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Abstract 
Although mail pieces can be classified by shape into paral- 
lelopipeds and cylinders, they do not conform exactly to these 
perfect geometrical shapes due to rounded edges, distorted 
comers, and bulging sides. Segmentation and classification of 
mail pieces hence cannot rely on a limited set of specific 
models. Variations and deformations of shape can be con- 
veniently expressed when using superquadrics. We show 
how to recover superquadric models for mail pieces and seg- 
ment the range image at the same time. 

Postal services are currently facing the problem of 
automating mail piece handling. At present only letter handling is 
IbIIy automated. The rest of the mail pieces is handled at least 
partiahy if not completely by hand due to their large variability in 
size and shape [Owen, 19861. Any automatic system for handling 
mail pieces has to determine location, orientation, size, and shape 
of maiI pieces in order to manipulate them accordingly. Com- 
puter vision is a promising way to satisfy these requirements. 

, 

The problem of characterizing mail pieces is somewhere 
between scene description and object recognition. Por scene 
description, a unique description of objects is not necessary. It is 
generally sufficient to generate, using a bottom up strategy, a suc- 
cession of representations that depend on the viewing direction 
and orientation of objects which results in a geometric representa- 
tion such as surface patches or polyhedral approximations. On 
the other hand, to recognize an object in the scene as one from a 
set of predefmed models, a computer vision system must have 
models of these objects which it compares to the input data. For 
recognition of 3-D objects, view point independent, 3-D models 
are required. Most working recognition systems rely on fmed, 
definitive models intended only for environ~nts where a limited, 
preselected number of objects are encountered. Flail pieces, how- 
ever, do not come just in a few uniform shapes and sizes. Thus, 
having individual models for each mail piece is not feasible. This 
is why segmenting and representing mail pieces is not object 
recognition in the strict sense which is normally understood as 
selecting the right ready-made model from a predefmed set of 
models. 

Classifying mail pieces is related to categorization. People 
form categories by picking out the essential and separating it from 

the accidental mosch, 19781. This sorting of instances into 
categories reflects the structure of the world pentland, 1986a], 
[Bajcsy and Solina, 19871. Like any other objects, mail pieces 
can be grouped into classes or categories. Shape classification 
which is used for manual handling of mail pieces and which 
identifies parcels, flats, tubes, rolls, and irregular packages, 
reflects such structure. An automated mail handling system must 
also divide mail pieces into appropriate classes, give their shape 
description by identifying the necessary parameters of the class 
model, and provide the position and orientation in a world coordi- 
nate system. The difficulty in modeling mail pieces is their 
nonuniform shape and size. They do not conform to perfect 
geometrical shapes because of rounded edges, distorted corners, 
bulging sides, and wrinkled wrapping. With standard 3-D shape 
representations, like generalized cylinders or polyhedral approxi- 
mations, such degradations from ideal prototypes are difficult to 
express. Superquadrics, on the other hand, have the advantages of 
generalized cylinders and direct control over the 
roundness/squareness of edges. In general, only a single super- 
quadric model is required for a single mail piece. 

The rest of the paper is organized as follows: we first 
describe the recovery of superquadric models from range data, 
outline the recognition procedure, including some new ideas and 
preliminary results about segmentation and, at the end, compam 
our recovery methcxf with other related work and discuss future 
research. 

Superquadrics are a family of parametric shapes that were 
invented by the Danish designer Peit IIein [Gardiner, 19651 as an 
extension of basic quadric surfaces and solids (see also [Barr, 
19813). Pentland Ipentland, 1986a] suggested them first for 
analysis of scenes in computer vision. A superquadric surface is 
defined by the following implicit equation: 

. \ e?. 

jp]*+p]“J~+[+ (1) 

dliC 
%9 Ys, andzsare coordinates of a point on the superqua- 

Surface. Subscript S indicates a superquadric centered 
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coordinate system. Parameters a I, a2, a3 define the superquadric 
size in x, y and z directions, respectively. el is the squareness 
parameter along the z axis and e2 is the squareness parameter in 
the x-y plane. By changing the two shape parameters, superqua- 
dries can model a large set of standard building blocks, like ellip- 
soids, cylinders, parallelepipeds, and all shapes in between. Glo- 
bal deformations like tapering, twisting, and bending further 
enhance superquadric modeling capabilities [Barr, 19841. 

We define the “inside-outside” function for superquadrics 

IJhen F (G, YS, zd = 1, the point (xs, ys, zs) is on the 
surface of a superquadric. If F (xs, ys, zs) > 1, the correspond- 
ing point lies outside and if F (xs, ys, zs) < 1, inside the super- 
quadric. With the outermost exponent E~ we force F to grow qua- 
dratically instead of exponentially. This ensures faster conver- 
gence during model recovery. 

Superquadrics are suitable models for computer vision 
because we can form overconstrained estimates of their parame- 
ters. This overconstraint comes from using models defined by a 

F (xw, YW, zw) = (4) 

F (XW, YW, ZW, al, a2, a3, ~1, ~2, h 8, y,gl, ~2, p3 ) 

The independent parameters expressed in vector notation 
are:?? = [aal, a2, . . . , a 11 IT. Suppose we have N 3-D surface 
points (xw, yw, zw) which we want to model with a superquadric. 
Eq. (4) predicts the position of a point (xw, yw, zw) relative to the 
surface of the model. We want to vary the 11 adjustable parame- 
ters aj, j = 1, . . . , 11 in eq. (4) to get such values for aj’s that most 
of the 3-D points will lay on or close to the model’s surface. 
Since for points on the surface of a superquadric: 
F(xw,yw,zW;al, *.. 9all) = l,weachievethisbyminimiz- 
ing : 

N 
x [1 -F (Xwj, Ywit zwi; al, . . . 9 ad I2 
i=O 

However, due to self-occlusion the solution to eq.(5) is 
unbounded in the sense that an infinite number of superquadric 
models of different sizi fit objects like cylinders or parallelo- 
pipeds. Obviously only the model with the smallest possible 
volume that still fits the given points is the desired solution. We 
want a modified fitting function which has a minimum 
corresponding to the smallest superquadric that fits a set of 3-D 
points aptd such that the function value for surface points is 
known before the minimization. Using function: 

few parameters to describe a large numb& of 3-D points. This R = ala2a3 (F - 1) (6) 
enables us to verify our esti&ted models and measure the 
“goodness of fit.” For a superquadric in an arbitrary position we 
must recover 11 parameters: location in space (3 par.), orientation 
in space (3 par.), size (3 par.), and two shape parameters, &l and 
e2. On the other hand, many more 3-D points are typically avail- 
able on the surface of the modeled object from either range imag- 
ing or passive stereo. To find the parameters so that the model 
best fits the data is called an overdetermined optimization prob- 
lem. 

we fulfill the first requirement with the factor a 1a2a3, which 
corresponds to the superquadric size. The second requirement is 
met by the factor (6; - 1), since function R has value 0 for all 
points on the surface and does not depend on knowing the correct 
size. Now we have to minimize: 

(7) 

We introduce here a relatively fast iterative fitting pro- Since R is a nonlineaer function of 11 parameters aj, j = 1, 
cedure based on the “inside-outside” function. Eq. (2) defines . . . , 11, the minimization must proceed iteratively. Given trial 
the surface in a superquadric centered coordinate system values for 2, we evaluate eq. (6) and employ a procedure to 
(XS, ys, ZS). 3-D points from passive stereo or range imaging, improve the trial solution. The procedure is then repeated with 
however, are given in a world coordinate system (xw, yw, zw). new trial values until the sum of least squares (eq. 7) stops 
We express these 3-D points in the superquadric centered coordi- decreasing, or the changes are statistically meaningless. Since 
nate system by a translation and a sequence of rotations. A con- first derivatives &?I&, for i = 1, . . . , 11 can be computed, we 
venient way of expressing such transformation in homogeneous use the Levenberg-Marquardt method for nonlinear least squares 
coordinates is with a 4 x 4 matrix T: [Press et al., 19861. The first trial set of parameters, 3 must be 

[I II 
set experimentally to some initial estimates& We found out that 

xs very rough estimates for position, size and orientation are suffl- 
Ys 
zs 

=T z (3) 
cient. Initial estimates for both shape parameters, Q and ~2 can 
always be 1, while position, orientation, and size can be estimated 

1 1 by computing the center of gravity and moments of inertia for the 
given 3-D points. During the fitting procedure we introduce 

where T = Trans C.P I, 132, ~3) - Rot (9, 0, y). We use “jitter” by adding Poisson distributed noise to the evaluation of 
Euler angles to express the orientation in terms of rotation $ about function R. Small local minima caused by the complicated topol- 
the z axis, followed by a rotation 8 about the new y axis, and ogy of the fitting function and the noise in the input data are thus 
finally, a rotation w about the new z axis. Substituting eq. (3) into avoided and a global convergence assured [Pentland, 1986bl. 
eq. (2) we get the “inside-outside” function for a superquadric in 
general position and orientation: 

Deformed superquadrics can be recovered using the same 
technique of minimizing the “inside~outside” function (Fig. 1). 
Global deformations like tapering, bending, and twisting require 
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Figure I: Recovery of a tapered cylinder with an itera- 
tive process through which the estimated shape con- 
verges to the actual range data. The initial estimate 
and some of the following iterations (solid lines) are 
shown superimposed on the superquadric (broken 
lines) that represents the input data (300 3-D points). 
A total of 13 model parameters (11 + 2 for tapering) 
were adjusted simultaneously to achieve a least squares 
fit. The whole fitting procedure took about three 
minutes on a VAX 785. 

just a few additional parameters. Any shape deformation can be 
recovered in this way as long as the inverse transformation is 
available [Bajcsy and Solina, 19871. 

We tested the fitting procedure on synthetic (Fig. l), and 
real range data (Fig. 2). The described recovery procedure is fast 
and stable in the sense that it always converges to a good approxi- 
mation of the actual object. We are able to fit simultaneously all 
11 parameters and achieve a good fit in just a few iterations (Fig. 
3). Speed depends on the number of 3-D points for which the fit- 
ting function and their derivatives must be evaluated, the number 
of necessary parameters and the accuracy of initial parameter esti- 
mates. We investigated the robustness of the minimization pro- 
cedure by studying the relation between independent parameters 
of the fitting function and the sum of least squares (Fig. 4). 

III. Recsgnition 

The goal of a vision system for mail piece handling is to 
classify each mail piece into a class of like objects and report its 
position, orientation and size so that appropriate manipulation can 
be performed. The whole process can be divided into image 
acquisition, segmentation, model recovery and classification. 
lvlodel recovery was already described. The rest of this section is 
devoted to segmentation and classification. 

Figure 2: Interpretation of a real range image [Hansen 
and Henderson, 19861 with superquadric models. 0n 
top are the initial model estimates, on the bottom the 
recovered models after 12th iteration. Segmentation 
into individual objects was done by hand. 
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Figure 3: Rate of convergence for the cylinder in Fig. 
3. The notch around 13th iteration is due to the addi- 
tion of Poisson distributed noise which pushed the fit- 
ting process out of a local minimum and towards a 
better solution. One iteration using about 50 range 
points took about 15 seconds on a VAX 785. 

A. Scene segmentation 

Under the assumption that only single mail pieces are 
present in the scene, segmentation consists of removing the sup- 
porting surface. The remaining range points are then used for 
model recovery. If several, possibly overlapping, mail pieces are 
present, segmentation must divide the scene into regions 
corresponding to single objects. 

Segmentation is a data driven process and normally applies 
image formation models like edges, comers, regions, normals, 
and surfaces to the image. A review of low level range image 
processing,research [Besl and Jam, 19851 reveals that there are 
two principal approaches. One extracts edges, the other segments 
surfaces into planar or cylindrical surfaces. The “edges first” 
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approach is successful when the objects have nice, clear edges. 
Mail pieces, however, have crumpled edges and beaten corners 
and this shape noise degrades the performance of edge finders. 
Crumpled paper on mail pieces can also mislead a region growing 
algorithm, causing it to subdivide a single face into a number of 
small surface patches. Using extracted features, regions 
corresponding to a single object or part can be hypothesised and 
verified by model fitting. 
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Figure 4: Influence of inside-outside function parame- 
ters on the fitting function for the cylinder in Fig. 2. 
Although aLl parameters are interdependent, these 2-D 
plots give some insight into the behavior of the inside- 
outside furaction. Note that factor a 1~Z~3 in modified 
function R (eq. 6) introduced a new minimum when 
any of a’s is 0. If the initial values for size are not 
much to underestimated, this does not cause a prob- 
lem. 

We are currently investigating the use of superquadric 
models for segmentation also. The recovery procedure describe-d 
in the previous section uses a fixed number of range points which 
are assumed to belong to the same mail piece. Now consider the 
case where only very gross segmentation is available, a result of 

for example, or even no segmentation at 
the whole scene as a large block and like a 

sculptor carve out the objects or parts that make up the scene. 
The shape of possible recovered parts depends on the capabilities 
of our models. Superquadric primitives combined with some glo- 
bal deformations can describe a large class of man-made and 
natural objects [Pentland, 1986aJ. The problem can be interpreted 
as a global minimization problem over the space of model param- 
eters and number of models. First, we want to recover the model 
that accounts for the largest number of data points and repeat the 
process for remaining chunks until an appropriate level of 
representation for the task at hand is reached. The number of 
points during model recovery is not fiied. Points that are to far 
outside from the model’s surface in the current iteration do not 
contribute to the estimation of model parameters, while other 
points, not used in a previous iteration but close enough in the 
present iteration, are used again. The changing number of points 
from iteration to iteration must be taken into account when com- 
paring the goodness of fit.’ 

Classification of mail pieces is necessary because dif- 
ferently shaped mail pieces require different handling. A classifi- 
cation scheme must reflect the shape of mail pieces but can also 
depend on the nature of the automated manipulation (robot arms 
equipped with grippers or suction pumps, fwed automation). 
Using recovered superquadric parameters, different geometric 
classification schemes can be easily designed. For example, the 
classifkation currently used for manual handling is: 

Qletters and flats (aI a: a2, a3 and el, r, < l), 

Obox-like packages (Q~ ~2 GK I), 

Otubes and rolls (Q a 1 and e = I), 

Oirregular objects (1 c E 1, 2 > 2, global deformations). 

Pentland has shown that superquadric primitives can 
describe a large class of man-made and natural objects hlpentland, 
1986a]. We believe that they are appropriate as part-based 
models, especially for the class of basic categories, since the pro- 
rorype CuIci Beforrplatiom paradigm common in human perception 
can easily be applied [Bajcsy and Solina, 19891. At that level 
very detailed shape descriptions are not necessary. With a small 
set of parameters a large set of primitives can be arnifo&y han- 
dled. Superquadrics model the whole object, including parts hid- 
den by self-occlusion and parts occluded by other objects, by 
assuming symmetry. Verification which normally comes as an 
afterthought is here an integral part of model recovery. 

’ Instead of conp3ring the sum of least sqws, we &vi& the surIpB 
first by the number d participating points. ‘I’& treshold for rejecting 
prints that are too far outside hxn the model’s surface is a function of 
goudnas of fit. The better the fib the stricter the rejection titebia. 
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Figure 5: Segmentation by model recovery. The 
above image sequence shows the iterative process 
through which the estimated shape based on the non- 
segmented range image converges to a model that ac- 
counts for the largest part in the scene. The small cube 
on top of the large oni$%an be recovered simply by ap- 
plying the fitting to the remaining range points. 

-. 
To recover superquadric models, Pentland [Pentland, 

1986a] first suggested an analytic solution of parametric super- 
quadric equations. Using linear regression, one could compute 
parameter values that provide the best fit. Pentland [Pentland, 
1986bl currently recovers superquadrics from range data by com- 
puting a heuristic “goodness-of-fit” functional in a coarse grain 
search over the entire parameter space. We believe that, due to 
complexity, an analytic solution for superquadric parameters is 
not practical. A heuristic approach, on the other hand, lacks pre- 
cision, and global search is computationally expensive. Recovery 
using the “inside-outside” function and a steepest descent 
method combined with addition of Poisson noise has proved to be 
more efficient. The speed of the fitting procedure depends on the 

number of range points, the number of function parameters and 
the accuracy of first parameter estimates. Since the “inside- 
outside” function and its partial derivatives can be evaluated for 
all range points in parallel, the fitting procedure may be speeded 
up on a parallel architecture. 

Segmentation by model recovery looks promising but more 
research is in order. Global search is a possible but costly propo- 
sal Ipentland, 198661. We will investigate if the method would 
benefit by using simulated annealing. 
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