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Abstract 

A moving rigid object produces a moving image on 
the retina of an observer. It is shown that only the first 
order spatial derivatives of image motion are sufficient to 
determine (i) the maximum and minimum velocities of 
the object towards the observer, and (ii) the maximum 
and minimum angular velocities of the object along the 
direction of view. The second or higher order derivatives 
whose estimation is expensive and unreliable are not 
necessary. (The second order derivatives are necessary to 
determine the actual motion of the object; many 
researchers have worked on this problem.) These results 
are interpreted in the image domain in terms of three 
differential inuariants of the image flow field: divergence, 
curl, and shear magnitude. In the world domain, the 
above results are interpreted in terms of the motion and 
local surface orientation of the object. In particular, the 
result that the masimum velocity of approach of an object 
can be determined from only the first order derivatives 
has a fundamental significance to both biological and 
machine vision systems. It implies that an organism (or a 
robot) can quickly respond to avoid collision with a mov- 
ing object from only coarse information. This capability 
exists irrespective of the shape or motion of the object. 
The only restriction is that motion should be rigid. 

1. Introduction 

The relative motion of an observer with respect to 
an object produces a time-varying image on the 
observer’s retina. This time-varying image contains valu- 
able information about the three-dimensional (3D) shape 
and motion of the object. Recovering this information 
from the time-varying imagery is an important problem 
in computer vision. 

The time-variation of an image can be represented 
by an image velocity field or an image flow field. An 
image flow field is a two-dimensional velocity field defined 
over the eye’s retina (or image plane in the case of a cam- 
era). The velocity at any point is the instantaneous velo- 
city of the image element at that point. Some authors 
refer to image flow as optical flow. Methods for the com- 
putation of image flow from time-varying images have 
been proposed by Horn and Schunck (1980), Hildreth 
(1983), Waxman and Wohn (1985), and others. The 
problem of three-dimensional interpretation of image flow 

has been addressed by many researchers (Longuet-Miggins 
and Prazdny, 1980; Longuet-Higgins, 1984; Kanatani, 
1985; Waxman and Ullman, 1985; Subbarao and Wax- 
man, 1986; Waxman, Kamgar-Parsi, and Subbarao, 1986; 
Subbarao, 1986a,b,c). In all these approaches, up to 
second order derivatives of image flow are used to recover 
the three-dimensional shape and motion of objects” The 
reliable estimation of the second order derivatives 
requires significant computation and very high quality 
images in terms of both spatial and gray level resolution. 
The human eye is very likely capable of exploiting the 
second order derivatives, but the present day machine 
vision systems are far from it (Adiv, 1985; Waxman and 
Wohn, 1985; Wohn and Waxman, 1985). Thus the 
requirements of high quality images and computational 
power have been major obstacles to using the already 
known theoretical results of image flow analysis in actual 
machine vision systems. 

Obtaining a complete description of the shape and 
motion of an object may require a knowledge of the 
second or even higher order image flow derivatives, but 
some very useful information can be inferred from only 
up to the first order derivatives. For a given spatial and 
gray level resolution of the images, up to first order image 
flow derivatives can be recovered significantly more 
robustly than the second and higher order derivatives 
(Waxman and Wohn, 1985; Wohn and Waxman, 1985). 
In this paper we show that the first order flow derivatives 
are sufficient to determine the bounds on: (i) the velocity 
of approach of an object towards the observer, and, (ii) 
the angular velocity of the object along the direction of 
view. An interpretation of these two results are given in 
the image domain in terms of three diflerential invariants 
of the image flow field: divergence, curt, and shear 
magnitude. The boundary values of the translational and 
rotational velocities are related to these invariants by 
simple linear relations. The boundary values are also 
interpreted in the world domain in terms of the motion 
and local surface orientation of the object. 

An object moving towards an observer could poten- 
tially collide and hurt the observer, or, in the case of a 
robot, damage the camera system. Therefore, in particu- 
lar, the result that the maximum velocity of approach of 

an object can be determined from only the first order 
derivatives of image flow is of significance to both biologi- 
cal and machine vision systems. It implies that an organ- 
ism (or a robot) can respond quickly to avoid collision 
with a moving object from only coarse information. This 
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capability exists irrespective of the shape or motion of the 
object. The only restriction is that motion should be 
rigid. 

For the special case where an observer is moving in a 
static environment, our results have an interesting conse- 
quence. (Examples of such a case are flying bees, birds, 
and helicopters.) In this case, by determining the bounds 
on the translational and angular velocities along some 
three mutually orthogonal viewing directions, bounds on 
the over all translational and rotational velocities of the 
observer can be determined from only first order image 
flow derivatives. 

The results in this paper are potentially useful for 
collision avoidance by a robot in a dynamic environment 
and for robot navigation. Interestingly, biological vision 
systems have been found to be very quick in responding 
to approaching objects. This has been called the “loom- 
ing effect” (Schiff, Caviness, and Gibson, 1962). 

In the remaining part of this paper we derive the 
main results and give their interpretation in both the 
image domain and the world domain. 

equations 
notation, sind 

A first approximation to the human eye is a pin-hole 
camera. For a global image flow analysis we suggest using 
a pin-hole camera with a spherical projection screen 
whose center is at the pin-hole or the focus. For this 
camera model, due to symmetry, the image flow analysis 
is identical at all points on the projection screen. 

Mowever, here we do only a local analysis in a small field 
of view and in this field of view we consider the spherical 
screen to be approximated by a plane tangential to the 
spherical surface at the center of the field of view. The 
geometry of the screen is entirely a matter of convenience 
and does not affect our results. Note that there is a one 
to one correspondence between an image on a curved 
screen such as a spherical screen and an image on a 
planar screen. In our analysis using a planar projection 
screen, note that, the image flow being analyzed always 
corresponds to an object which is along a line normal to 
the image plane and passing through the focus. We call 
this line the line of sight or the optical axis or the direc- 
tion oj view. 

The camera model is illustrated in Figure 1. The ori- 
gin of a Cartesian coordinate system OXYZ forms the 
focus and the Z-axis is aligned with the optical axis. The 
image plme is assumed to be at unit distance from the 
origin perpendicular to the optical axis. The image coor- 
dinate system oxy on the image plane has its origin at 
(Q&I) and is aligned such that the x and y axes are, 

axis. The surface is assumed to be smooth Let 2x, Zy 
be the slopes of the surface at (X,Y)=(O,O) with respect 
to the X and Y axes respectively. Due to the relative 
motion of the camera with respect to the surface, a two- 
dimensional image flow is created by the perspective 
image on the image plane. At any point (x , y ) on the 
image plane, let ‘1~ ,v be the components of image velocity 
along the x and y axes respectively. For the situation 
described here, Longuet-I-Iiggins and Prazdny (1988) have 
derived the equations relating the derivatives of u , v at 
the image origin (up to second order) to the relative 
motion and shape of the surface. In these equations the 
translational velocity is always scaled by a quantity 
which cannot be determined. (This indeterminacy is due 
to the fact that absolute distance of objects cannot be 
determined using a monocular pin-hole camera. There- 
fore, a nearby object moving slowly and a distant object 
moving fast could both give rise identical image flows.) 

The scaling factor is usually chosen such that the dis- 
tance of the surface along the optical axis is unity. Let 
the translational velocity scaled by this quantity be 
(V., VY ,Vz). At the image origin, let (uc,vc) be the 
image velocity and U, ,iuy ,vZ ,vy be the partial derivatives 
of u ,v with respect to the indicated subscripts x ,y . The 
image velocity and its partial derivatives at the image 
origin describe the image flow in a small image region 
around the image origin. The following equations, origi- 
nally derived by Longuet- iggins and Prazdny (198Q), 
represent the relation between the image flow and the 
shape and motion of the surface in a small field of view 
around the optical axis: 

210 = - v, - ny ) 210 = - vy + n,, 00) 

u, = v,+v,z,, vy=vz+vyzy, (W) 

54 =sz, + v, zyv, =-RZ + I$ z,. (14 
Above we have six equations in eight unknowns, hence an 
under constrained system of equations. We need more 
information to get a sufficiently constrained system of 
equations (e.g. see Longuet-Higgins and Prazdny, 198Q; 
Waxman, Mamgar-Parsi, and Subbarao, 1986; Subbarao, 
1986~). However we shall see that we can obtain bounds 
on the velocity of approach V, and the angular velocity 
RZ along the direction of view from these equations. 

ouumds on the vePocify 0 psoach 

First we state and prove a theorem which will 
used later to establish bounds on the velocity 
approach. 
Theorem I : Suppose that translation parallel to 
image plane is not zero and let r and 19 be such that 

be 
Of 

the 

respectively, parallel to the X and Y axes. VZ = r cos6J and V. E r sin0 (2a,b) 

Let the relative motion of the camera with respect to 
a rigid surface along the optical axis be described by 
translational velocity ( Vx , V, , Vz ) and rotational velo- 
city (Rx,n,,n,) around the focus. Also, let 

2 = j (X, Y) represent the surface along the optical 

for -r/i < 0 5 lr/2 . 

(Note: f is the signed magnitude of translation parallel to 
the image plane and 8 is the direction of translation 
parallel to the image plane.) Then, 
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v, = u, sin20+ vy cos28-( uy +vz )cosO sine. (3) been assumed to be differentiable). 

Proof : From relations (lc-f), and (2a,b) we can get 4. Bolnnds on the angular ve8oeity 

Ugi +% = T cos0Zy + r sin 02, and 
tio~ of view 

?2z is the angular velocity along the direction of 

21, -vy = r cOseZx - r sine+ . w 
view. By following in steps similar to the previous sec- 

Solving for 2’ and Zy from above equations we get 
tion, it can be shown that 

(12) 
’ 

t stZ =uY sin%&-‘u, c0s2e+(uz -zly )cosOsinfY , 

2, = 7 
{ 

( uy +v, )sine+( u, -zly )cose 
1 

and (5a) and 

uy -vz 

’ zy f -;r 

1 1 

~Jmaz/min) _ f d(% +“z )2+(uz -‘Y I2 
(W 

( uy + vz )cose-( u, -zly )sin0 

2 

. (5b) 
2 

Now, from relations (Ic), (2a), and (5a) we can get 

v, = ~~-(~~+z1,)~0sesin~(u,-~~ Jcos2e. 

Or, using the identity sin20+cos28=1, 

(6) 

5. Interpretation of the bounds in the ianage 
domain 

In order to interpret the bounds on V, and Ozz we 
make the following observation. To a first order, the 

Vz =u, (sin2f?+c0s2B)-(illy +v, )cos0sim9-(u, -vy )c0s2e. (7) 

pelation (3) can be obtained from the above relation. 

Notice that V, , the velocity of approach along the direc- 
tion of view, is given only in terms of 0. Therefore it can 
be determined if 0 is known. Also it can be used to 
establish upper and lower limits on Vz . 

Theorem 2 : The first order flow derivatives determine 
lower and upper bounds on the velocity of approach V, 
of a surface along the line of sight. The bounds are 

image velocity field in a small field of view around the 
direction of view can be described by 

(14 

The above expression represents an ufline transformation. 
In this expression, the vector [us, a)ej’ gives the pure 
translation of the image region at the image origin; the 
2X2 tensor on the right hand side is the velocity gradient 
tensor. This tensor can be expressed uniquely as the sum 
of a symmetric tensor and an anti-symmetric tensor as 
below: 

Proof : By some trigonometric manipulation, expression 
(3) for V, can be written as 

vz uz +v, uy +vz =--- uz -vg 
2 2 

sin28 - - c0s2e . 
2 

(9) 

Differentiating the right hand side above and equating 

the resulting expression to zero we can show that the 8s 
corresponding to the extrema of Vz are given by 

uy +vz 
tan28 =-* 

% -vuy 
(19) 

From the above expression we have 

sin28 = 
uy +% 

Jc uy + VZ )2+( UZ -vv )2 
and Ula) 

In Fluid Mechanics literature (e.g.: Aris, 1962), the sym 
metric tensor of a velocity gradient tensor is called the 
deformation or rate of strain tensor and the anti- 
symmetric tensor is called the spin tensor. These tensors 
have nice physical interpretations. We will borrow these 
well known ideas from Fluid Mechanics to interpret our 
results. Such an interpretation of image flow has already 
been described by many others in the computer vision 
area (Koenderink and Van Doorn, 1975, 1976; Waxman 
and Ijllman, 1985; Kanatani, 1986). 

cos2e = 
% -vy for 0<28<2r . w4 

J(u, +% 12+(uz -‘uy )2 

Substituting for sin28 and cos28 from the above expres- 
sions in expression (9) we can get relation (8). 

Note that all terms on the right hand side of relation 
(8) are only first order flow derivatives; no second or 
higher order derivatives are involved. Further, the above 
limits hold irrespective of the surface shape (except that 
the surface should be smooth because the image flow has 

The independent parameter uY -vZ of the spin tensor 
is called the spin or vorticity. It is also the negative curl 
of the image velocity field at the image origin, i.e. 

-curl = uy-v, . 06) 

This can be easily verified from relation (14). It gives the 
rigid body rotation of the image neighborhood at the 
image origin. By setting all terms except the curl term to 
zero, i.e. 

U0- -vo=( vz +ug )=u, =vy =o, (17) 
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we can obtain the image flow field corresponding to this 
term. The term results in a purely rotational fzoul field. 

The deformation tensor gives the deformation of the 
image neighborhood at the image origin. We can interpret 
this tensor in terms of its eigen values. The two eigen 
values of this tensor are in fact V’““, VZmin, given by 
relation (8). The sum of the eigen values (which is also 
the trace of the original tensor) is the diveigence of the 
image velocity field at the image origin, i.e. 

tude are all invariant with respect to the orientation of 
the image axes. Their values are unaffected by a rotation 
of the image coordinate system. This can be easily shown 
by considering how the image flow derivatives 

% ‘uy rv, tvy are transformed by a rotation of the image 
coordinate system (e.g. see Kanatani, 1986). Hence they 
are called differential invariants of image flow. 

6. Interpretation in the worlld doxnah 

Let us now interpret what the bounds mean in the 
world domain. For this sake we introduce two vectors, r 
which is the direction of translation parallel to the image 
plane, and which is the gradient of the object’s surface 
with respect to the image plane. More specifically, if s’ , j 
are unit vectors along the X, Y axes respectively, then, 
let 

divergence = u, +v~ . WI 
This can be easily verified from relation (14). This quan- 
tity gives the isotropic expansion or contraction of the 
image neighborhood at the image origin. The image flow 
corresponding to the divergence term is obtained by set- 
ting other terms to zero, i.e. 

uo=v()=uy=v~=(uz-vy)=o. (19) 
The result is a purely divergent flow. 

The difference of the two eignen values of the defor- 

mation tensor is the magnitude of pure shear of the image 

neighborhood at the image origin, i.e., 

r = iv, + jV, , and p = Z + iZy . (240) 

Now, from equations (lc,d,18,24a,b) we can show that 

divergence = 2 V, + r -p . w4 

Let A: be a unit vector along the 2 axis. Then, from 
equations (le,f,16,24a,b) we can show that 

Shear magnitude = Jc UI +vz )2+( 11, -vy )2 . (20) -curl = 2RZ +rxp. (2W 

The image neighborhood undergoes a contraction along 
one direction and an expansion orthogonal to it under 
constant area. The directions of contraction and expan- 
sion are aligned with the two eigen vectors of the defor- 
mation tensor. The image flow corresponding to a pure 
shear transformation is obtained by setting all but the 
shear terms to zero, i.e., 

ue=vo=u~+zly=u~-v2=o. (21) 

Also, from equations (lc-f,20,24a,b) we can show that 

Shear magnitude = Irl Ip 1 . (254 

The above relations (25a-c) show how the differential 
invariants of image flow are related to the three 
dimensional motion and surface orientation. Some of the 
terms in these relations are in agreement with our intui- 
tion, for example the appearance of Vt in divergence and 
ntz in curl. Now, from equations (22,23,25a-c) we can 

An example of a pure shear flow is shown in Figure 2. show that 

In summary, a small circular image element at the 
image origin translates rigidly with velocity [ uo, vo] T, 

v(mm/m’n)= v 2 z + P 2 (rep A-lld) and (264 
rotates as a rigid area with spin ‘uy -vZ , dilates according 
to the sum of the eigen values of the deformation tensor, 
and undergoes a stretch and compression at constant area 
according to the difference of the eigen values of the 
deformation tensor (along mutually orthogonal axes 
aligned with the eigen vectors) (Koenderink and Van 
Doorn, 1975, 1976; Waxman and Wohn, 1986). 

k nhmaz/min) = 

The above relations show how the bounds are related to 
the translation parallel to the image plane t and the sur- 
face gradient with respect to the image plane. We are 
not able to give a straightforward physical interpretation 

In view of our above discussion and equations 
(16,18,20), equations (8,13) which give bounds on Vz and 
s2z can be expressed as below. 

Maximum/Minimum approach velocity 

of the above two relations, but they seem to have a pleas- 
ing form. We believe that an interpretation of these 
equations is related to the discussion in Koenderink and 
Van Doorn (1975) about the different types of image flows 
generated depending on the eigen values of the velocity 
gradient tensor. 

=-- i (Divergence f Shear magnitude) . (22) 
1. Conclusion 

1 Maximum/Minimum angular velocity 1 

I around the viewing direction 
We have shown that using only the first order 

derivatives of the image flow of an object, a monocular 

1 
(-Curl =t Shear magnitude) . (23) 

observer can determine the bounds on (i) the transla- 
=- 

2 
tional velocity of the object towards the observer, and (ii) 
the angular velocity of the object in the direction of its 

The quantities: divergence, curl, and shear magni- position with respect to the observer. These bounds are 




