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Abstract 
An efficient technique is presented for detecting, track- 
ing and locating three-dimensional (3-D) line seg- 
ments; The utility of this technique has been demon- 
strated by the SRI mobile robot, which uses it to 
locate features in an office environment in real time 
(one Hz frame rate). A formulation of Structure-from- 
Motion using line segments is described. The formula- 
tion uses longitudinal as well as transverse information 
about the endpoints of image line segments. Although 
two images suffice to form an estimate of a world line 
segment, more images are used here to obtain a better 
estimate. The system operates in a sequential fashion, 
using prediction-based feature detection to eliminate 
the need for global image processing. 

I. Introduction 
Three-dimensional (3-D) visual sensing is a useful capabil- 
ity for mobile robot navigation. However, the need for 
real-time operation using compact, on-board equipment 
imposes constraints on the design of 3-D vision systems. 
For the SRI mobile robot, we have chosen to use a feature- 
based system whose features are image and world line seg- 
ments. Line segments as features provide a practical com- 
promise between curves, which are complex to analyze, 
and point features, which are often sparse in man-made 
environments. 

We use a relatively fast frame rate (one Hz) to reduce 
the complexity of the feature correspondence problem. Be- 
cause features don

’

t 

move very far in closely spaced im- 
ages, little searching is needed to find a feature

’

s 

successor. 
Combining a fast frame rate with prediction-based feature 
detection can greatly reduce the portion of the image to 
which feature detectors must be applied. Another benefit 
of tracking world features in closely spaced images is that 
volumetric free-space information is readily available. 

Real-time 3-D vision may be further simplified by 
avoiding the Motion-from-Structure [Ullman, 19791 prob- 
lem. We derive camera poses from odometry. (Inertial 
navigation systems are becoming increasingly practical for 
this purpose.) Because the vision system is used for naviga- 
tion among stable objects, we need be concerned only with 
estimating the locations of stable features in the world. We 
use other sensors for rapidly moving objects. 
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With these design parameters, we are faced with a 
problem of Structure-from-Motion [Ullman, 19791 in es- 
timating a static world feature from its observation in a 
sequence of images as the camera is moved. We have de- 
vised a simple formulation of Structure-from-Motion that 
is based on line segments. It uses simple vector and 3-by- 
3 ma.trix operations. The most complicated aspect of the 
formulation is the inversion of 3-by-3 matrices. 

II. verview 

Figure 1: SRI Mobile Robot 

Here we describe the vision system as it is implemented on 
the SRI mobile robot. 

The SRI mobile robot [Reifel, 19871 is equipped with 
an on-board video camera, frame buffer, and 68010 com- 
puter system (Figure 1). Optical shaft encoders coupled 
to the two main drive wheels provide odometric data that 
are used to derive camera poses. 

We use closely spaced images to reduce the complexity 
of the feature correspondence problem. Combining closely 
spaced images with prediction-driven feature detection 
lows the application of edge operators to be limited 

al- 
to 
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small areas of the image that are near predictions, thus 
eliminating the need for global image processing. (Pre- 
diction based feature detection was used to advantage in 
Goad

’
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model based vision system [Goad, 19861.) Image 
line segments are detected by a software edge tracker that 
provides least-squares fits of line segments to linear im- 
age edge features. The edge tracker is directed by pro- 
totype image segments whose origin will be described be- 
low. The tracker finds sets of candidate segments that are 
close to each prototype. (The measure of such closeness 
is discussed in section III.B..) We require candidate edge 
segments to have the same gradient sense or “contrast po- 
larity” as their predecessors. 

Our system uses a sequential 3-D line segment estima- 
tor to infer world line segments from sequences of corre- 
sponding image line segments. The system operates in 
three phases: “prospecting,” “bootstrapping,” and “se- 
quential updating. ” “Prospecting” segments, the first pro- 
totype segments the system uses, are generated so that 
the feature detection component will find new image fea- 
,tures. The “bootstrapping” phase is then used as a prelude 
to the. “sequential updating phase.” All prototypes gen- 
erated during bootstrapping are segments that were de- 
tected in the preceding image. While bootstrapping, we 
entertain alternative hypotheses about a feature

’

s 

succes- 
sors in a small tree of possible correspondence sequences. 
When the tree achieves a minimum depth, we use a nonse- 
quential form of the 3-D segment estimator (described in 
section 1II.D.) to generate a world feature estimate as well 
as a consistency measure for each sequence in the tree. If 
the most consistent sequence meets a minimum consistency 
threshold, it is promoted to sequential updating; otherwise, 
it is discarded. 

During the “sequential updating” phase, we use 
the sequential form of the 3-D segment estimator (sec- 
tion II1.D.). Newly detected image features are folded into 
world feature estimates as each new picture arrives. Previ- 
ous 3-D estimates are used to generate prototype segments 
to direct the feature detector. The prototype segments are 
generated by taking the central projections of the previous 
3-D segment estimates into the image plane using the new 
camera pose. The detected image feature that is closest to 
the prototype is, if close enough, used as the successor. 

The system tracks a set of environment al features bv 

The robot finds walls by fitting planes to sets of per- 
ceived 3-D segments. These segments are grouped using 
a co-planarity measure. Once the walls have been located 
the robot servos to a path which is centered between the 
walls. 

Figure 2 shows an intensity image the robot saw in 
a hallway. Figure 3 displays a stereo view of an unedited 
collection of line segments that were estimated by the robot 
a.nd used to guide its path down the hallway. The frame 

--~ 
Figure 2: Hallway 

rate was one Hz, while the robot moved at 30 mm/s. Most 
of the segments that the robot gathered were vertical. This 
is a consequence of the way the “prospecting” segments are 
arranged, the motion of the robot, and the characteristics 
of the hallway. 

Occasionally the system will encounter a seemingly 
consistent set of miscorrespondences, which will lead to an 
incorrect hypothesis surviving to the sequential updating 
phase. Such hypotheses fail quickly when subjected to the 
long-term consistency requirement. 

In the future, we plan to investigate the use of ac- 
quired models within this framework. Such models may 
provide a means to measure the motion of the robot using 
Motion-from-Structure. Models may also make it possible 
to track moving objects. We plan to increase the frame 
rate of the vision system by installing a 68020 computer in 
the robot, perhaps using several CPU boards. 

I. Estimation of 3- 
Segments 

In this section, we present a simple formulation of 
Structure-from-Motion that is based on line segments. It 
uses longitudinal as well as transverse information about 
segment endpoints. Given a sequence of images with cor- 
responding line segment features, we estimate a 3-D line 
segment that minimizes an image error measure summed 
over the sequence of images. Camera poses are assumed 
to be known. 

In section 1II.A.) we discuss the choice of line segments 
as features to be used within the paradigm of Structure- 
from-Motion. We then define an image-based measure of 
the discrepancy between two line segments.{section IILB.). 
In section III.C., we express the error measure in terms of 
a world line segment a.nd its projection as detected in the 
image. We then estimate a 3-D segment which best fits a 
sequence of observations by varying the segment to min- 
imize the error measure summed over a sequence of im- 
ages. This yields a problem of nonlinear minimization. In 
section IILD., we describe a sequential estimator that lin- 
earizes the problem. The robot uses an implementation of 
this linearized sequential estimator to estimate 3-D world 
line segments . 
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Figure 3: Estimated Line Segments 

A. Simple Structure-from-Motion Using 
Line Segments 

- 

Structure-from-Motion is a useful and popular paradigm 
for robotic visual perception [Aggarwal, 19861. Early 
work in feature-based motion analysis was based on world 
and image points [Roach and Aggarwal, 19791 [Longuet- 
Higgens, 19811 [H annah, 19801 [Gennery, 19821, while later 
research focused on straight lines [Yen and Huang, 19831. 
Points and lines also have been used widely in robotic vi- 
sion [Goad, 1986] [Lowe, 19851. 

Straight line segments are useful features for motion 
analysis and robotic vision applications [Ulhnan, 19791 . 
Point features are as simple to analyze, but unfortunately, 
prominent point features can be scarce, particularly in 
man-made environments. Cultural and industrial scenes 
usually contain prominent linear features that can be reli- 
ably detected by edge finders. Although cultural and in- 
dustrial scenes often also have significant curved features, 
such features are more difficult to analyze than points or 
lines. 

Edge finders are very good at determining the trans- 
verse position of a linear feature in an image. They are 
less accurate at finding the longitudinal (along the edge) 
position of the ends of a linear feature, as they usually use 
thresholds to locate feature terminations. Although the 
longitudinal information is less reliable than the transverse 
information, we believe that it is still useful information, 
which would be lost if linear features were abstracted into 
straight lines rather than line segments. Line segments 
carrying endpoint information present a balance between 
analytical simplicity and practicality as image features. 

B. Image Error Measure 
We propose the following as a component of the measure 
of the discrepancy between a pair of image line segments 
(Figure 4): 

E = [o!(P - S) . LIZ + [P(P - S) * Q2 . (1) 

Figure 4: Image Error Measure 

Here c represents the squared error due to one pair 
of corresponding endpoints. The total error for the corre- 
sponding segments is the sum of the errors for both corre- 
sponding endpoint pairs. P and S are two-vectors describ- 
ing the image locations of endpoints of line segments IS and 
r respectively. f, is a unit vector parallel to c, while C is 
a unit vector perpendicular to u. 

The longitudinal and perpendicular components are 
weighted by a and /?. We have settled on /3/o = 16 em- 
pirically, giving perpendicular errors 16 times the weight 
of longitudinal errors. This was deemed to be the smallest 
weighting of longitudinal errors that provided estimates 
that were “reasonably” accurate longitudinally, while not 
overly disturbing the transverse components of the esti- 
mates with less reliable longitudinal information. 

If an image line segment is clipped by the boundaries 
of an image, that endpoint has little meaningful longitu- 
dinal informat ion. One strategy for this case sets (Y to 
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zero, ignoring the longitudinal information in that partic- 
ular image. 

c. 3- Error Measure 

Figure 5: Imaging Geometry 

We may recast Eq.(l) in terms of world S-vectors (Fig- 
ure 5). An endpoint of 3-D segment T is P, their central 
projections into the image plane are r and p respectively. 
The endpoint of Q that corresponds top is s. Here, p and s 
are 3-vectors that refer to locations of-image points in the 
3-space in which the image plane is embedded. C is the 
projection center of the camera, and f is the focal length 
of the camera. The image plane and Q define an orthonor- 
ma1 basis composed of i, which is a 3-D unit vector parallel 
to a; 6, which is a 3-D unit vector normal ,to the image 
plane; and 6, which is perpendicular to both E and fi. Two 
additional unit vectors are defined by r”, which is the nor- 
malization of (P - C), and s^, which is the normalization 
of (s - C). 

The image error measure may rewritten as: 

~=012[(p-s).i]2+p2[(p-s).~]2 . (2) 

Next, we express the error 
convenient unit vectors. Let 

measure in terms of more 

6 = normalize(i X i) , 

i = normalize(s^ X 6) , 

and 

Then we can express 8 and i in terms of i, 6, and hi: 

8 = w,6+w,ii 
2 = xli+A,ii . 

Noting that l^i . (p - s) Noting that l^i . (p - s) = 0, we may rewrite Eq. (2) as = 0, we may rewrite Eq. (2) as 

e = ~2[~(p-s).(Xli+X,h)12+~2~~(p-s).(wo~+w~~)]2 , e = a2[$p-s).(Xli+X,h)12+~2[J-(p-s).(woc3+wni%)]2 , 

or or 

e=~[(p-s).il’+$[(p-s).o]2 . e=~[(p-s).il’+$[(p-s).o]2 . 
1 1 

Since s Since s = C + 6s^ for some 6, 4.0 = 0, and s^. J? = 0, we = C + 6s^ for some 6, 4.0 = 0, and s^. J? = 0, we 
may write may write 

. E = $[(p - C) - 21” + $[(p - C) * a2 . E = $[(p - C) - 21” + $[(p - C) * a2 * (3) * (3) 
1 1 

Now we will use a relation of central projection to Now we will use a relation of central projection to 
get the error in terms of P rather than p. The standard get the error in terms of P rather than p. The standard 
“z-division” form of central projection may be written as “z-division” form of central projection may be written as 
follows (Figure 5): follows (Figure 5): 

(P-C)= (P-C)= f(P-C) f(P-C) 
z z 

where z = (P-C).fi . where z = (P-C).fi . 

Letting Letting 

a a 4 4 =- =- 
Xl Xl 

b b =Pf , =Pf , 

wo wo 

Eq. (3) may be written as Eq. (3) may be written as 

E = -${a’[(P - C) . iI2 + b2[(P - C) .6]“} E = -${a’[(P - C) . iI2 + b2[(P - C) .6]“} * (4) * (4) 

If we consider e to be the squared error for a given endpoint If we consider e to be the squared error for a given endpoint 
due to detection in the ith member of a set of images, then due to detection in the ith member of a set of images, then 
the total error for a given endpoint would be given by the total error for a given endpoint would be given by 

E = 7 ${Ui[(P - Cj) ’ Zj]’ + b,2[(P - Ci) ’ 6ij”) E = 7 J${ai[(P - Ci) * Zi]’ + bf[(P - Ci) * 6ij”) e . 
t t 

Varying P to minimize E will yield an estimate for the 3-D Varying P to minimize E will yield an estimate for the 3-D 
segment endpoint. This is a nonlinear estimation problem segment endpoint. This is a nonlinear estimation problem 
by virtue of the factor of l/z: . by virtue of the factor of l/z: . 

D. Approximation and Minimization D. Approximation and Minimization 
There are many ways to minimize E. We will discuss a There are many ways to minimize E. We will discuss a 
sequential method that works well in practice, which is sequential method that works well in practice, which is 
designed for an application where a set of images arrives designed for an application where a set of images arrives 
sequentially and where an estimate of the 3-D feature is sequentially and where an estimate of the 3-D feature is 
desired after each image. This is often the case in robotic desired after each image. This is often the case in robotic 
guidance. guidance. 

The technique involves approximating z; = z(P) by The technique involves approximating z; = z(P) by 
z- z- = z(P-), where P- is the previous estimate of P. The = z(P-), where P- is the previous estimate of P. The 
process may be bootstrapped by using a nominal start- process may be bootstrapped by using a nominal start- 
ing value for Zi. ing value for Zi. This method essentially substitutes a This method essentially substitutes a 
“pseudo-art hographic” approximation (a different approx- “pseudo-art hographic” approximation (a different approx- 
imation for each image) for perspective projection. The er- imation for each image) for perspective projection. The er- 
ror terms ei become invariant to translations of P along &. ror terms ei become invariant to translations of P along &. 
The approximation is exact for points on one plane in the The approximation is exact for points on one plane in the 
world, namely the plane containing P, that is parallel to world, namely the plane containing P, that is parallel to 
the image plane. Within the framework of the I;linimiza- the image plane. Within the framework of the I;linimiza- 
tion, this is also equivalent to replacing the (unsquared) tion, this is also equivalent to replacing the (unsquared) 
error functions of P by second-order Taylor expansions. error functions of P by second-order Taylor expansions. 

Wells 775 



The expansions are about the point where the ray ema- 
nating from Ci along sl; pierces the previously mentioned 
plane. The approximated squared error measure is also 
easy to visualize, as it is the weighted sum of the squared 
perpendicular distances of P from a pair of planes. The 
two planes both contain the camera center and the end- 
point s of g. One contains the segment c’, while the unit 
vector 6 lies in the other. 

After this$approximation,>he ith error (Eq. (4)) may 
be written as 

This is quadratic in P and its sum is easy to minimize. In 
matrix notation, 

Ei = $(P - C;)Tti;2T(P - Ci) + 

g 
F(P - Ci)T6i6T(P - C;) 

*- 

then 

or 

ei = (P - C;)TM;(P - Ci) 7 

ci = PTMiP - 2PTMiCi + CTM;Ci . 

Defining 

M = xMi 

v= c Mici 
i 

k = CCTMiC; 
i 

allows us to write the total squared error as 

E=PTMP-2PTV+k . 

Setting the gradient of E with respect to P to zero, 

O=vpE=2MP-2V , 

or 
P=M-‘V , 

provides an easily computed estimate of a 3-D line segment 
endpoint viewed in a sequence of images. 

Two images are sufficient for computing an estimate 
of a line segment. If the camera motion is slight, mak- 
ing the effective baseline short, then the estimate may be 
somewhat inaccurate in depth. If more images are used 
and the camera moves appreciably about some feature in 
the world, then the estimate of that feature improves and 
the consistency of the estimate may be better evaluated. 

There are combinations of line segment orientation 
and camera motion which are degenerate and preclude 
depth estimates. In these situations M will be singular, 
or nearly so in the presence of noise. 

V. @OllCllX3iO~ 

We have described an efficient technique for detecting, 
tracking, and locating three-dimensional line segments as 
demonstrated on the SRI mobile robot. As the robot 
moves about, it makes good estimates of environmental 
3-D line segments using Structure-from-Motion. 

In the future, we plan to investigate whether the sta- 
tistical characteristics of the image line segment detector 
can provide a maximum-likelihood basis for the estimator. 
This would also yield values for for the weights cy and @ 
which appear above. 
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