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Abstract 

We propose a panadigm for shape and motion reconstmsction based 
on dynamic energy con&mints. Objects are modeled as deformable 
elastic bodies and con&mints derived from image data are mod- 
eled as external forces applied to these bodies. The external con- 
straint forces are designed to mold a deformable body into a con- 
figuration that satisfies the constraints, making the model consis- 
tent with the images. We present a particular shape model whose 
internal forces induce a prefenznce for surface continuity and ax- 
ial symmetry. We develop a constraint force for dynamic stereo 
images and present results for the recovery of shape and non-rigid 
motion from natural imagery. 

I.. Introduction 

To reconstruct the shapes and motions of 3D objects from their 
images it is necessary to synthesize 3D models that simultane- 
ously satisfy a bewildering variety of constraints. Some of these 
constraints derive from the immediate content of the image. Oth- 
ers reflect background knowledge of the image-forming process 
and of the shape and behavior of real-world objects. We pro- 
pose a paradigm for shape and non-rigid motion reconstruction 
in which objects are modeled as deformable elastic bodies and 
constraints are modeled as dynamic external forces applied to 
the bodies. The external forces are designed to mold the de- 
formable body into a configuration that satisfies the constraints. 
This minimum-energy configuration is computed by numerically 
solving the equations of motion for the deformable body. 

In this paper, we consider the reconstruction of the shape 
and non-rigid motion of objects possessing rough axial symme- 
tries. The input data consists of a temporal sequence of stereo 
image pairs. Several researchers have investigated motion-stereo 
fusion as a means of facilitating the recovery of 3D scene infor- 
mation [Nevatia, 1976; Hegan and Beverley, ‘1979; Ballard and 
Kimball, 1983; Richards, P985; Waxman and Sinha, 19861. Iu our 
approach, an energy functional is defined which varies temporally 
according to the evolving stereo image pair. To reconstruct the 
shape and motion of a non-rigid object of interest, the dynami- 
cally deforming model maintains consistency with the image data 
by continually seeking lower energy states. An interesting feature 
of our procedure (though by no means a necessary consequence 
of our energy constraint methods in general) is that dynamic 3D 
object models are computed directly from image data without an 
intervening 2.5D surface representation. 

Our deformable model of shape is governed by internal forces 
that imbue it with a preference for surface continuity as well as 
a preference for axial symmetry. In the latter regard, our model 
is close in spirit to generalized cylinder representations [Neva- 
tia and Binford, 1977; Marr, 19771. However, while generalized 
cylinders impose exact symmetries on any object they represent, 

our energy-based model is symmetry-seeking: It is capable of rep- 
resenting any shape, but those with axial symmetry have lower 
energy and hence are preferred. 

Reconstruction is accomplished by applying image-derived 
forces to the symmetry-seeking deformable model. For each im- 
age we compute a local measure of the intensity gradient magni- 
tude. After an appropriate linear transformation, the local min- 
ima of the resulting potential functions indicate locally highest 
contrast and are interpreted as silhouettes (occluding contours). 
By de-projecting the gradient of these image potentials through 
the binocular camera model, a time-varying force field is created 
in 3-space. 

Given the camera parameters and the model’s current state, 
only unoccluded points where the lines of sight from either the 
left or right eye graze its surface (occluding boundaries) are sensi- 
tive to the force field. The forces move boundary points laterally 
and in depth such that their binocular projections are consistent 
with both the left and right image silhouettes. Consistency is 
achieved when the projected boundary points rest at local miu- 
ima of the image potentials. The shape over the remainder of 
the surface is determined by the model’s internal continuity and 
symmetry forces. It has been observed that occluding bound- 
aries present di&ulties to standard stereo matching methods, 
largely because occluding contours in the two images correspond 
to different occluding boundary curves on smooth objects. Our 
method overcomes these difficulties by applying separate forces 
to points along the left and right boundary curves. 

The work in this paper is an instance of a dynamic energy 
constraints paradigm which has been successfdy applied to a 
variety of problems in graphics and modeling as well as vision: 
In [Terropoulos, Platt, Barr, and Fleischer, 19871 energy con- 
straints are applied to deformable curve, surface, and solid mod- 
els to build and simulate objects made of rubber, cloth, and 
similar materials. In pitkin, Fleischer, and Harr, 19871 energy 
constraints are applied to parameterired shape models such as 
cylinders or spheres to automatically dimension, assemble, and 
animate objects made of collections of such parts. In [Barzel and 
Barr, 19871 articulated objects are assembled and simulated with 
accurate Newtonian dynamics. In [Has,, Witkin, and Terzopou- 
los, 19871 image energy constraints are applied to deformable 
plane curves to interactively locate and track edges and other 
image features. In [Witkiu, Terzopoulos, and Kass, 19861 a de- 
formable sheet in image coordinates is subjected to forces de- 
rived from area correlation to perform stereo reconstruction in 
the style of the 2.5D sketch (Fig. 1). In [Terzopoulos, Witkin, 
and Kass, 19871 symmetry-seeking models are used in a limited 
way to perform object reconstruction from static monocular sil- 
houettes (Fig. 1). In [Platt, 19871 a deformable space curve model 
is extended into a space-time surface, and used to recover rigid 
motion. 

The remainder of the paper is organized as follows: Sec- 
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Figure 1. Reconstructions of a still life scene. Stereo images (top). 2.5D reconstruction of stereopair using a 
deformable sheet disparity model (bottom left). 3D reconstruction of objects in left image using a symmetry- 
seeking deformable model (bottom right). 

tion 2 describes the geometry and dynamics of the deformable 
symmetry-seeking model. Section 3 describes the stereo-motion 
image force. Section 4 discusses the implementation and Section 
5 presents results. 

2. 

Before we review the formulation of the symmetry-seeking model 
proposed in [Terzopoulos, Witkiu, and Kass, 19871, here is an 
informal description: 

Imagine a deformable sheet made of elastic material (a blend- 
ing of a membrane and thin plate). Take this sheet and roll it 
into a tube. Next, pass through the tube a deformable wire 
spine made of the same material and at regularly spaced points 
along its length couple it to the tube with radially projecting 
Hookean springs. The spring strengths can be adjusted so as 
to maintain the spine in approximately axial position within the 
tube. Additional forces are introduced tbat coerce the tube into 
a quasi-symmetric shape around the wire. Extra control is pro- 
vided through additional compression/expansion forces radiating 
airom the spine. The rigidity of the spine and the tube can be 
controlled independently, and their natural rest metrics and cur- 
vatures can be prescribed in advance or modified dynamicrally. 
For instance, if the circumferential metric of tbe tube is set to 
zero, the tube will tend to shrink around the spine unless ex- 

pansion forces prevail; the model will shorten or lengthen as the 
longitudinal metrics of the tube and spine are modified. Hence, a 
wide range of interesting behavior can be obtained by adjusting 
the control parameters of the model. 

The spine is a deformable space curve defined by mapping 
a l-dimensional parametric domain s E [0, l] into Euclidian 3- 
space: v(s) = (X(s), Y(s), Z(s)). The tube is made from a de- 
formable space sheet defined by mapping a 2-dimensional para- 
metric domain (2, y) E [0, l] 2 into 3-space: v(2, y) = (X(x, y), 
Y(x, y), Z(z, 3)) In this paper, the mapping functions represent 
S-space positions (alternatively they may may represent displace- 
ments away from prescribed rest configuration in 3-space). 

The mapping is governed by the minimum of an energy func- 
tional 

w = /, Jw41+ e4x)l (k (1) 
where x is a point in the parametric domain Sz. Here, E is 
the internal potential energy density of deformation and P is 
a generalized potential function associated with an externally 
applied force field. In our deformable model, E is an instance of 
the controlled-continuity constraint kernels [Terzopoulos, 19361. 

The deformation energy associated with the spine mapping 
v(s) is given by 

1 

G(v) = w~(s)Iv,(~ + ~2(4~vm~~ + h(v) ds. (2) 
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d 
X 

G@we) = b JJ o1 o1 (r(x, s) - F(s)) - i(z, s) da: ds, (7) 

where b is the strength of the symmetrizing force. 
Finally, we want to provide control over the expansion or 

shrinkage of the tube around the spine. This is accomplished by 
introducing the functional 

&c(vs, VT) = J 1 1 

44 r(2, s) * i-(x, s) a2 as. 69 
0 

Here, c(s) is the strength of the radial force; the tube will inflate 
if c > 0 and deflate if c < 0. 

In particular, an end of the tube can be cinched shut by 
setting an endpoint factor c(O) or ‘c(l) to be a large positive 
value. 

The potential energy of deformation of the model is then 
obtained by combining the potential energy of deformation of 
the spine and tube models with the three coupling energies: 

Figure 2. Parameterization of the the 3D model. 

The weighting functions control the material properties: WI(S) 
determines the metric properties and tension along the spine, 
while ‘WI(S) determines the curvature properties and rigidity of 
the spine. 

The deformation energy of the sheet mapping v(z, y) is given 
by the fuuctional 

11 

G(v) = JJ W1,01%12 + WO,l IvyI” 0 0 

The functions wr,c(z,y) and ws,r(z,y) determine the metric of 
the sheet along eachparameter curve, while wr,e(z,y), wr,r(x, y), 
and wc,z(a, y) determine its natural curvature and rigidity. 

The tube is formed by prescribiug boundary conditions on 
two opposite edges of the sheet that “seam” these edges together. 
We seam the edge z = 0 to the edge x = 1, letting y span the 
length of the tube. The required periodic boundary conditions 
are 

V(O,Y) = V(l,Y), v,(O, Y) = v&, Y). (4) 
To couple the two models together, we first identify y G 

s, which brings into correspondence the spine parameter with 
the parameter along the tube (Fig. 2). We then distinguish the 
con@uration vector function of the spine vs from that of the 
tube VT. 

The spine is coerced into an axial position within the tube 
by introducing the interaction potential energy functional 

vs I2 ds, (5) 
where 

1 
VT(s) = VT{% 8) ds (6) 

and CL is the strength of the interaction. 
To make the tube prefer symmetry with respect to the spine, 

we first define the radial vector anywhere on the tube as ~(2, s) = 
vT(z,s)-vS(z,s), theunit radia+lvectorasP(z,s) = r(x,s)/]r(z,s)], 
and i(s) = J’i ]r( 2, s)] dz. The potential energy functional is then 
given by 

f+s, vT) = ;(&(vS) + ET(vT) 
L 

S&(vs, VT) + 4P(vs, VT) + &(vs, VT)). 
The variational principle involves the minimization of (9) 

within a space of suitably Merentiable deformations. The asso- 
ciated Euler-Lagrange equations are given in [TexzopouIos, Witkin 
and Xass, 19871. 

3. 

Tbe symmetry-seeking model has the freedom to deform end to 
undergo translations and rotations in 3-space. The model is cou- 
pled to the dynamically evolving stereopair via a coupling energy 
term. The energy term is designed to impart forces that dic- 
tate the model’s deformations and motions such that it remains 
maximally consistent with an object of interest iu the dynamic 
stereopair. 

Our goal in the present paper is to match the deformable 
model to au object% occluding contours in the time-varying left 
=d r@t images ~L(~,~L) ad M-o&z). assume that 
the object is imaged in front of a contrastin ckgoMnd, so 
that we can formulate a simple force field of attraction towards 
strong intensity gradients which, by assumption, will include the 
occlllai.ng contollEs. Then, the occluding boundaries of tbe de- 
formable tube me made sensitive to this force field. We shall 
show in the next section that in spite of its simplicity this force 
field nonetheless yields interesting results. 

To couple the model to the image potential function, we 
stereoscopically project the material points of the tube into the 
left and right image planes through binoc&r imaging equations. 
The points sense the image potential at the projected locations. 
The material points of spine are projected as well, but in our 
current implementation this is done simply for display purposes- 
the spine experiences no image forces. 

Although it is possible to use a general binocular camera 
model (see, e.g., [Duda and Hart, 1973, Sec. lO.S]), its param- 
eters need not be known with great accuracy for our approach 
to work. Consequently, we have found it convenient to employ a 
simpli6ed perspective s oprojection with eye vergence at i&n- 
ity. Speci&dly, letting [vT(z,s)] and &[YT(z,s)] denote the 
stereoprojection of the tube material point 3-space coordinates 
(XT(~,g),y~(~,s),zT(z,$)) ido the bage pl=s (m,b) ad 
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(97~, &) respectively, we employ 

HL : (1;11[,(% 4, h(v4)) =(xT(% 8) + ~a+, 4,xP(% 4), 
nR : (qR(2,4tR(2,9)) =(xT(2,s) + &‘(2,4,fi(2,4), 

(10) 
where Q is a constant. 

The coupling between the force field and the tube is through 
the external potential function PT (see eq. 3). We define 

h[vT(2,9)1 = -Pd4lV(Go- *IL(&[VT(~,J)]))~ 

-PR(~V(G * IR(nR[vT(2,8)]))1, (“I 

which imparts on the tube boundary an &ty for steep image 
intensity changes. Here, G, *I denotes the image convolved with 
a (Gaussian) smoothing filter whose characteristic width is u. 

When partial occlusions occur betweenmultiple objects (e.g., 
Fig. 1 in which the potato partially occludes the pear) only the 
unoccluded surface patches should be sensitive to image forces. 
We use 3D ray casting from each viewpoint to test surface patches 
for visibility in each image. Hence, the weighting functions /3~( z, s) 
and @R( 2,s) are non-zero only for visible material points (2,s) 

near occluding boundaries of the tube. Occluding boundary 
points are selected in the left image by setting 

PL(~, 4 = 1 - lb * n(2,4I (12) 

if the dot product is small (< 0.05), and p&(2,8) = 0 otherwise, 
where n(2,s) is the unit normal of the tube at i~(2,s) is the 
unit normal to the left image plane. The analogous weighting 
fimction is used for the right image. 

4. Implementation 

In our implementation, the time evolution of the model 
erned by an initial value problem involving the equations 

is gov- 

where 7 is a damping factor. These fist-order equations describe 
the motion of massless material in a viscous medium. The for- 
mulation of a second-order dynamic system incorporating mass 
density is also straightforward [Terzopoulos, 19871, but (13) has 
served well for the time being. 

The components of the energy gradient b&/&s are approx- 
imated using standard finite di&rence expressions on a linear 
array of Nd nodes, while a N, x N, array is used to similarly 
approximate the components of BE/&T. The external force 
components VPT(VT) are computed numerically in the image 
domains (q,[) using bilinear interpolation between centrally dif- 
ferenced pixel values. 

We use an iterative procedure of the alternating direction 
implicit (ADI) type [Press, Flannery, Teulcolsky, and Vetterling, 
19861 to solve the discrete equations of motion. This efficient 
procedure exploits the fact that we have a rectangular grid of 
nodes. Each time step of the ADI procedure involves (i) a sweep 
in the 2 direction solving N, independent systems of algebraic 
equations in IV= rmlmowns, followed by (ii) a sweep in the s 
direction solving N,: independent systems in N, unknowns. The 
ADI method is independently applied to each of the three tube 
pOSitiOn COmpOnedS (XT, YT, ZT). 

The spine gives rise to an additional system of equations in 
N, rmknowns for each of its position components (Xs,Ys, 2s). 

As a consequence of the controlled-continuity deformation 
model, each of the unidimensional systems of equatious has a 
pentadiagonal matrix of coefficients, aud it can be solved efli- 
ciently (linear-order in the number of unknowns) using direct 

solution methods. We employ a normalized Cholesky decom- 
position step followed by a forward-back resolution step. §ee 
[Terzopoulos, 19871 f or a derivation of the pentadiagonal matrix 
and for a discussion of the algorithm and [Mass, Witlcin, and 
Terzopoulos, 19871 for its application to “‘snakes.” 

Resolution, an inexpensive step, is performed at every ADI 
iteration as the applied forces change. Matrix decomposition is 
somewhat more expensive, but it is required only when the mate- 
rial properties of the model are altered (e.g., to increase rigidity 
or to introduce discontinuities). Currently, we perform only an 
initial decomposition because we have not yet experimented with 
the variation of material properties during solution. 

We find that for larger grid sizes aud increasingly rigid mate- 
rial the AD1 method evolves solutions faster than the successive 
over-relaxation (SOIL) method that we employed previously [Ter- 
zopoulos, Witkin, and Kass, 19871. This is attributable to the 
fact that the direct solution of each unidimensional system in the 
AD1 method “immediately” distributes to all nodes along two 
perpendicular parametric grid lines the effects of forces acting on 
their common node. 

5. Results 

The reconstruction method was applied to a stereo motion se- 
quence consisting of 40 video fields portraying the 3D motion of 
a human finger. The imaging apparatus was a beam-splitting 
stereo adaptor mounted on a CCD camera. An initial axis was 
specified on the first stereopair by the user, and the shell iuitial- 
ized to a cylinder around the axis (Fig. 3) The system’s equations 
of motion were solved to equilibrium on the initial frame (requir- 
ing about 40 iterations), thus recoustructing the shape of the ob- 
ject iu proper depth. The initial shape is rendered from several 
viewpoints in Fig. 3. The equilibrium solution then evolved over 
the remaining frames of the stereo sequence (using 20 iterations 
per frame), producing a dynamic 3D reconstruction of the finger’s 
shape and motion. Fig. 4 shows six representative frames of the 
sequence along with the corresponding reconstructed shapes. 

6. Conclusion 

Our results illustrate the useMness of dynamic energy constraints 
applied to deformable models as a means of recovering object 
shape and non-rigid motion. 

A shortcoming of our current system is due to the fact that 
silhouette information alone, even with stereo and motion, pro- 
vides limited information about objects. With larrge portions of 
the object’s surface left unspecified, the symmetry-seeking mate- 
rial tends to make the reconstructed shape more symmetric than 
the actual one. Also, it is difficult to detect rotations around the 
object’s axis only from silhouette information. 

However, a key advantage of the energy constraints approach 
is the ease with which additional constraints catl be integrated 
into the solution. A focus of our current work is the formulation 
and implementation of energy constraints that exploit shading 
and texture information over the entire visible surface, as well as 
constraints that make more effective use of motion information. 

Our approach suggests energy constraint mechanisms for 
bringing higher-level knowledge to bear on the reconstruction 
problem. This remains a topic for future research. For the time 
being, the system is interactive; the user supplies an initial condi- 
tion by instantiating a cylindrical surface about au approximate 
axis. We are investigating the use of scale-space continuation 
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Figure 3. Initial 3D reconstruction of a finger. Finger stereopair for first time instant (top left). User-initialized 
cylinder (top right). Initial reconstructed shape from three viewpoints (bottom). 

methods [Within, Terzopoulos, and Kazs, 19861 to partially au- 
tomate the initialization. We anticipate the ability to incorporate 
analytic camera models of greater sophistication into the energy 
functional and to automatically solve for the camera parameters 
as part of the minimization procedure. 
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