proportional to the distance between the 
centre of the target area and the sender. This is like send- 
ing a message with a delayed “fuse” that “explodes” in a 
“fireball” some time after its launch as opposed to one 
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that is continuously active. Each processor thus 
simultaneously and continuously sends and receives 
messages, and updates its “beliefs” about the “correct” 
image-to-model feature correspondence based on the 
information supplied by the other features. After only a 
few such iterations a global order emerges due to mutual 
“coercion”; the “conspiracy of partial evidence” drives 
the system to a stable state (i.e. the state where, for all 
i, C*ijk(t) = C*ijk(t-1)) (FIGURE 3). In our experiments We 
have found that in general, no more than three iterations 
are required; mostly, the first pass already results in a 
correct assignment. The mutual support the features 
belonging to the same object provide to each other is also 
reminiscent of the concept of synergistic reverbera- 
tions. 

FIGURE 3. 

The final state of the system. The models (thick lines denote 
model features) are superimposed on the image. Numbers 
identify the models (10 models were in the catalogue in this 
experiment). Circles around the features identify the 
features of the same object. The lower right polygon (image 
features 14-19) has not been recognized, segmented or 
localized since no model in the catalogue was supported by 
the spatial distribution of those image features. 

Assume that ea6h image feature matches, on the 
average, n features of m models, and that each model 
has, on the average, p features. Then, each feature pro- 
cessor generates, on the average, mnp messages. Only a 
small fraction of such messages is actually accepted by 
the image feature processors. The computations inside 
each processor are very simple. The feasibility of the 
algorithm is thus mainly determined by the speed and 
costs associated with message broadcastin 

The parallel distributed approach described above is 
fast and robust: if there are features that are mutualiycon- 
sistent under some mapping to the same model, they will 
support each other and survive. The approach leaves one 
additional problem to solve, however: while we know 
which image feature correponds to which feature o 
which model, we do not explicitly know which features 
belong the the same object! In effect we have solved for 
the location and identity of objects without segmentation. 
One simple way to perform such labeling is through sup- 
port coincidence. Every correspondence or explanation 
C*ijk generates a set of locations where it expects to find 
other image features corresponding to the same o 
All other correspondences c*opk (o#i, p#j) generating 
the same set of expectations are thus instanees of the 
same object. Note that for this computation, it is 
immaterial whether there are any imagefeaturesfound at 
the predicted locations! This “labelling” strategy is fast 
and convenient and does not have the problems of most 
methods based on consensus. For example, the 
aocumulator peak coincidence problem of the 
generalized l-lough transform (Sallard, 1961) (when two 
shapes, each specified with respect to a referenoe point 
are positioned so that their reference points coincide) is 
handled in a natural way. Observe also that multiple 
instances of the same model are handled in the same way 
as instances of different models. 

Experiments with the algorithm (implemented as a 
simulation on a Symbolics 3670 Lisp machine) revealed 
that it is fast, robust and efficient. It is robust because any 
mutually consistent set of features wili reinforce each 
other and survive the “winner-takes-all” competition. it is 
efficient because of the automatic narrowing of the focus 
of attention during the search. The system performance 
is, of course, limited by the accuraccy of its input, mainly 
by the reliability of the image feature direotion 
measurements. 

In conclusion, a position-, rotation-, scale- 
attern reoognition can be perfor ast and 
parallel distributed fashion using features only 

slightly more complicated than points or edge segments. 
The algorithm’s power derives from relational coding, 
distribution of processing into many interacting but 
independent modules performing identical com- 
putations, and from the use of directed message passing. 
This approach is well suited for a fine-grained 
parallel architecttire, e.g. the Connection 

ssively 
achine 

(Hillis, 1985). 
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