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ABSTRACT 

A theory is presented for the computation of three dimensional 
motion and structure from dynamic imagery, using only line 
correspondences. The traditional approach of corresponding 
microfeatures (interesting points-highlights, corners, high cur- 
vature points, etc.) is reviewed and its shortcomings are dis- 
cussed. Then, a theory is presented that describes a closed 
form solution to the motion and structure determination prob- 
lem from line correspondences in three views. The theory is 
compared with previous ones that are based on nonlinear equ* 
tions and iterative methods. 

1. Pntroduction 

The importance of the estimation of the three 
dimensional motion of a moving object (or of the sensor) 
from a sequence of images in robotics (visual input to a 
manipulator, proprioceptive abilities, navigation, struc- 
ture computation for recognition, etc.) can hardly be 
overemphasized. 

Up to now there have been three approaches toward 
the solution of the problem of computation of three 
dimensional motion from a sequence of images: 

1) The first method assumes the dynamic image to be a 
three dimensional function of two spatial arguments 
and a temporal argument. Then, if this function is 
locally well behaved and its spatiotemporal gradients 
are computable, the image velocity or optical flow 
may be computed [7][9] [3l]. 

2) The second method considers cases where the motion 
is “large” and the previous technique is not applica- 
ble. In these instances the measurement technique 
relies upon isolating and tracking features in the 
image through time. These features can be micro 
features (highlights, corners, points of high curva- 
ture, interest points) or macrofeatures (contours, 
areas, lines, etc.). In other words, operators are 
applied to both images which output a set of 
features in each image, and then the correspondence 
problem between these two sets of features has to be 
solved (i.e. finding which features in both dynamic 
images are projections of the same world feature). 

In both of the above approaches, after the optic flow 
field, the discrete displacement field (which can be 
sparse), or the correspondence between macrofeatures is 

The support of the Defense Advanced Research Projects Agency 
and the U.S. Arm 
under Contract D AKB 

Night Vision and Electra-Optics Laboratory 
07-86-K-F073 is acknowledged. 

computed, algorithms are constructed for the determina- 
tion of the three dimensional motion, based on the image 
flow or on the correspondence [29] [l] 
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[5] [6] [8] [l3] [3] 

3) In the third method, the three dimensional motion 
parameters are directly computed from the spatial 
and temporal derivatives of the image intensity func- 
tion. In other words, if f is the intensity function 
and (1,~) the optic flow at a point, then the equation 
~,u + Iyw + ft = o holds approximately. All methods 
in this category are based on substitution of the 
optic flow values in terms of the three dimensional 
motion parameters in the above equation, and there 
is promising work in this direction. [lo] [20] [4] Also, 
there is work on “correspondenceless” motion detec- 
tion in the discrete case, where a set of points is put 
into correspondence with another set of points (the 
sets correspond, not the individual points) [2]. 

As the problem has been formulated over the years 
one camera is used, and so the number of three dimen- 
sional motion parameters that have to be and can be 
computed is five: two for the direction of translation and 
three for the rotation. 

In this paper we present a theory for the determina- 
tion of three dimensional motion and structure from line 
correspondences in three views. A line is represented by 
its slope and intercept, and not by its endpoints, even if 
such points exist. 

2. Motivation and previous work 

The basic motivation for this research is the fact 
that optical flow (or discrete dispacement) fields produced 
from real images by existing techniques are corrupted by 
noise and are partially incorrect. Most of the algorithms 
in the literature that use the retinal motion field to 
recover three dimensional motion, or are based on the 
correspondence of microfeatures, fail when the input (reti- 
nal motion) is noisy. Some algorithms work reasonably 
well for images in a specific domain. 

Some researchers [8] [22] [19] have developed sets of 
nonlinear equations with the three dimensional motion 
parameters as unknowns, which are solved by initial 
guessing and iteration. These methods are very sensitive 
to noise, as reported in [22] [8] On the other hand, other 
researchers [18] have developed methods that do not 
require the solution of nonlinear systems, but only of 
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linear ones. Despite this, in the presence of noise the 
results are not satisfactory [18]. 

Prazdny, Rieger and Lawton presented methods 
based on the separation of the optical flow field into 
translational and rotational components, under different 
assumptions. [23] [24] But difficulties are reported with 
the approach of Prazdny in the presence of noise [12], 
while the methods of Rieger and Lawton require the pres- 
ence of occluding boundaries in the scene, something that 
cannot be guaranteed a priori. Finally, Ullman in his 
pioneering work [29] p resented a local analysis, but his 
approach seems to be sensitive to noise, because of its 
local nature. 

Several other authors [l7] use the optic flow field and 
its first and second spatial derivatives at corresponding 
points to obtain the motion parameters. But these 
derivatives seem to be unreliable when noise is present, 
and there is no known algorithm that can determine 
them reliably in real images. 

At this point it is worth noting that all the 
aforementioned methods assume an unrestricted motion 
(translation and rotation). In the case of restricted 
motion (translation only) some robust algorithms have 
been reported [l4]. All in all, most of the methods 
presented up to now for the computation of three dimen- 
sional motion depend on the value of flow or retinal dis- 
placements. Certainly, there does not yet exist an algo- 
rithm that can compute retinal motion reasonably (for 
example with 5% accuracy) in real images. [30] 

Even if we had some way, however, to compute reti- 
nal motion acceptably, say with at most an error of lo%, 
we believe that all the algorithms proposed to date that 
use retinal motion as input (and one camera) would still 
produce non-robust results. The reason is that the 
motion constraint (i.e. the relation between three dimen- 
sional motion and retinal displacements) is very sensitive 
to small perturbations [27]. 

The third approach, that computes the motion 
parameters directly from the spatiotemporal derivatives 
of the image intensity function, gets rid of the correspon- 
dence problem and seems very promising. In [13] [10][20] 
the behavior of these methods with respect to noise is not 
discussed. Of course research on this topic is still at an 
early stage, but recent results [11][21] as well as ongoing 
work [25] indicate the potential of the approach. So, as 
the structure from motion problem has been formulated 
(for a monocular observer), it seems to be very difficult. 

A possible solution to this difficulty is as follows: 
Instead of using correspondences between microfeatures 
such as points, why not try to use correspondences of 
macrofeatures? In this case, on the one hand the retinal 
correspondence process will be much easier, greatly reduc- 
ing false matches, and on the other hand the constraint 
that relates three dimensional motion to retinal motion 
will be different and perhaps not as sensitive to small per- 
turbations resulting from discretization effects. As 
macrofeatures, we can use lines or contours, since they 
appear in a rich variety of natural images. The contour 
based approach has been examined in [2]. Research on 

the problem of motion interpretation based on line 
correspondences has been carried out by T.S. Huang and 
his colleagues [16][15] Th ere, the problem of three dimen- 
sional motion computation has been successfully 
addressed in the restricted cases of only rotational or only 
translational motion. In the case of unrestricted rigid 
motion some good results have been obtained in [15], but 
the solution is obtained iteratively from a system of non- 
linear equations, and convergence of the solution to a 
unique value is not guaranteed if the initial value that is 
fed to the iterative procedure is not close to the actual 
solution. 

3. Sthement of the problem 

The problem we are addressing is to compute the 
3-D motion and structure of a rigid object from its suc- 
cessive perspective projections. Since the structure can 
easily be computed when the motion is known, we will 
first derive the equation of a 3-D line given the motion 
parameters and the images of the line in two successive 
frames. Then, using this, we show how to recover 3-D 
motion from line correspondences. 

The imaging geometry is the usual one: The system 
0XY.Z -is the object space coordinate system with the 
image plane perpendicular to the optical axis (Z axis) at 
the point o = [o,o,I]~, the focal length being 1. Let OZ,O~ 
be the axes of the naturally induced coordinate system on 
the image plane (ox//OX,og//OY). The focal point (nodal 
point of the eye) is 0 and so an object point [X,Y,Z]T is 
projected onto the point [~,y]r on the image plane, where 

X Y x=-, y=- 
z 2 (1) 

Finding structure is equivalent to finding the equa- 
tions of all the 3-D lines of interest. These equations 
have the following form: 

Ei:[X=Ati 2 +I& , Y =Ati 2 +B&] i = 1,2,... 

We use as motion parameters the rotation matrix R, 
representing a rotation around an axis that passes 
through the origin, and the translation vector T, where: 

and rl, t-2 etc as defined in [28] [26], ni, i = I, 2,3 are the 
directional cosines of the rotation axis. A point [X,Y,ZIT 
before the motion is related to itself [X’,Y’,Z’]’ after the 
motion by 

E]=R [g+T 

The above is enough to describe any rigid motion. 
The images are known 2-D lines of the form 

ei1 : I = ail x + bil ,i=128 2 , ,*** l:a,b,c 

Frames are denoted by letters. Also the lines ‘it and eilr 
correspond to the same line Ei in space. 

We are also going to use another representation of 
the lines in vector form which, although dual to the equa- 
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tion form, can make the rotation computations look more 
natural. We represent an image line by the vector nor- 
mal to the plane defined by the origin and the object line 
(which also contains the image line) 

Eil : y = aa 2 + bfi , i = 1,2,3,. . . l:a,b,c 

or in vector form 

ait 

Gil : 

[I 

-1 
b il 

We use a displacement and a direction vector to 
represent the object line: 

Ei: 
X=AtiZ+B, 
Y=A,Z+B, 

or 

and Ei : ft: + 2 dg 
The first problem for which we propose a solution is 

that of finding structure from motion and line correspon- 
dence, i.e. finding the equation, before the motion, of a 
line in 3-D given the equations of two successive images 
of it, as well as its motion parameters R,T. we first con- 
sider the case of no rotation and then we introduce rota- 
tion. The second problem that we will solve is that of 
finding the motion and structure knowing only the line 
correspondences over three frames. If we then solve the 
first problem twice, first for frames 1 and 2 and then for 
frames 1 and 3, clearly we should obtain the same line 
representation. This is the only constraint on the motion 
parameters of the problem, and is enough to solve it if we 
have an adequate number of line correspondences. (We 
need a minimum of 6, as pointed out in [16][15], and in 
order to have linear equations it seems that we need 13.) 

4. Structure from motion 
the pure translation case 

and correspondence in 

A line E: 

X = A, 2 + B, 
Y = A, 2 + By 

when translated by T: [t,,t,,t,]* becomes 

X = A, 2 + B, + tz - A, tz 
Y = A, 2 + By + ttl - A, t, (2) 

The images are known to exist and are 

ea : y = (1, 2 f b, , tQ, : J = ab Z + bb m(4) 

for the two frames respectively. From the imaging 
geometry we find from (2) and the relations of perspective 
projection (l), by eliminating X,Y,Z, that 

4 YES-- A, By -t A, & 
B, BY 

(5) 

y=Z 
By + ty - A, tz 
B, + t, - A, 4 - 

A,(B,+t,-A,t,)+A,(B,+t,-A=t,) 
(I+ + tv -A, tz) 

By equating the z,y coefficients of (3-5) and (4-6) we get 
four equations in four unknowns (the parameters of the 
3-D lines). Solving them we get only two solutions (one is 
spurious [Xi]). Th e valid one can be written in vector 
form : 

where Z is the unit vector along the z axis. 
6. Pntsoducing rotation 

The general case with both rotation and translation 
can be derived directly from the pure translation case 
quite easily. We first establish the following result which 
is also used in [16][15]: 

An image line co (in vector form) of a line in space that 
is rotating with rotation R around the origin, is 
transformed into an image line R a~,. 

PROOF: See [16] [26] 

The importance of the above result is that the 
rotated image can be found without any knowledge about 
the object line, which implies that no constraint can be 
derived from the pure rotation case to lead to a solution 
similar to that in the pure translational case. So we con- 
sider now the general case of both rotation and transla- 
tion. 

The movement of the line consists of a rotation fol- 
lowed by a translation. So if we rotate the first image e, 
to Rae, then we can solve the pure translation case with 
the image of the first frame being R.e, and the image of 
the second being E ), and what we get is the object line 
rotated by R. All we need then is to rotate back by RT. 
This way equations (i’), (8) become 

d 
e, x(R ‘*Q) 

t f= 
(T*eb) (Z%) 

= .?+, x(R %b)) Z’(E, X(R%b)) 09(10) 

In the above expressions the z components of the vectors 
are 31 and 0 respectively. This not only makes the duality 
of the vector and equation forms obvious but it is also a 
sufficient property to guarantee that two equal lines are 
always represented by the same pair of vectors, a fact 
that we use in the next section. 

6. Motion and structure from line cosrespon- 
dences 

In the previous section we showed how to compute 
the structure given the line correspondences and the 
motion. Here we are concerned with finding motion from 
line correspondences alone. 

Given the images of one line in three successive 
frames (a,b,c ), the solution (as a function of the R and T 
parameters) must be the same for both pairs of frames 
b-c and a-b. So 

where cc is the image of the line in the third frame and 
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T,, Tb, R,, Rb represent the translation and rotation for 
frames a-b and frames a-c respectively. We now sim- 
plify these vector equations since they represent four 
equations, only two of which are independent. (The 
proof is omitted here; instead an intuitive explanation is 
given.) The vector f represents the point where the line 
cuts the plane z = O. This point belongs to this plane 
and to the plane defined by the origin and the image line, 
which of course contains the object line, so it belongs to 
their intersection which we can find from the image 
alone. Thus given the x (Y) component of the f vector 
the y (z) component can be found. This implies that 
another equation in f is superfluous. For the d vector we 
know that it has z = 1 and is orthogonal to the image 
line vector. The only additional information we need to 
specify it is the one of the other two components. The 
third can be found then. So we can have only one 
independent equation in the d vector. 

Equations (1 l), (12) can be expanded and from them 
we choose the ones that come from equating the a com- 
ponents of the vectors. There is no reason for this, other 
than the fact that they lead to simpler equations and are 
independent. We can write them also as 

(13) 

where ( a , . , * ) is the scalar triple product of vectors. By 
simplifying the triple 
then substituting 

products and cross multiplying and 

K = (Tb*RaI)= - T;Rbl 

L = (T&,2)T - T;Rb2 

M = (Tb*R,3)T - T;Rb3 

where Ral is the first column of the matrix R, etc we get 
a,, (ebT’L*e,) + (EbT.K*Ee) = 0 (15) 

b, (cbT*L *e,) - (cbT’M*c, ) = 0 (16) 

from eqs. (13), (14) respectively. The above equations are 
non-linear in terms of the motion parameters but linear 
in terms of the elements of the matrices K, L, M, and 
they come from considering just one line. By using 13 
lines we can get 26 linear equations, set any of the 27 ele- 
ments of the matrices to 1 and solve the 26 X 26 system; 
then we can find the elements of the K, L, M matrices 
which in terms of the motion parameters are: 

tbr - rbl tw ‘.a1 t by - f-b4 taz ral tbz - rb7 taz 

ra4 tbr - rbl tau ?a4 tbv - rb4 tGv ro4 tbz - rb7 tav 

ra7 tbs - rbl tw ra7 tbrr - rb4 & pa7 tbt - rb7 taz 

and similarly L, M. 
In this way it is easy to find the numerical values of 

the three matrices. By equating their values with the 
functions of the motion parameters that they represent 
we get 27 nonlinear equations involving the motion 
parameters only. By setting one of the values to 1 we 
actually set the scale factor of the solution to some value. 

7. Solving for the motion parameters 

Now what we have to do is solve for the motion 
parameters, given that we know the K, L, M matrices. 
The procedure to find them is the following: first find the 
direction of the translation and the directions of the 
column vectors of the rotation matrices, and then the 
magnitude of the translation and the polarities of the 
rotation columns. The second part needs more explana- 
tion. It is well known that this family of problems hm an 
inherent ambiguity in the estimation of the translations 
and absolute positions. These can be found up to a scale 
factor only and there is nothing that we can do about 
this. But the magnitude of the translation we compute 
does not represent anything more than the arbitrary 
choice of the 29 of the elements of the matrices to be 
unity. The only thing we need these magnitudes for is 
their ratio, which is valid since the common scale factor 
is eliminated. For the rotation columns we don’t need to 
find their magnitude, since it is 1, but we have to find 
their polarity, which can be found easily. 

The three matrices can be written as 

K = * (17) 
I.. 

and simlarly L , M. The eigenvector that corresponds to 
the eigenvalue zero of the matrix M must be orthogonal 
to the Tb and to Rbl, and the same holds for the other 
two of them. If we consider the transpose of the matrix 
M, then the eigenvector is orthogonal to T, and to Ral. 
Let these six vectors be fl, f2, fa, ftl, f)2, fb, for the vectors 
of the a movement and the b movement and the three 
matrices respectively. The cross product of any two of 
them, if they are not collinear, yields the direction of the 
corresponding translation. The following theorem pro- 
vides the conditions for this. 

The direction of translation ‘a’ can be estimated 
from the cross product of two of the f’s when the f&owing 
hold: 

a> Rbl and Tb are linearly independent 
b) the analog 

tion of 1, 2 and 9 
of condition 4 with circular substitu- 

OF: For proof and discusion see [26] . 

The vectors fl, fi, f3 provide sufficient constraints for 
the recovery of the rotation column vectors too. The 
problem for this recovery can be stated as follows: 

Given three vectors fl, fi, f3, find three pairwise 
orthogonal vectors rl, r2, r3, such that h is orthogonal to 
ri for i=l, 2, 9. 

This problem has two solutions in general. Before 
we present a way to find them we try to give a more 
visual description of the problem. The vectors fls fi, fS, 
define three planes that meet along a line parallel to the 
translation vector. Obviously each of rl, ‘2, r3 belopgs to 
each of these planes. So the problem is equivaIent to 
fitting an orthogonal system into three planes that meet 
along a line. In order to find the solution it is enough to 
find the solution for rl, because r2 is orthogonal to rl and 
f2, so is parallel to their cross product, and its length is 
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known to be unity. The same holds true for the third 
vector. In order to find rl we define a vector k that is 
supposed to be orthogonal to rl; the only constraint we 
have is that 

( (k x fl) x f!J-( (A x fl) x fd = 0 

The above scalar equation states all the necessary condi- 
tions for the problem. There are infinitely many solu- 
tions to this equation and all the nonzero ones are 
equivalent for our purpose. To find just one we can arbi- 
trarily set two of the components of the k vector to any 
convenient values. We choose the y,.~ components to be 
1, 0, respectively, because these values are simple and do 
not, in general, lead to a degenerate solution. If such a 
solution is detected (the cross product of I, and k should 
then be zero) the reason might be that the values chosen 
were bad or that the problem itself is ambiguous. (One 
such case of ambiguity is when fr, fZ are parallel and f3 is 
orthogonal to them, and similarly for all its cyclically 
symmetrical cases.) The first of the two cases is easily 
detected and we can then repeat the process by choosing 
better arbitrary components for the k vector, ones that 
can not lead to A vectors parallel to fl. After the substi- 
tutions and the simplifications are done the equation we 
get is 

ous solution. For the other solution we will get a unique 
value for pl, p2, p3, from which we can infer that pt = +pl 
or pt = -pl since pti is either +1 or -1. It is clear that 
there are two sets of signs that satisfy the above con- 
straints. One corresponds to a left and the other to a 
right handed coordinate system, only the second being of 
interest to us. In order to check which one is left-handed 
we form the rotation matrices and find the determinants 
and keep the solution that gives the positive determinant. 
This is the only solution that we get and our simulations 
show that indeed it is the correct one. 

8. Experiments 

We have done several experiments using randomly 
generated lines and motion parameters. The results were 
very accurate in the absence of noise. Due to lack of 
space the results are not reported here. They can be 
found in [26] . In case of noise the results are affected. 
We are currently doing systematic experiments and work- 
ing on the development of a mathematical theory of the 
stability of the algorithm. 

8. Conclusions 

ak:+/3ks+7=0 w 

where Q, ,I$ 7 are functions of the components of the fr, f2 
etc 1261. Equation (18) has two solutions. These give two 
values of the k vector that lead to two sets of directions 
for the column vectors of the matrix r. We already know 
that these columns have length 1 so what remains to be 
found is their orientations along their axes. The method 
we present finds one valid set of orientation for only one 
value of the k vector (the rest of the orientations or 
values are rejected because either they are not compatible 
with the initial equations or they lead to rotation 
matrices with negative determinants). One of the two 
solutions for the rotation matrix turns out to be spurious 
without any physical interpretation and incompatible 
with the initial equations, but we haven’t yet established 
why there should be only one solution. Yet the spurious 
one is easily identified because it leads to an inconsistent 
linear system. The magnitude of the translation is com- 
puted as follows: 

We have presented a method for computing struc- 
ture and motion from line correspondences. The method 
briefly is as follows: Extract 13 lines from the image, 
approximate their equations, and then form a 26 x 26 
matrix to find the elements of the K, L, M matrices. 
Some preliminary experiments indicate sensitivity to 
noisy input (by noisy here we mean inaccurate parame- 
ters of the image lines, not bad correspondence, since the 
possibility of the latter type of error is very small). The 
sensitivity of the solution of the linear system seems to be 
very high and might cancel the advantage we get by 
using lines (the parameters of which can be computed 
with better accuracy than in the case of points). The 
model for the noise we used wasn’t good enough to per- 
mit comparison of the point and line correspondence 
methods. 

Let T’, be the unit vector representing the direction 
of the translation a and T’* the unit vector ‘representing 
the direction of the translation b. Let pti and bti be the 
corresponding directions of the translations and R’d, R’bi, 
Q,+ and pri the directions and the polarities of the rotation 
columns i (notice the opposite order) which take on only 
+1 or -1 as their values. If we do the substitutions (p,i T’d 
for Tai, etc.) we get that K is equal to 

It is worth noting that the method gives a unique 
solution in general unless the lines we choose result in a 
system with determinant very close to 0, as became evi- 
dent from the experiments. We are working towards 
establishing both experimental and theoretical results on 
the stability of the proposed algorithm and conditions for 
the uniqueness of the solution. 
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