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Abstract

A moving rigid object produces a moving image on
the retina of an observer. It is shown that only the first
order spatial derivatives of image motion are sufficient to
determine (i) the maximum and minimum velocities of
the object towards the observer, and (ii) the maximum
and minimum angular velocities of the object along the
direction of view. The second or higher order derivatives
whose estimation is expensive and unreliable are not
necessary. (The second order derivatives are necessary to
determine the actual motion of the object; many
researchers have worked on this problem.) These results
are interpreted in the image domain in terms of three
differential snvariants of the image flow field: divergence,
curl, and shear magnitude. In the world domain, the
above results are interpreted in terms of the motion and
local surface orientation of the object. In particular, the
result that the mazimum velocity of approach of an object
can be determined from only the first order derivatives
has a fundamental significance to both biological and
machine vision systems. It implies that an organism (or a
robot) can quickly respond to avoid collision with a mov-
ing object from only coarse information. This capability
exists irrespective of the shape or motion of the object.
The only restriction is that motion should be rigid.

1. Introduction

The relative motion of an observer with respect to
an object produces a time-varying image on the
observer’s retina. This time-varying image contains valu-
able information about the three-dimensional (3D) shape
and motion of the object. Recovering this information
from the time-varying imagery is an important problem
in computer vision.

The time-variation of an image can be represented
by an image velocity field or an fmage flow field. An
image flow field is a two-dimensional velocity field defined
over the eye’s retina (or image plane in the case of a cam-
era). The velocity at any point is the instantaneous velo-
city of the image element at that point. Some authors
refer to image flow as optical flow. Methods for the com-
putation of image flow from time-varying images have
been proposed by Horn and Schunck (1980), Hildreth
(1983), Waxman and Wohn (1985), and others. The
problem of three-dimensional interpretation of image flow
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has been addressed by many researchers (Longuet-Higgins
and Prazdny, 1980; Longuet-Higgins, 1984; Kanatani,
1985; Waxman and Ullman, 1985; Subbarao and Wax-
man, 1986; Waxman, Kamgar-Parsi, and Subbarao, 1986;
Subbarao, 1986a,b,c). In all these approaches, up to
second order derivatives of image flow are used to recover
the three-dimensional shape and motion of objects. The
reliable estimation of the second order derivatives
requires significant computation and very high quality
images in terms of both spatial and gray level resolution.
The human eye is very likely capable of exploiting the
second order derivatives, but the present day machine
vision systems are far from it (Adiv, 1985; Waxman and
Wohn, 1985; Wohn and Waxman, 1985). Thus the
requirements of high quality images and computational
power have been major obstacles to using the already
known theoretical results of image flow analysis in actual
machine vision systems.

Obtaining a complete description of the shape and
motion of an object may require a knowledge of the
second or even higher order image flow derivatives, but
some very useful information can be inferred from only
up to the first order derivatives. For a given spatial and
gray level resolution of the images, up to first order image
flow derivatives can be recovered significantly more
robustly than the second and higher order derivatives
(Waxman and Wohn, 1985; Wohn and Waxman, 1985).
In this paper we show that the first order flow derivatives
are sufficient to determine the bounds on: (i) the velocity
of approach of an object towards the observer, and, (ii)
the angular velocity of the object along the direction of
view. An interpretation of these two results are given in
the image domain in terms of three differential snvariants
of the image flow field: divergence, curl, and shear
magnitude. The boundary values of the translational and
rotational velocities are related to these invariants by
simple linear relations. The boundary values are also
interpreted in the world domain in terms of the motion
and local surface orientation of the object.

An object moving towards an observer could poten-
tially collide and hurt the observer, or, in the case of a
robot, damage the camera system. Therefore, in particu-
lar, the result that the mazimum velocity of approach of
an object can be determined from only the first order
derivatives of image flow is of significance to both biologi-
cal and machine vision systems. It implies that an organ-
ism (or a robot) can respond quickly to avoid collision
with a moving object from only coarse information. This



capability exists irrespective of the shape or motion of the
object The only restriction is that motion should be
rigid.
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quence. (Examples of such a case are flying bees, birds,
and helicopters.) In this case, by determining the bounds
on the translational and aneular velocities als
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three mutually orthogonal viewing directions, bounds on
the over all translational and rotational velocities of the
observer can be determined from only first order image

flow derivatives
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The results in this
collision avoidance by a
and for robot nav1g ation. Interestrngly, blolog1cal vision
systems have been found to be very quick in responding
to approaching objects. This has been called the ‘‘loom-

ing effect” (Schrﬂ, Caviness, and Gibson, 1962).

In the remaining part of this paper we derive the
main results and glve their mterpreta,tron in both the
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Camera geometry, notation, and image flow
equations
an eye is a pin-hole

alvsis we sueoest usine
alysis we suggest using

A first approximation to the hum

camera. For a #lobhal imare fow a;
famera. I'or a g:00a: Image now

a pin-hole camera with a spherical projection screen
whose center is at the pin-hole or the focus. For this
camera model, due to symmetry, the image flow analysis

is identical at all points on the projection screen
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of view and in this field of view we consider the spherical
screen to be approximated by a plane tangential to the
spherical surface at the center of the fieid of view. The

geometry o of the sereen is nnhrnlv a matter of convenience

and does not affect our results. Note that there is a one
to one correspondence between an image on a curved
screen such as a spherical screen and an image on a
planar screen. In our analysis using 2 nlanar projection
screen, note that, the image flow bexng a,nalyzed always
corresponds to an ob]ect which is along a line normal to
the image plane and passing through the focus. We call
this line the line of sight or the optical azis or the direc-
tion of view.

The camera model is illustrated in Figure 1. The ori-

gin of a Cartesian coordinate system OXYZ forms the
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smage plane is assumed to be at unit distance from the
origin perpendicular to the optical axis. The image coor-
dinate system ory on the image plane has its origin at
and ia alien anoh }hol thn z and ¥ axes are
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respectively, parallel to the X and Y axes.

Let the relative motion of the camera with respect to
a rigid surface along the optical axis be described by
transiational velocity {Vy,Vy,Vz) and rotational velo-
c!t 0+ 0+ 0,) around the focus _A_lsoi let.
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Z = f (X,Y) represent the surface along the optical

axis. The surface is assumed to be smooth. Let Zy, Zy
be the slopes of the surface at (X,Y )=(0,0) with respect
to the X and Y axes respectively. Due to the relative
motion of the camera with respect to the surface, a two-
dimensional image flow is created by the perspective
1mage on the image plane At any pomt (z,y) on the
uudge pmue let u ,U be the components of uua,ge ‘v'elOCIty
along the z and y axes respectively. For the situation
described here, Longuet-Higgins and Prazdny (1980) have
derived the equations relating the derivatives of u, v at
the image origin {up to second order) to the relative
motion and shape of the surface. In these equations the
translational velocity is always scaled by a quantity
which cannot be determined. (This indeterminacy is due
to the fact that absolute distance of obiects cannot be
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determined using a monocular pin-hole camera. There-
fore, a nearby object moving slowly and a distant object
moving fast could both give rise identical image fiows.}

The scaling factor is usually ch osen such that the dis-

the translatlonal veloc1ty scaled by thls quantrty be
(Vz,V,,V,). At the image origin, let (uq,v,) be the
image velocity and u, ,u,,v,,v, be the partial derivatives

of u v with rncpnnf to the indicated enl\qn’nnfq z,¥. The

image velocity and its partial derivatives at the image
origin describe the image flow in a small image region
around the image origin. The foliowing equations, origi-
nally derived by Longuet-Higgins and Prazdny {IORnl
represent the relatlon between the image ﬁow and the
shape and motion of the surface in a small field of view
around the optical axis:

Ug = — 'V; —QY y Vg = — "y +rx, (13,‘D)
U, V, +V, Zyx , v, =V, +V, Zy, (1c,d)
2 =0, + V s = — . vV Z.- {1 )
v, =07 +V, Zyv, Qz +V, Zx. {1e,)
Al sra wu hoar H oht el - =

ADOVE We 1nave s
under constrained system of equations. We need more
information to get a sufficiently constrained system of
equations (e.g. see Longuet-Higgins and Prazdny, 1980;
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1986¢). However we shall see that we can obtain bounds
on the velocity of approach V, and the angular velocity
{1; along the direction of view from these equations.

3. Bounds on the velocity of approach

First we state and prove a theorem which will be
used later to establish bounds on the velocity of
approach.
Theorem 1 : Sup
image plane is not

ose that translation parallel to the

ero and let r and @ be such that

V;, =r cosf and V, =r sind

(2a,b)



V, = u,sin%0+v, cos?0—( u, +v, Jeosd sinf. (3)

Proof : From relations (1c-f), and (2a,b) we can get
uy+v, = rcosfZy + rsinfZy and (4a)

u,—v, = rcosfZy — rsinfZy . (4b)

Solving for Zy and Zy from above equations we get

Zy = % {("y +v, )sinf+(u, -v, )cosﬂ} and (5a)
. 1 i
Zy = " {(uy +v, Jeost-(u, v, )sxnﬁ} . (5b)

Now, from relations (1¢), (2a), and (5a) we can get

V., = u, ~(u, +v, Jeosbsint—(u, ~v, Jeos? . (6)
Or, using the identity sin?f+cos?6=1,

V, =u, (sin®0+cos®0)-(u, +v, Jeosfsind—(u, v, Jcos?d. (7)

Relation (3) can be obtained from the above relation.

Notice that V,, the velocity of approach along the direc-
tion of view, is given only in terms of 6. Therefore it can
be determined if # is known. Also it can be used to
establish upper and lower limits on V.

Theorem 2 : The first order flow derivatives determine
lower and upper bounds on the velocity of approach V,
of a surface along the line of sight. The bounds are

+ \/(uy +7, ):-G-('u, —'Uy )2 . (8)

Proof : By some trigonometric manipulation, expression
(3) for V, can be written as

u, +v
V, = — 5 y
Differentiating the right hand side above and equating
the resulting expression to zero we can show that the 6s
corresponding to the extrema of V, are given by

Vz(mu/min) — Us +vll

o, +,

U, ~,
sin26 - 22 L. cos26 . (9)

u, +,
tan2f = L2 (10)
U, ~v,
From the above expression we have
u, +v.
sin20 = y,_f = = and (11a)
\/('uy +v, ) (v, ~Uy )
u, —v,
cos2f = for 0<20<27 .  (11b)

V(v +v, Pt+(u, —v, )32

Substituting for sin2d and cos26 from the above expres-
sions in expression (9) we can get relation (8).

Note that all terms on the right hand side of relation
(8) are only first order flow derivatives; no second or
higher order derivatives are involved. Further, the above
limits hold irrespective of the surface shape (except that
the surface should be smooth because the image flow has
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been assumed to be differentiable).

4. Bounds on the angular velocity along the direc-
tion of view

1, is the angular velocity along the direction of
view. By following in steps similar to the previous sec-
tion, it can be shown that

Q7 =u, sin’0-v, cos?0+(u, -v

y Jeosfsing (12)

and

Q}m“/miﬂ) _ Y N \/(uy +v, )*+(u, -, )2 . (13)
2 2

5. Interpretation of the bounds in the image
domain

In order to interpret the bounds on V, and Q; we
make the following observation. To a first order, the
image velocity field in a small field of view around the
direction of view can be described by

[ﬂ = H * [ ] M (14

The above expression represents an affine transformation.
In this expression, the vector [ug, vo]T gives the pure
translation of the image region at the image origin; the
2X 2 tensor on the right hand side is the velocity gradient
tensor. This tensor can be expressed uniquely as the sum
of a symmetric tensor and an anti-symmetric tensor as
below:

[u, 'uy] [u, ('uz+uy)/2]
v, v, = (v, +u,)/2 v,

0 (uy-v,)/2

+ (w0, )/2 0|
In Fluid Mechanies literature (e.g.: Aris, 1962), the sym-
metric tensor of a velocity gradient tensor is called the
deformation or rate of strain tensor and the anti-
symmetric tensor is called the spin tensor. These tensors
have nice physical interpretations. We will borrow these
well known ideas from Fluid Mechanics to interpret our
results. Such an interpretation of image flow has already
been described by many others in the computer vision
area (Koenderink and Van Doorn, 1975, 1976; Waxman
and Ullman, 1985; Kanatani, 1986).

The independent parameter u,~v, of the spin tensor
is called the spin or vorticity. It is also the negative curl

of the image velocity field at the image origin, i.e.

v~V - (16)
This can be easily verified from relation (14). It gives the
rigid body rotation of the image neighborhood at the
image origin. By setting all terms except the curl term to
zero, i.e.

(15)

—curl = u

u0=v0=( v, +uy )=uz =vy =0r (17)



we can obtain the image flow field corresnondineg to this
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term. The term results in a purely rotational flow field.

The deformation tensor gives the deformation of the
image neighborhood at the image origin. We can interpret
this temsor in terms of its eigen values. The two eigen
values of this tensor are in fact V,max, Vz‘“i“, given by
relation (8). The sum of the eigen values (which is also
the trace of the original tensor) is the divergence of the
image velocity field at the image origin, i.e.

divergence = u, +v, . (18)
This can be easily verified from relation (14). This quan-
uuy g‘i'v'ea the wwrupw e.rpunmun or contraction of the
image neighborhood at the image origin. The i image flow
corresponding to the divergence term is obtained by set-
ting other terms to zero, i.e.

ug=v =1, =0, =(v, -v,)=0 . (19)
The result is a purely divergent flow.

The difference of the two eignen values of the defor-
mation tensor is the magnitude of pure shear of the image

neighborhood at the image origin, i.e.,
Shear magnitude = \ﬂ u, +v, P+(u, —v, )% . (20)

The image neighborhood undergoes a contraction along
one direction and an expansion orthogonal to it under
constant area. The directions of contraction and expan-

sion are aliened with the two eigen vectors of the defor-
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mation tensor. The image flow corresponding to a pure
shear transformation is obtained by setting all but the
shear terms to zero, i.e.,

U=V =1, +v, =1u, v, =0 . (21)

An example of a pure shear flow is shown in Figure 2.
In summary, a small circular image element at the

image origin translates rigidly with velocity [ug, vq)7,
rotates as a rigid area with spin u,-v,, dilates according
to the sum of the eigen values of the deformation tensor,
and undergoes a stretch and comprmsion at constant area
d,u,orumg to the difference of the eigéﬁ values of the
deformation tensor (along mutually orthogonal axes
aligned with the eigen vectors) (Koenderink and Van

Doorn, 1975, 1976; Waxman and Wohn, 1986).
In view of our above discussion and equations

f1e 1Q on) i (Q 19) b3 PELASPY [Pioe | 1 and
\10,10,4\1), t:qua.uuu \O 10’ wuwu EIVU uuuuua on Vz auu
02, can be expressed as below.
avimum /Minimum annroach velocitv
Maximum/Minimum approach velocity
1
=3 (Divergence + Shear magnitude) . (22)
Maximum/Minimum angular veloclty]
laround the viewing direction )
—_— _1_ { _Curl + Shear macnitude ) {922)
5 \~Curl + Shear magnitude)}. (23)

The quantities: divergence, curl, and shear magni-

tude are all invariant with respect to the orientation of
the image axes. Their values are unaffected by a rotation
of the image coordinate system. This can be easily shown
by considering how the image flow derivatives
u;,u,,v,,v; are transformed by a rotation of the image

coordinate system (e.g. see Kanatani, 1986). Hence they
are called differential invariants of image flow.

8. Interpretation in the world domain

Let us now interpret what the bounds mean in the
world domain. For this sake we introduce two vectors, r
which is the direction of translation parallel to the image

whizk o tho cnadiant Af tha ~hinet’s gurface
pldUU, H-l.lu }l wnicno iS vae sla\.ucuu Ui vi€ UUjTelr 5 Sutialc
with respect to the image plane. More specifically, if ¢, j
are unit vectors along the X, Y axes respectively, then,

let

r=1V, +jV,, and p = iZx + jZy . (24a,b)
Now, from equations (1¢,d,18,24a,b) we can show that
divergence =2V, + r-p . (252)
Let & be a unit vector along the Z axis. Then, from
equations (1e,f,16,24a,b) we can show that
—curl & =20,k + r Xp . (25b)

Also, from equations (1c-f,20,24a,b) we can show that
(25¢)

The above relations (25a-¢) show how the differential
invariants of image flow are related to the three
dimensional motion and surface orientation. Some of the
______ ¢haon nalatinng ama in asraamant with Aanre intais
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tion, for example the appearance of V, in divergence and

Shear magnitude = [r[[p] .

2, in curl. Now, from equations (22,23,25a-c) we can
show that
y,(mez/min) — vy 4 é(r-p +lrllpl) and (26a)
2
EQyre/min) — & Q,+2 (rxp £k |rllpl) . (26b)
Y1
The above relations show how the bounds are related to
the translation parallel to the image plane v and the sur-
face gradient with respect to the image plane. We are

not able to give a straightforward physical interpretation

of tha ahava tws ralations but thov seem to have a nlaae-
ULl VIT QUUYT VWU L1TIALIVIID, UV VLTY OLUiLLl VW uaY v o pivay

ing form. We believe that an interpretation of these
equations is related to the discussion in Koenderink and
Van Doorn (1975) about the different types of image flow,

the eiren values of the velocit

canorated denendine o
aues of iae
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gradient tensor.
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7. Conclusion

We have shown that using only the first order
derivatives of the image flow of an object, a monocular
observer can determine the bounds on (i) the transla-
tional velocity of the object towards the observer, and {ii)
the angular velocity of the object in the direction of its

position with respect to the observer. These bounds are



related to the three first order differential invariants:
divergence, curl, and shear magnitude of the image flow
by simple linear relations. The above results are poten-
tially useful in collision avoidance with moving objects by
robot systems and also in autonomous navigation of vehi-
cles. The results also throw some light on the computa-
tional aspects of the looming effect phenomenon observed
in biological organisms.

Acknowledgement: I thank Dr. Allen Waxman for his
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