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Abstract 
Many of the processing tasks arising in early vision involve 
the sclution of ill-posed inverse problems. Two techniques 
that are often used to solve these inverse problems are reg- 
uhuization and Bayesian modeling. Reguhuizatien is used 
to find a solution that both fits the data and is also suffi- 
ciently smooth. Bayesian modeling uses a statistical prior 
model of the field being estimated to determine an opti- 
mal solution. One convenient way of specifying the prior 
model is to associate an energy function with each possi- 
ble solution, and to use a Boltzmann distribution to relate 
the solution energy to its probability. This paper shows 
that regularization is an example of Bayesian modeling, 
and that using the regularization energy function for the 
surface interpolation problem results in a prior model that 
is fractal (self-aftine over a range of scales). We derive an 
algorithm for generating typical (fractal) estimates from 
the posterior distribution. We also show how this algo- 
rithm can be used to estimate the uncertainty associated 
with a regularized solution, and how this uncertainty can 
be used at later stages of processing. 

Much of the processing that occurs in the early stages of vi- 
sion deals with the solution of inverse problems [Hmm, 19771. 
The physics of image formation confounds many different phe- 
nomena such as lighting, surface reflectivity, surface geometry 
and projective geometry. Early visual processing attempts to 
recover some or all of these features from the sampled im- 
age array by making assumptions about the world being seen. 
For example, when solving the surface interpolation problem, 
i.e. the determination of a dense depth map from a sparse set 
of depth points (such as those provided by stereo matching), 
the assumption is made that surfaces vary smoothly in depth 
(except at object or part boundaries). 

The inverse problems arising in early vision ate generally 
ill-posed [Poggio and Terre, 19841, i.e. the data insufficiently 
constrains the desired solution. One approach to this prob- 
lem, cakl regularization, imposes additional constraints in the 
form of smoothness assumptions. Another approach, &yes&an 
modeling [Geman and Geman, 19841, assumes a prior statis- 
tical distribution on the data being estimated, and models the 
image and sensing phenom as stochastic (noisy) 
proces arization can be vie as a type of Bayesian 
modeling where the prior model is a Boltzmatm distribution 
using the same energy function as the regularization. This 

paper shows that the average or most likely (optimal) esti- 
mate from the resulting posterior distribution is the same as 
the regularized solution. However, a typical sample from the 
posterior distribution is fractal, i.e. it exhibits self-similarity 
(and roughness) over a large range of scales [Pentland, 19841. 

The fractal nature of the posterior distribution can be used 
to generate “realistic” fractal scenes with local control over 
elevation, discontinuities (either in depth or orientation) and 
fractal statistics. This paper presents an new algorithm for 
generating a sample from this distribution. This algorithm is a 
multigrid version of the Gibbs Sampler that is normally used 
for solving optimization problems whose energy function has 
many local minima [Szeliski, 19861. We show that by using 
this algorithm we can also estimate the uncertainty associated 
with the regularized solution, for example by calculating the 
covariance matrix of the posterior distribution. The resulting 
error model can be used at later stages of processing along 
with the optimal estimate. 

The remainder of this paper is structured as follows. Sec- 
tion II. reviews reguhuization techniques and shows an exam- 
ple of their application to the surface interpolation problem. 
Section III. discusses the application of Bayesian modeling 
to the solution of ill-posed problems, and shows that mod- 
els that are Markov Random Fields can be specified by the 
choice of energy functions. Section IV. analyses the effects of 
regularization in the frequency domain, and derives the spec- 
tral characteristics of the Markov Random Fields that use the 
same energy functions. Section V. introduces fractal processes, 
and shows that the Markov Random Fields previously intro- 
duced are actually fractal. Section VI. gives a new algorithm 
for generating these fractals using multi-grid stochastic relax- 
ation. Section VII. shows how this algorithm can be used to 
estimate the uncertainty inherent in regularized solutions. Sec- 
tion VIII. concludes with a discussion of possible applications 
of the results presented in this paper. 

0 ria 

Regularization is a mathematical technique used to solve ill- 
posed problems that imposes smoothness constraints on pos- 
sible solutions[Tilchonov and Arsenin, 19771. Given a set of 
data d from which we wish to recover the solution u, we 
define an energy function I?& d) which measures the com- 
patibility between the solution and the sampled data. We then 
add a stabilizing function E,(U) which embodies the desired 
smoothness constraint, and find the solution U* that minimizes 
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Figure 1: Sample data points 

the total energy 

E(u) = Ed@, d) + XE,(u) (1) 
The regularization parameter X controls the amount of smooth- 
ing performed. In general, the data term d and solution u can 
be vectors, fields (two-dimensional arrays of data such as im- 
ages or depth maps), or analytic functions (in which case the 
energy is a functional). 

For the surface interpolation problem, the data is usually 
a sparse set of points { di}, and the desired solution is a two- 
dimensional function U(X, y). The data compatibility term can 
be written as a weighted sum of squares 

EI(u, d) = ; C WiCub, Yd - &I2 (2) 

Two examples of possible smoothness functionals are the mem- 
brane model [Terzopoulos, 19841 

Ep(u) = ; JJ <u:+4) hdr (3) 

which is a small deflection approximation of the surface area, 
and the thin plate model 

Ep(u) = ; JJ (2&+2z&+4 dxdy 

which is a small deflection approximation of the surface curva- 
ture (note that here the subscripts indicate partial derivatives). 
These two models can be combined into a single functional by 
using additional “rigidity” and “tension” functions, in order 
to introduce depth or orientation discontinuities perzopoulos, 
19861. 

As an example of a controlled-continuity regularizer, con- 
sider the nine data points shown in Figure 1. The regularized 
solution using a thin plate model is shown in Figure 2. Note 
that a depth discontinuity has been introduced along the left 
edge, an orientation discontinuity along the right, and that the 
regularized solution is very smooth away from these disconti- 
nuities. 

The above stabilizer E’(u) is an example of the more 
general controlled-continuity constraint 

Figure 2: Regularized (thin plate) solution 

where x is the (multi-dimensional) domain of the function u. 
This general formulation will be used in Section IV. to derive 
the spectral (frequency domain) characteristics of the stabilizer. 

III. ayesia 
The Bayesian modeling approach uses an Q priori distribu- 
tion p(m) on the data being estimated, and a stochastic process 
p(d(u) relating the sampled data (input image) to the original 
data. According to Bayes’ Rule, we have 

p(uld) = P(dlulP(u) 
p(d) (6) 

In its usual application [Geman and Geman, 19841, Bayesian 
modeling is used to find the Maximum A Posteriori (MAP) 
estimate, i.e. the value of u which maximizes the conditional 
probability p(uld). In the more general case, the optimal es- 
timator u* is the value that minimizes the expected value of 
a loss function L(u, u*) with respect to this conditional prob- 
ability. 

Recently, Bayesian models that use Markov Random 
Fields have been used to solve ill-posed problems such as im- 
age restoration [Geman and Geman, 19841 and stereo matching 
[Szeliski, 19861. A Markov Random Field (MRF) is a distribu- 
tion where the probability of any one variable Ui is dependent 
on only a few neighbors, 

POJilU) =P<Uil{Uj}), j E Ni (7) 

In this case, the joint probability distribution p(u) can be writ- 
ten as a Boltzmann (or Gibbs) distribution 

P(U) 0~ exp [-E,(NI~] (8) 

where T is called the “temperature”. The “energy function” 
Ep(u) can be written as a sum of local clique energies 

where each clique energy EC(u) depends only on a few neigh- 
bors. Typically, the clique energy characterizes the local vio- 
lation of the prior model or smoothness constraint. 

The random vector IU is sampled by a sensor which pro- 
duces a data vector d. We will model the measurement process 
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as having additive (multivariate) Gaussian noise 

p(dlN QC exp ’ (w - d)rA(u - d) -2 1 = exp [-Ed@, d)] (10) 
From Bayes rule, we have 

P(+o = 
PWp(dl N 

p(d) 
0~ exp bW)l 

where 

E(u) = &&O/T + Ed@, f& (12) 

so that the posterior distribution is itself a Markov Random 
Field. Thus MAP estimation is equivalent to finding the mini- 
mum energy state. This shows that regularization is an exam- 
ple of the more general MRF approach to optimal estimation. 
The smoothing term (stabilizer) I?&(W) corresponds to the a 
priori distribution, and the data compatibility term Ed(u, d) 
corresponds to the measurement process. 

While Bayesian modeling has previously been used in 
computer vision to find an optimal estimate, it has not been 
used to generate an error model. We propose to estimate ad- 
ditional (second order) statistics using this model, and to use 
these additional statistics at later stages of processing. For ex- 
ample, we can use these statistics when matching for object 
recognition or pose detection, or to optimally integrate new 
knowledge or measurements (by using Kalman filtering [Smith 
and Cheeseman, 19851). We present a method for calculating 
these statistics in Section VII.. 

By taking a Fourier transform of the function u(x) and ex- 
pressing the energy equations in the frequency domain, we can 
analyse the filtering behaviour of regularization and the spec- 
tral characteristics of the prior model. To simplify the analysis, 
we will set the weighting function w,(x) used in Equation 5 
to a constant. While this analysis does not strictly apply to 
the general case, it provides an approximation to the local be- 
baviour of the regularized system away from boundaries and 
discontinuities. 

The Fourier transform [Bracewell, 19781 of a multidimen- 
sional signal h(x) is defined by 

3(h) 3 J h(x) exp(2ni f. x) hr = H(f) (13) 

and the transform of its partial derivative is given by 

By using Parseval’s theorem 

/ lhc@12dx = J lHm12df (15) 

we can derive the smoothness functional I& in terms of the 
Fourier transform U(f) = 3{ M }. The notation E&V) denotes 
the energy associated with a signal V, which is derived from 
the original definition of E’(u) (in this case by using a Fourier 

transform). Applying the Equations 14 and 15 to Equation 5, 
we obtain 

E,(u) = ; J IWI121WO12~f WI 

where 

For example, the membrane interpolator has 16;(f)12 oc 127rq2 
and the thin plate model has lC(f)12 cx 127rf14. 

Since the Fourier transform is a linear operation, if u(x) 
is Boltzmann distributed with energy EJu), then U(f) is also 
Boltzmann distributed with energy E,(U). Tbs we have 

NWexp -f 
[ J 

IW.J121W~12~f 1 WI 

from which we see that the probability distribution at any fre- 
quency f is 

p(W) 0; exp [-;lG(h121WO12] (19) 

Thus, U(f) is a random Gaussian variable with variance 
lW91-2, and the signal U(X) is correlated Gaussian noise with 
a spectral distribution 

Utf) = lWJl-2 (20) 

We can also use the same Fourier analysis techniques to 
determine the frequency response of regularization viewed as 
linear filtering. The result of this analysis (see [Szeliski, 19871 
for details) is that the effective smoothing filter has a frequency 
response 

1 

H(f) = 1 ca2;G(F)12 (21) 

where o is the standard deviation of the sensor noise (with 
uniform dense sensing). For the case of the membrane model 
and the thin plate model, the shape of the frequency response 
is qualitatively similar to that of Gaussian filtering. The over- 
all posterior distribution (when the data confidence and prior 
model are spatially uniform) is the superposition of the regu- 
larized (smooth) solution and some correlated Gaussian noise. 
Fourier analysis can also be used to examine the convergence 
properties of the iterative algorithms discussed in Section VI. 
[Szeliski, 19871. 

Fractals are objects (geometic designs, coastlines, mountain 
surfaces) that exhibit self-similarity over a range of scales 
[Mandelbrot, 19821. Fractals have been used to generate ‘“real- 
istic” images of terrain or surfaces that exhibit roughness, and 
to anal& certain types of structured noise. Brownian f’rac- 
tals are-random processes or random fields that exhibit similar 
statistics over a range of scales. One common way to charac- 
terize such a fractal is to say that it follows a power law in its 
spectral density 

Wf) cx l/P (22) 

This spectral density characterizes a fractal Brownian function 
v&) with 2H = ,d - E, whose f!ractal dimension is D = E+ I- 
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Figure 3: Fractal (random) solution 

H (where E is the dimension of the Euclidean space) [Voss, 
19851. 

The spectral density of the regularization based prior mod- 
els examined in the previous section is lG(f,~j-~. For a mem- 
brane interpolator, we have 

S tt&?Pnbrane(O Qc 1274-2 
while for a thin plate interpolator, we have 

(23) 

Sthin--plate(O QC 1274 -’ (24 

Thus, the prior models for a membrane and a thin plate are 
indeed fractal, since the spectral density is a power of the 
frequency. 

The significance of this connection between regulariza- 
tion methods, I3ayesia.n models and fractal models is two-fold. 
First, it shows that the smoothness assumptions embedded in 
regularization methods are equivalent to assuming that the un- 
derlying processes is fractal. when regularization techniques 
are used, it is usual to find the minimum energy solution (Fig- 
ure 2), which also corresponds to the mean value solution for 
those cases where the energy functions are quadratic. Thus, 
the fractal nature of the process is not evident. A far more 
representative solution can be generated if a random (frac- 
tal) sample is taken from this distribution. Figure 3 shows 
such a random sample, generated by the algorithm that will 
be explained in section VI.. The amount of noise (and hence 
“bumpiness”) that is desirable or appropriate can be derived 
from the data [Szeliski, 19871. 

Second, the connection between Bayesian models and 
fractal models gives us a powerful new technique (described 
in Section VI.) for generating fiactal surfaces for computer 
graphics applications. Previous techniques for generating frac- 
tals use either recursive subdivision algorithms [Fournier et 
al., 19821 or the addition of correlated (pink) noise to some 
initial data [Pentland, 19841. While the latter algorithm is 
equivalent to Bayesian modeling with uniform data and prior 
models, the Bayesian modeling approach can be extended to 
non-uniform data and the full controlled-continuity constraint. 
Thus, it is possible to constrain the desired fractal by plac- 
ing control points at selected locations (using the discrete data 
formulation), or to introduce discontinuities such as cliffs or 
ridges. For example, the f’ractal in Figure 3 has been required 

to pass through the points in Figure 1, and has a depth dis- 
continuity along the left edge and an orientation discontinuity 
along the right. The introduction of data points affects the 
local noise characteristics. of the fractal without affecting the 
prior statistics. It thus generates a representative random sam- 
ple that is true both to the fractal statistics being used and to 
the sampled (or desired) data points. This approach can also 
be used for doing interpolation of digital terrain models. In- 
terpolators that have a smoothing behaviour between that of a 
membrane and a thin plate are better able to model the correct 
smoothness (fractal dimension) of natural terrain. 

e de tie 
To simulate the Markov Random Field (or equivalently, to find 
the minimum energy solution) on a digital or analog computer, 
it is necessary to discretize the domain of the solution u(x) by 
using a finite number of nodal variables. The usual and most 
flexible approach is to use finite element analysis [Terzopoulos, 
19841. We will restrict our attention to rectangular domains 
on which a rectangular mesh has been applied. As well, the 
input data points will be constrained to lie on this mesh. 

As an example, let us examine the finite element ap- 
proximation for the surface interpolation problem. Using a 
triangular conforming element for the membrane, and a non- 
conforming rectangular element for the thin plate (as 
zopoulos, 1984]), we can derive the energy equations 

in [Ter- 

1 
J%P&%dJrm(~) = - 2 [(u~+~,~ - u,,? + (h,y+l - uxJYi (25) 

(JhY) 

for the membrane and 

&if4-plufc(~~ = 2 'w-2 ~[(u,+* y 3 - 2&z,, + &-l,y12 + 
(X,Y) 

2(U,+l,y+l - Ux,y+l - Ux+l,y + ux,yj2 + 

o&+1 - 2k,y + &c,y-l~21 (26) 

for the thin plate, where 1 AX] is the size of the mesh (isotropic 
in x and y). These equations hold at the interior of the surface, 
i.e. away from the border points and discontinuities. Near 
border points or discontinuities some of the energy terms are 
dropped or replaced by lower continuity terms (see [Szeliski, 
19871 for details). The equation for the data compatibility term 
is simply 

Ed@, d) = ; x %,y(Ux,y - 4,y)2 (27) 
(X,Y) 

with %,y = 0 at points where there is no input data. 
If we concatenate all the nodal variables {u~,~} into one 

vector uI, we can write the prior energy model as one quadratic 
form 

Ep(@ 
1 

= z~TApw W-9 

This quadratic form is valid for any controlled continuity sta- 
bilizer, though the coefficients differ. Similarly, for the data 
compatibility m 1 we can write 

- Q) (29) 



where Ad is usually diagonal (for uncorrelated sensor noise). 
The resulting overall energy function E(u) is quadratic in u 

lT E(m)= p.~ Au-u%+c (30) 

where 
A=Ap+Ad and lb=Add (31) 

and has a minimum at u* 

u* = A-$ (32) 

Once the parameters of the energy function have been de- 
termined, we can calculate the minimum energy solution u* by 
using relaxation. For faster convergence on a serial machine, 
we use Gauss-Seidel relaxation where nodes are updated one 
at a time. At each step the selected node is set to the value that 
(locally) minimizes the energy function. The energy function 
for node Ui (with all other nodes fixed) is 

(33) 
1c 

jENi 

and so the new node variable value is 

UT = bi - EjeNi a@j 
(34) 

‘ 

Qii 

The result of executing this iterative algorithm on the nine 
data points in Figure 1 is shown in Figure 2. Note that it is 
possible to use a parallel version of Gauss-Seidel relaxation so 
long as nodes that are dependent (have a non-zero ag entry) 
are not updated simultaneously. This parallel version can be 
implemented on a mesh of processors for greater computational 
speed 

The stochastic version of Gauss-Seidel relaxation is 
known as the “Gibbs Sampler” [Geman and Geman, 19841 
or Boltzmann Machine [Hinton et al., 19841. Nodes are up- 
dated sequentially (or asynchmnously), with the new nodal 
value selected from the local Boltzmann distribution 

(35) 

Since the local energy is quadratic 

E(Ui) = aii(Ui - UT)2 + k (36) 

this distribution is a Gaussian with a mean equal to the deter- 
ministic update value UT and a variance equal to T/aii. Thus, 
the Gibbs Sampler is equivalent to the usual relaxation algo- 
rithm with the addition of some locally controlled Gaussian 
noise at each step. The resulting surface exhibits the rough 
(wrinkled) look of fractals (Figure 3). The amount of rough- 
ness can be controlled by the ‘“temperature” parameter T. The 
“best” value for T can be determined by using parameter esti- 
mation techniques [Szeliski, 19871. 

While the above iterative algorithms will eventually con- 
verge to the correct estimate, their performance in practice is 
unacceptably slow. TQ overcome this, multigrid techniques 
[Terzopoulos, 19841 can be used. The problem is first solved 
on a coarser mesh, then this solution is used as a starting point 
for the next finer level (thus this is a coarse-to-dine algorithm). 

In previous work [Terzopoulos, 19841 a more complex inter- 
level coordination strategy was used, but in this instance it has 
not been found to be necessary. The application of multigrid 
techniques to stochastic algorithms requires some care, since 
the energy equations must be preserved when mapping from a 
fine to a coarse level [Szeliski, 19871. 

The application of a multigrid Gibbs Sampler to the gen- 
eration of samples from a Markov Random Field with fractal 
priors results in a new algorithm for fractal generation. Like 
other commonly used techniques (random midpoint displace- 
ment, successive random additions [Voss, 1985]), it is a coarse- 
to-fine algorithm. It uses the interpolated coarse level solution 
as a starting point for the next finer level, just like successive 
random additions. However, the noise that is added at each 
stage is highly correlated. Since control points and discon- 
tinuities can be imposed at arbitrary locations, it gives more 
control over the fractal generation process. 

The preceding section has discussed how to obtain representa- 
tive samples from the estimated posterior distribution. While 
this ability is useful in computer graphics, it is less relevant 
to the problems associated with computer vision. What is of 
interest is the optimal (or average) estimate, and also the un- 
certainty associated with this estimate. These uncertainty esti- 
mates can be used to integrate new data, guide search (set dis- 
parity limits in stereo matching), or dictate where more sensing 
is required. 

For the Markov Random Field with a quadratic energy 
function (Equation 30), the probability distribution is a multi- 
variate Gaussian with mean u* and covariance A-‘. Thus, to 
obtain the covariance matrix, we need only invert the A ma- 
trix. One way of doing this is to use the multigrid algorithm 
presented in the previous section to calculate the covariance 
matrix one row at a time [Szeliski, 19871. However, this ap- 
proach is time consuming, and storing all the covariance fields 
is impractical because of their large size (for a 512 x 512 im- 
age, the covariance matrix has 6.8 x 10” entries). 

An alternative to this deterministic algorithm is to run 
the multigrid Gibbs Sampler at a non-zero temperature, and to 
estimate the desired statistics (this is a Monte Carlo approach). 
For example, we can estimate the variance at each point (the 
diagonal of the covariance matrix) simply by keeping a running 
total of the depth values and their squares. Figure 4 shows 
the variance estimate corresponding to the regularized solution 
of Figum 2 (note how the variance increases near the edges 
and discontinuities). These variance values arc an estimate of 
the confidence associated with each point in the regularized 
solution. Alternatively, they can be viewed as the amount 
of fluctuation at a point in the Markov Random Field (the 
“wobble” in the thin plate). Note that this error model is 
dense, since a measure of uncertainty is available at every 
point in the image. Error modeling in computer vision has not 
previously been applied to systems with such a large number 
of parameters. 

The straightforward application of the Gibbs Sampler re- 
sults in estimates that are biased or take extremely long to 
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Figure 4: Variance estimate 

converge. This is because the Gibbs Sampler is a multi- 
dimensional version of the Markov random walk, so that suc- 
cessive samples are highly correlated, and time averages are 
ergodic only over a very large time scale. To help decorrelate 
the signal, we can use successive coarse-to-fine iterations, and 
only gather a few statistics at the fine level each time [Szeliski, 
19871. 

The stochastic estimation technique can also be used 
with systems that have non-quadratic (and non-convex) en- 
ergy functions. In this case, the mean and covariance are not 
sufficient to completely characterise the distribution, but they 
can still be estimated. For the example of stereo matching, 
once the best match has been found (by using simulated an- 
nealing), it may still be useful to estimate the variance in the 
depth values. Alternatively, stochastic estimation may be used 
to provide a whole distribution of possible solutions, perhaps 
to be disambiguated by a higher level process. - - 

I. Conclusions 

This paper has shown that regularization can be viewed as a 
special case of Bayesian modeling, and that such an interpre- 
tation results in prior models that am fractal. We have shown 
how this can be used to generate typical solutions to inverse 
problems, and also to generate constrained fractals with local 
control over continuity and fractal dimension. We have de- 
vised and implemented a multigrid stochastic algorithm that 
allows for the efficient simulation of the posterior distribution 
(which is a Markov Random Field). 

The same approach has been extended to estimate the 
uncertainty associated with a regularized solution in order to 
build an error model. This information can be used at later 
stages of processing for sensor integration, search guidance, 
and on-line estimation. Work is currently under way [Szeliski, 
19871 in studying related issues, such as the estimation of the 
model parameters, analysis of algorithm convergence rates, on- 
line estimation of depth and motion using Kahnan filtering, and 
the integration of the multiple resolution levels into a single 
representation. 
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