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Abstract 

A well known problem in diagnosis is the difficulty of 
providing correct diagnostic conclusions in light 
incorrect or missing data. Traditional approaches to 
solving this problem, as typified in the domains of 
various complex mechanical systems, validate data by 
using various kinds of redundancy in sensor hardware. 
While such techniques are useful, we propose that 
another level of redundancy exists beyond the hardware 
level, the redundancy provided by expectations derived 
during diagnosis. That is, in the process of exploring 
the space of possible malfunctions, initial data and 
intermediate conclusions set up expectations of the 
characteristics of the final answer. These expectations 
then provide a basis for judging the validity of the 
derived answer.’ We will show how such expectation- 
based data validation is a natural part of diagnosis as 
performed by hierarchical classification expert systems. 

1. Introduction 
Diagnosis is the process of mapping system observations into 

zero or more possible malfunctions of the system’s components. 
Most of the work in AI in diagnosis assumes the observations 
given to an expert system are reliable. However, in real-world 
situations, data is often unreliable and real- world diagnostic 
systems must be capable of taking this into account just as the 
human expert must. In this paper, we will discuss a knowledge - 
based approach to validation that relies on diagnostic expectations 
derived from the diagnostic process itself to identify possible 
unreliable data points. 

Present -day aids for human experts performing diagnosis 
attempt to validate data before diagnosis begins. In the domains 
of various complex mechanical systems (Nuclear Power Plants, 
Chemical Manufacturing Plants, etc.), such aid is based on the 
concept of hardware redundancy of sensors. Each important 
system datum (pressure, temperature etc.) is monitored with a 
number of hardware sensors providing a redundancy of 
information from which a composite, more reliable value is 
extracted. Based on this hardware redundancy, a number of 
techniques were developed to validate a datum’s value: 

1. Providing multiple sensors of the same kind to 
monitor a datum. Loss of one sensor therefore does 
not preclude data gathering and any disagreements 
among the sensors can be resolved statistically. 
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For example, to measure the temperature of a 
chemical reaction, multiple temperature sensors 
could be used in the reactor and their statistical 
average given as the overall temperature value. 

2. Providing different kinds of sensors to monitor a 
datum. This situation provides the same redundancy 
as (1) as well as minimizing the possibility of some 
kinds of common fault problems, That is, certain 
events that inactivate one sensor type will not affect 
sensors of a different type. Continuing with the 
example of (1) above, half of the sensors might be 
thermocouples while the other half might be 
mechanical temperature sensors. 

3. Using sensors in several different locations to infer 
a datum value. In this situation, data values are 
monitored both directly and inferred from other 
system data based on well -established 
relationships. For example, while the temperature 
of a closed vessel may be directly monitored, it can 
be inferred from the measurement of the pressure 
using the PV = nrT equation. 

Such hardware redundancy allows some data validation, but 
some limitations for this approach do exist: 

1. The expense of installing and maintaining multiple 
sensors for each important datum greatly increases 
the cost of the mechanical system. 

2. Common fault failures still happen, despite cautions 
mentioned above, especially as the result of severe 
operation malfunctions. 

3. Human operators and engineers resolve many such 
diagnostic problems despite incorrect and even 
absent data. In other words, human experts are 
more tolerant of bad data whether it has been 
validated or not. 

Therefore, while hardware redundancy does solve part of the 
problem, more sophisticated techniques are required to complete 
the job. 

The following simple example will help in examining point (3) 
and other ideasa. Consider the mechanical system diagrammed 
inFigure 1 with data values indicated in Figure 2. It is a closed 
vessel with two subsystems, a cooling system and a pressure relief 
system. The vessel is a reactor which contains some process 
(nuclear fission, chemical reactions, etc.) that produces both heat 
and pressure. The data values of Figure 2 indicate that the 
temperature of the reactor vessel is above acceptable limits. 

2Note that the ideas presented here have been used on more 
complicated real - world systems [5,71. This example has been 
condensed from them for expository clarity. 
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Assume for the example that two possible causes of the high 
reactor temperature exist: either the cooling system has failed or 
the pressure relief system has failed and the added heat has 
overpowered the functioning cooling system. Given the sensor 
readings, what would be the diagnostic conclusion? The data 
conflict is the normal pressure and cooling system readings and 
the abnormal pressure relief system readinq:s The failure of the 
pressure relief system is plausible, data indicates its failure and 
no other system failure, but such a failure expects the pressure to 
be high! The step to take is to assume that both the pressure relief 
system failed and the pressure sensor is incorrect. 

The process shown above demonstrates data validation at a 
higher level than that of simple sensor hardware validation. In 
the example, the pressure system has failed despite the lack of a 
high pressure datum. However, there is other strong evidence3 
that the pressure system has indeed failed. The human reasoner 
expects the pressure datum to be high since the preponderance of 
other data indicate a malfunction. That is, the human reasoner in 
pursuing likely diagnostic conclusions discovers a plausible 
diagnostic conclusion that meets all but (in this case) one 
expectation. The important points to note are that: 

1. A diagnostic conclusion can and should be made 
based on the preponderance of other evidence. 

2. The datum value that does not meet expectation 
should be questioned and further investigation of its 
true value made. 

Note that this process involves redundancy, not at the level of 
sensor hardware, but at the level of diagnostic expectation. This is 
a redundancy of information that allows questioning (and 
subsequent validation) of data based on multiple expectations of 
diagnostic conclusions. If a conclusion is likely, but not all of its 
expectations are met, then those now questionable values are 
investigated by more computationally expensive techniques. 

Such expectations can be the result of one of a number of 
processes. Deep models can provide information on expected data 
patterns for any diagnostic conclusion. From this information, 
judgments on the reliability of any of the actual data values can 
be made. Information provided from such deep models can he 
incorporated into compiled structures that can also provide 
information on data reliability. Finally, the expert himself can 
provide the information on data reliability to the diagnosis 
system based on his expert judgment of the particular diagnostic 
process, in effect acting as the deep model for the system. 

Figure 1: An Example Mechanical System 

In this paper we will discuss compiled diagnostic systems that 
deal with conflicting datum at the level of diagnostic expectation 
indicated above. These are diagnostic systems that make 
conclusions based on diagnostic knowledge and some judgment on 
the validity of the data provided. In particular, we will show how 

31n the example, this evidence is that there is a failure 
relief valve system which is part of the pressure system. 
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Figure 2: Sensor Values for the Example 

redundancy of diagnostic expectation is a natural 
hierarchical classification diagnostic model. 

extension to the 

2. Diagnosis as a Hierarchical CBassification Task 
Significant interest has recently been directed towards 

understanding problem solving behaviors (diagnosis, planning, 
design) from the viewpoint of Information Processing Strategies. 
For example, Clancey 141 has shown that MYCIN is a species of 
classification problem solving activity. Earlier, in our work on 
MDX [2], we explicitly identified hierarchical classification as a 
strategy useful for some classes of diagnostic problem solving. 

Diagnosis as a classification problem solving task is a 
matching of the data of the problem against a set of malfunctions 
(i.e., diseases, system failures, etch. If the present data are 
classified as a known malfunction, then the diagnosis is 
completed. Note that this is a compiled approach to diagnosis 
since it requires that the possible malfunctions and knowledge 
about how to establish those malfunctions be pre-enumerated. 
Other less well defined problems require a deeper model that rely 
on first principles (physics, chemistry, etc.) and an intimate 
understanding of the system at hand4. The rest of this section 
discusses the basic ideas behind hierarchical classification (See 
[6,2] for details). 

The malfunctions (diseases, failures) possible in the system 
are organized hierarchically. Typically, this hierarchy reflects a 
systemsub - system or function:sub - function relationship 
between the malfunctions?. Continuing with the example system 
in Figure 1, the malfunction hierarchy for the reactor system is 
shown in Figure 3. Each node in the malfunction hierarchy 
represents the hypothesis that some particular malfunction has 
occurred. Note that the nodes located in the upper levels of the 
hierarchy (Pressure System Failure, Cooling System Failure) 
represent more abstract malfunction hypotheses then those lower 
in the hierarchy (Relief Valve Failure, Condenser Failure). 
Further note that the sub nodes of any node are more particular 
kinds of the super node. For example, a Relief Value Failure is a 
particular kind of Pressure System Failure. Therefore, as one 
traverses the hierarchy in a top down fashion, one examines more 
detailed hypotheses about what malfunction has occurred in the 
system. 

4Space limits this paper to the compiled system issues, see 
reference [91 for a detailed discussion of the deep model issues and 
computational strategies. 

5Though the simple examples of this paper use only a single 
hierarchy, other work [lOI recognizes that multiple hierarchies 
may be required to properly represent all system malfunctions. 
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Each node in the hierarchy has knowledge about the 
conditions under which the malfunction hypothesis it represents 
is plausible. Each node of the malfunction hierarchy is therefore 
a small expert system that evaluates whether the malfunction 
hypothesis it represents is present given the data. While there 
are a number of ways this could be accomplished, conceptually 
what is required is pattern- matching based on data features 
Each node contains a set of features that are compared against 
the data. The results of this comparison indicate the likelihood of 
that particular 

r 
alfunction being present. The pattern matching 

structure of a n de in the CSRL language [l] is called a knowledge 
group. The knowledge groups compare relevant features against 
the data and yield a symbolic likelihood. 

System 
Failure 
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Cooling System 
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Relief Valve 
FflilUl-e 

Valve Control 
Failure 

Condenser 
Failure 

Feed System 
FailUl-2 

Figure 3: Hierarchy of malfunctions from Figure 1 

Consider the knowledge group depicted in Figure 4 taken from 
the Cooling System Failure node of our example. The first, section 
represents three queries about a datum value6. Each column of 
the table underneath represents a possible answer to each 
question (column 1 to question 1, etc.). The match value assigned 
to the knowledge group is based on the value located at the end of 
each row7. In our example when the answer to question 1 is True, 
the answer to question 2 is either High or Low and regardless of 
the answer to question 3, row 1 assigns a value of 3 to the 
knowledge group. The rows of the table are evaluated in order 
until either a row of queries matches or no row matches and a 
default value is assigned. Thus, when the data pattern of row 1 
exists, the knowledge group (and thus the malfunction) is 
established at a high level of confidence. 

Finally, the control strategy of a hierarchical classifier is 
termed establish-refine. In this strategy, each node is asked to 
establish how likely the malfunction hypothesis it represents is 
given the data. The node, using knowledge groups, determines an 
overall measure of likelihood. If the node establishes, i.e,. the 
malfunction is judged likely, then each sub of that node are asked 
to try and establish themselves. If a node is found to be unlikely, 
then that node is ruled-out and none its subs are evaluated. 

Consider the example using the data from Figure 2 and the 
hierarchy of Figure 3. The top node is established since the 
temperature is high. Each of the subnodes is then asked to 
establish. Cooling System Failure rules out and none of its 
subnodes are examined. Pressure Relief Failure establishes and 
its subs are asked to try and establish themselves. This process 

%n the present CSRL implementation, these values are fetched 
from a database, though other means may be used, such as calls to 
deep models, simulations, etc. 

71n this case, the values assigned are on a discrete scale from 
-3 to 3, - 3 representing ruled- out and 3 representing 
confirmed. 

r- 
I : 

3 

) Is theTemperature Alarm on? 
) What is theTemperature above the Condenser 
) What is the Temperature of the Cooling Water Out? 

Figure 4: A Knowledge Group from Cooling System Failure 

continues until there are no more nodes to examine. In this way, 
the most specific malfunctions that can be confirmed are given as 
the diagnostic conclusion8. 

3. Data Validation 
Two important methods are available for validating data in 

conjunction with hierarchical classification. First, it is possible 
to establish a malfunction based on a preponderance of other 
evidence. If the node can establish but not all the data it expects 
is present., the data not meeting expectation is subject to question. 
In the original example, the Pressure Relief System Failure 
established despite a normal pressure reading based on a 
preponderance or other evidence. 

Secondly, intermediate diagnostic conclusions from other 
nodes provide a context to evaluate data. If the Pressure System 
Failure does establish, its subs can expect the pressure reading to 
be abnormal. If it is not, they can also question the pressure 
reading. 

In the remainder of this section, we will discuss the following 
aspects of a data validation system: 

1. How data is questioned based on diagnostic 
expectations. 

2. The various methodologies available that could 
resolve the questionable data. 

3. How the normal control flow of diagnostic probiem 
solving is affected. 

Discovering a questionable datum involves two steps. First, 
set some expectations, using local knowledge or the context of 
other nodes. Second, use those expectations to flag some 
particular data value as questionable. 

The expectations of a malfunction are embodied in the 
knowledge group. The knowledge group mechanism was designed 
to give a rating of pattern fit to data. If the fit is not as expected, 
those data values not meeting expectations are identified as 
questionable. In the example of Pressure Relief Valve Failure, 
evidence exists that the valve has failed even though the pressure 
is normal. The lack of fit between data and pattern allow the 
pressure value to be identified as questionable. Diagnosis 
continues despite apparent data conflict since enough evidence 
exists for establishing the malfunction hypothesis. 

8Note that if multiple conclusions are reached, then either 
multiple independent malfunctions have occurred or multiple 
dependent malfunctions must be resolved into a smaller set [81. 
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Furthermore, the expectations of previous nodes create a 
context of expectation for the node currently being examined. 
Consider the example hierarchy of Figure 3. In order to establish 
the malfunction hypothesis Relief Value Failure, the malfunction 
hypothesis Pressure System Failure must have established. In 
the context of considering the Valve Failure, some expectations 
were created based on the establishment of the Pressure System 
Failure node and other ancestors. Since these expectations 
always exist when considering Valve Failure, i.e., you can’t get to 
Valve Failure without establishing Pressure System Failure, 
they can be coded into the Valve Failure Node. 

How expectations are used for the Pressure Relief System 
Failure node is shown in Figure 5. A modification is made to the 
standard knowledge group of Figure 4 that allows the expert to 
indicate both a match value for the group and a set of data that do 
not meet the expectations established at this stage of the problem 
solving. Thus, Pressure Relief Failure establishes (based on 
other data features) despite the lack of a change of pressure. 
However, in establishing the node, one should question why the 
pressure did not change. This is done by placing the pressure 
value in the rightmost column of the matching row. If that row is 
matched, then the match value is returned but the indicated data 
value is placed in a list of questionable data values which will be 
examined later. If the match value is high enough, the node 
establishes despite the existence of conflicting data. That is, if 
there is enough evidence to show a malfunction despite a 
conflicting value, the problem solving may continue. However, it 
may be the case that the value being questioned is of vital 
importance to establishing the node. The match value will reflect 
this, the node will not establish, but the data will still be placed on 
the questionable data list. After an initial run of the problem 
solver, the questionable data list will consist of data values that 
did not meet the expectations of some node. 

I) Is the Pressure Alarm on? 
2) What is the Pressure above the Condenser? 
3) Is the Temperature Alarm activated? 

Figure 5: Knowledge Group Modified for Data Validation 

Exphsion 
The knowledge engineer is responsible for providing the node 

with both feature matching data and datum values that do not 
meet expectations of the malfunction hypothesis at that point. 
This, as mentioned previously, is a compiled approach to data 
validation. It may appear that such a compilation of possibilities 
will result in a combinatorial explosion. However, not all possible 
combinations of sensor readings need be encoded; only those 
situations which the expert deems reasonable or necessary need 
be placed in the knowledge groups. More importantly, in our 
approach to use of knowledge groups, a hierarchy of abstractions 
is used to go from the data to the classi&atory conclusion C31. 
Thus, the set of data elements needed for any node in the 
hierarchy is limited to only those relevant for the malfunction 
hypothesis it represents. Furthermore, the d&a elements of each 

node are subdivided among the knowledge groups that need them. 
That is, even within the node, the data is further partitioned to 
only those knowledge groups that will use that data. The 
knowledge engineer is therefore presented with a much simpler 
task. Only those combinations of a few data items that present ‘1 
missed expectation need be encoded into the diagnostic system 

3.4. Control Issues 
While sections 3.1 and 3.3 have discussed discovering and 

resolving possibly invalid data, this section addresses the issues 
of control flow changes to the normal establish - refine strategy. 

1. What happens to data whose values have been 
proven to be either incorrect or unresolved? If found 
to be incorrect, the value in the data base must be 
modified, i.e., the central data base value modified, 
to indicate the change. If unresolved, it must be 
flagged as such in hopes of being resolved later. 

2. If incorrect data has been found, then it is possible 
that the problem solver made some mistakes in its 
diagnosis. It may be necessary to re- run the 
hierarchy to see if the diagnostic conclusions 
change. Furthermore, any unresolved data may be 
resolved as a result of the new information. 

3. The basic control 
following cycle: 

strategy would then look like the 
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a. Run the Hierarchy, finding questionable 
values. 

b. Run resolution techniques of section 3.3 to 
resolve the values if possible. 

3. Such a system integrates well with existing systems 
that presently rely solely on hardware redundancy 
by using those valbes as data for both diagnosis and 
a higher level of data validation. 

c. Update the data base with any changes. 

This cycle continues until *either no data is 
questioned or the user sees an answer that is 
satisfactory. 

4. The programming by a user of such a system is 
facilitated by existing tools (CSRL) that need on11 
minor modifications. 

4. Other control strategies ,are also available. The 
resolution techniques of section 3.3 could be run as 
soon as a data item is questioned, i.e., right in the 
middle of the problem solving. This requires a 
backtracking scheme that re - runs any other node 
*that used that value. Finally, the operator can be 
directly involved in changing data values at any 
step of the process based on his/her expert opinion of 
the situation. 
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