
IM. Development Environment for 
respective Reasoning Systems 

Pad R. C&en and Michael Greenberg and Jefferson DeLisio 
Experimental Knowledge Systems Laboratory 

University of Massachusetts 
Amherst, Massachusetts 01IO03~ 

Abstract 
We describe a style of problem solving, prospective 
reasoning, and a development environment, MU, for 
building prospective reasoning systems. Prospective 
reasoning is a form of planning in which knowledge 
of the state of the world and the effects of actions 
is incomplete. We illustrate one implementation of 
prospective reasoning in MU with examples from 
medical diagnosis. 

0 

MU is a development environment for knowledge systems 
that reason with incomplete knowledge. It has evolved 
from a program called MUM that planned diagnostic se- 
quences of questions, tests, and treatments for chest and 
abdominal pain [Cohen et al., 19871. This task is called 
prospective diagnosis, because it emphasizes the selection 
of actions based on their potential outcomes and the cur- 
rent state of the patient. Prospective diagnosis is uncer- 
tain because the precise outcomes of actions cannot be 
predicted, in part because knowledge of the state of the 
patient is incomplete. Yet we have found that physicians 
have rich strategic knowledge with which they plan diag- 
noses in spite of their their uncertainty. MU does not pro- 
vide a knowledge engineer with any particular strategies, 
but rather provides an environment in which it is easy to 
acquire, represent, and experiment with a wide variety of 
strategies for prospective diagnosis and other prospective 
reasone’ag tasks. 

Three goals underlie our research and motivate the 
MU system. First, MU is intended to provide knowledge- 
engineering tools to help acquire expert problem-solving 
strategies. MU allows us to define explicit control features, 
which are the terms an expert uses to discuss strategies. 
Control features in medical diagnosis include degrees of 
belief in disease hypotheses, monetary costs of evidence, 
the consequences of incorrect conclusions, and “intangi- 
bles” such as anxiety and discomfort. Some, like degrees 
of belief, have values that change dynamically during prob- 
lem solving. MU helps the knowledge engineer define the 
functions that compute these dynamic values and keeps 
the values accessible during problem solving. For exam- 

1 We thank Carole Beal for many helpful comments on drafts of 
this paper. This research is funded by DARPA/RADC Contract 
F30602-85-C-0014 and by NSF Grant IST 8409623. 

ple, with MU we can easily define a control feature called 
criticality in terms of two others, say dangerousness and 
degree of belief, and acquire a function for dynamically as- 
sessing the criticality of a hypothesis as its degree of belief 
changes. 

Second, we want to show that strategies enable a 
prospective reasoning system to produce solutions that are 
eficient in the sense of minimizing the costs of attaining 
given levels of certainty. MU has no “built in” problem 
solving strategies, but we have been able to acquire and 
implement efficient, expert strategies in MU because we 
can define explicit control features that represent the vari- 
ous costs of actions, as well as the levels of certainty in the 
evidence produced by actions. 

Third, we want to implement in MU a tasMevel ar- 
chitecture for prospective reasoning [Gruber and Cohen, 
19871, an environment for building systems that plan effi- 
cient sequences of actions, despite uncertainty about their 
outcomes. After working in the domains of medicine and 
plant pathology, we now think that many control features 
pertain to diagnostic tasks in general. Moreover, diagnos- 
ticians in many fields seem to use similar strategies to solve 
problems efficiently. This view is influenced by the recent 
trend in AI toward defining generic tasks [Chandrasakeran, 
19861 such as classification [Clancey, 19851 and the archi- 
tectures that support their implementation. MU shares 
the orientation toward explicit control efforts such as BB* 
[Hayes-Roth, 1985, Hayes-Roth et al., 19861 and Heracles 
[Clancey, 19861 but emphasizes control features that are 
appropriate for prospective reasoning. 

In sum, MU is a tool for representing and providing 
access to the knowledge that underlies efficient prospective 
reasoning. This paper begins with an analysis of prospec- 
tive reasoning, then describes the MU environment first as 
a program, emphasizing its structure and function, then 
from the perspective of the knowledge engineer who uses 
it. As an illustration, we describe how MUM was reimple- 
mented in MU. We conclude with a summary of current 
work. 

0 eas 
Prospective reasoning is reasoning about the question 
“What shall I do next,” given that 

1. knowledge 
complete, 

about the current state of the world is in- 
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2. the outcomes of actions are uncertain, 

3. there are tradeoffs between the costs of actions with 
respect to the problem solver’s goals and the utility of 
the evidence they provide, 

4. states of knowledge that result from 
ence the utility of other actions. 

actions can 

An example 
characteristics: 

from medical diagnosis illustrates these 

influ- 

A middle-aged man reports episodes of chest 
pain that could be either angina or esophageal 
spasm; the physician orders an EKG, but it pro- 
vides no evidence about either hypothesis; then 
he prescribes a trial prescription of vasodilators; 
the patient has no further episodes of pain, so 
the physician keeps him on long-acting vasodila- 
tors and eventually suggests a modified stress test 
to gauge the patient’s exercise tolerance. 

The first and second characteristics of prospective rea- 
soning are clearly seen in this case: Knowledge about the 
state of the patient is incomplete throughout diagnosis, 
and the outcomes of actions (the EKG, trial therapy, stress 
test) are uncertain until they are performed and are some- 
times ambiguous afterwards. Less obvious is the third 
characteristic, the tradeoffs inherent in each action. Sta- 
tistically, an EKG is not likely to provide useful evidence, 
but if it does, the evidence will be completely diagnostic. 
The EKG is given because its minimal costs (e.g., time, 
money, risk, and anxiety) are offset by the possibility of 
obtaining diagnostic evidence2. Similarly, trial therapy 
satisfies many goals; it protects the patient, costs little, 
has few side-effects and, if successful, is good evidence for 
the angina hypothesis. 

The fourth characteristic of prospective reasoning is 
that states of knowledge that result from actions can af- 
fect the utility other actions. This is because the costs 
and benefits of actions are judged in the context of what is 
already known about the patient. For example, trial ther- 
apy is worthwhile if the EKG does not produce diagnostic 
evidence, but is redundant otherwise. The outcome of an 
EKG thus affects the utility of trial therapy. This implies 
a dependency between the actions, and suggests a strat- 
egy: do the EKG first because, if it is positive, then trial 
therapy will be unnecessary. 

Dependencies between actions help the prospective 
reasoner to order actions. We call this planning, though it 
is not planning in the usual AI sense of the word [Sacer- 
doti, 1979, Cohen and Feigenbaum, 19821. The differences 
are due to the first and second characteristics of prospec- 
tive reasoning: the state of the world and the effects of 
actions are both uncertain. The prospective planner must 
“feel its way” by estimating the likely outcomes of one or 
more actions, executing them, then checking whether the 

actual state of the world is as expected. Plans in prospec- 
tive reasoning tend to be short. In contrast, uncertainty is 
excised from most AI planners by assuming that the initial 
state of the world and the effects of all actions are com- 
pletely known (e.g., the STRIPS assumption, [Fikes, Hart, 
and Nilsson, 19721. AI planners can proceed by “dead- 
reckoning,” because it follows from these assumptions that 
every state of the world is completely known. All further 
discussions of planning in this paper refer to the “feel your 
way” variety, not to “dead reckoning.” 

Prospective diagnosis requires a planner to select ac- 
tions based on their costs and utility given the current 
state of knowledge about the patient. We have described 
prospective reasoning as planning because the evidence 
from one action may affect the utility of another. Alter- 
natively, prospective reasoning can be viewed as a series 
of decisions about actions, each conditioned on the cur- 
rent state of knowledge about the patient. We consid- 
ered decision analysis [Raiffa, 1970, Howard, 19661 as a 
mechanism for selecting actions in prospective reasoning, 
but rejected it for two reasons. First, collapsing control 
features such as monetary expense, time, and criticality 
into a single measure of utility negates our goals of ex- 
plicit control and providing a task-level architecture for 
prospective reasoning [Cohen, 1985, Gruber and Cohen, 
19871. Second, decision analysis requires too many num- 
bers - a complete, combinatorial model of each decision. 
The expected utility of each potential action can only be 
calculated from the joint probability distribution of the 
possible outcomes of the previous actions. Hut although 
we do not implement prospective reasoning with decision 
analysis, MU is designed to provide qualitative versions of 
several decision-analytic concepts, including the utility of 
evidence and sensitivity analysis. 

verview 
A coarse view of MU’s structure reveals these components: 

o a frame-based representation language, 
o tools for building inference networks, 
e an interface for defining control features and the func- 

tions that maintain their values, 
8 a language for asking questions about the state of a 

problem and how to change its state. 
* a user interface 

solving, 
for acquiring data during problem- 

With these tools, a knowledge engineer can build a 
knowledge system with a planner for prospective reason- 
ing. MU does not “come with” any particular planners, 
but it provides tools for building planners and incorporat- 
ing expert problem-solving strategies within them. 

Among MU’s tools is an editor for encoding domain 
inferences, such as if EKG shows ischemic changes then 
angina is confirmed, in an inference network. MU does not 
dictate what the nodes in the inference network should rep- 
resent, except in the weak sense that nodes “lower” in the 

2This example oversimplifies the reasons for giving an EKG, but 
not the cost/benefit analysis that underlies the decision. 
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network - relative to the direction of inference - provide 
evidence for those “higher” up. However, the nodes in the 
network are usually differentiated; for example, in Figure 1 
some nodes represent raw data, others represent combina- 
tions of data (called clusters), and a third class represents 
hypotheses. In the medical domain, data nodes represent 
individual questions, tests, or treatments. Clusters com- 
bine several data; for example, the risk-factors-for-aPtgina 
cluster combines the patient’s blood pressure, family his- 
tory, past medical history, gender, and so on. Hypothesis 
nodes represent diseases such as angina. 

Since MU does not provide a planner, the knowledge 
engineer is required to build one. The planner should an- 
swer two questions: 

e Which node(s) in the network should be in the focus 
set, and which of these should be the immediate focus 
of attention? 

e Which actions are applicable, given the focus set, and 
which of these should be taken? 

For example, in the medical domain the focus set might in- 
clude all disease hypotheses that have some support, and 
the immediate focus of attention might be the most dan- 
gerous one. The potential actions might be the leaf nodes 
of the tree rooted at the focus of attention (Fig. I), and 
the selected action might be the cheapest of the potential 
actions. 

An Inference Net in MU 

I 

C.F. = Combining 
Function 

Figure P: Organization of Knowledge Within MU 

MU provides an interface to help the knowledge engi- 
neer define control features such as the degree of belief in 
hypotheses, the dangerousness of diseases, and the costs 
of diagnostic actions. It also provides a language with 
which a planner can query the values of features and ask 
about actions that would change those values. IPlanners 
can ask, for example, “What is the current level of belief 
in angina?” or “Tell me all the inexpensive ways to increase 
the level of belief in angina,” or even the hypothetical ques- 
tion, “Would the level of belief in angina change if blood 
pressure was high?” 

The relationship between these functions of MU and 
the functions of a planner are shown in Figure 2. Us- 
ing MU, a knowledge engineer can: define a control fea- 

ture such as criticality in terms of other features such as 
dangerousness and degree of belief; specify a combining 
function for calculating dynamically the value of critical- 
ity from these other features during problem solving; asso- 
ciate criticality and its combining function with a class of 
nodes, such as diseases, and have each member of the class 
inherit the definitions; and write a planner that encodes 
an expert strategy for dealing with critical or potentially- 
critical diseases. MU facilitates the development of plan- 
ners, and makes their behavior explicit and efficient, but 
the design of planners, and the acquisition of strategies 
and the control features on which they depend, is the job 
of the knowledge engineer. 

MIJ System 

Gluer I es User 

Figure 2: Mu System Schematic 

IV. The MU Environment - 

Knowledge representation in MU centers around features. 
Features and their values are the information with which 
planning decisions are made. Each node in a MU inference 
network can have several features; for example, the node 
that represents trial therapy for angina includes features 
for monetary cost and risk to the patient. Features are 
defined in the normal course of knowledge engineering to 
support expert strategies for prospective reasoning. We 
have identified four classes of features, digerentiated by 
their value types, how they are calculated, and the opera- 
tions that MU can perform on them: 

Static The value of a static feature is specified by the 
expert and does not change at run time. AJoaetary 
cost is a typical static feature, as the cost of an action 
does not change during a session. 

Datum The value of a datum feature is acquired at run 
time by asking the user questions. Data are often the 
results of actions; for example EKG shows ischemic 
changes is a potential result of performing an EKG. 

Dynamic The value of a dynamic feature is computed 
from the values of other feature values in the network. 
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The value of each dynamic feature is calculated by a 
combining function, acquired through knowledge en- 
gineering. A dynamic feature of every hypothesis is its 
degree of belief - a function of the degrees of belief of 
its evidence. 

FOCUS The value of a focus feature is a set of nodes whose 
features satisfy a user-defined predicate. Focus fea- 
tures are a subclass of dynamic features. In medicine, 
the diflerential focus feature can be defined as the list 
of all triggered hypotheses that are not confirmed or 
disconfirmed. 

Feature values can belong to several data types, in- 
cluding integers, sets, normal (one of an unordered set of 
possible values), ordinal (one of an ordered set of possible 
values), boolean, and relational (e.g., isa). 

Four operations are defined for features: one can set a 
feature value (e.g., assert that the monetary cost of a test 
is high) get a feature value (e.g., ask for the cost of a test), 
ask how to change a feature value, and ask what are the 
eflects of changing a feature value. Planners need answers 
to these kinds of questions to help them select actions (see 
Section 5 for further examples.) 

All combinations of feature type, value type, and op- 
erations are not possible. Figure 3 summarizes the legal 
combinations. 

MU provides an interface for defining features. A 
full definition includes the feature type, value type, its 
range of values, and the domain of its combining func- 
tions. For instance, the dynamic feature level of support 
is defined to have seven values on an ordinal scale: dis- 
confirmed, strongly-detracted, detracted, unknown, sup- 
ported, strongly-supported and confirmed. Figure 4 shows 
the definition of level of support. 

Instances of this feature (and others) are associated 
with individual hypotheses, each of which may have its 
own, local function for calculating level of support, and its 
own, dynamic value for the feature3. For example, Fig- 
ure 5 shows part of the frame for the angina hypothesis, 
encompassing an instance of the level of support feature, 
and showing a fragment of the function for calculating its 
value for angina. 

Level-Of-Support 
Feature-type: Dynamic 

Value-Type: Ordinal 

Value-restriction: (disconfirmed strongly-detracted 
detracted unknown 
supported strongly-supported confirmed) 

Combination-function-slot: local to each hypothesis 

Value: the current level of support of the hypothesis 

Figure 4: Definition of Level-Of-Support 

Angina 
Feature-list: (level-of-support severity) 

Current-level-of-support: strongly-supported 

Combination-function: 
IF value of ekg is ischemic-changes 
THEN angina is confirmed 
ELSEIF episode-incited-by contains exertion 

r!s%actors-for-angina are supported 
THEN angina is strongly-supported . . . 

Figure 5: Part of the Angina Frame With Local 

Combining Function 

Combining functions calculate values for dynamic fea- 
tures such as level of belief, criticality, elapsed time, and 
so on. They serve two important functions: First, they 
keep the state of MU’s inference network up-to-date; for 
example, when the result of an EKG becomes available, 
the combining function for the angina node updates the 
value of its level of support feature accordingly. 

Second, and perhaps more important from the stand- 
point of a planner, combining functions provide a prospec- 
tive view of the effects of actions; for example, the combin- 
ing function for angina can be interpreted prospectively to 
say that EKG can potentially confirm angina. The same 

r Data Types Questions 
Feature Number Set Ordinal Normal Get Set How To Effect Of 
static x x x X X 
datum x x x X x x X 
dynamic X X X X X 
focus X X 

Figure 3: Capabilities By Feature Type 

SNot all feature values are calculated locally, but, for reasons dis- 
cussed in [Cohen, Shafer, and Shenoy, 19871 and [Cohen eb al., 19871 
level8 of belief are. 
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point holds for the combining functions for other features: 
MU can prospectively assess the potential effects of actions 
on all dynamic features. A planner can ask MU, “If EKG 
is negative, what changes?” and get back a list of all the 
features of all data, clusters, and hypotheses that are in 
some way affected by the value of EKG. The effects of ac- 
tions are assessed in the context of MU’s current state of 
knowledge (i.e., the state of its network). For example, if 
an EKG has been given and its results were negative, then 
MU knows that the answer to the previous question is that 
nothing changes. 

The syntax of combining functions is relatively unim- 
portant provided they are declarative, so MU’s question- 
answering interface can read them, and experts can easily 
specify and modify them. Currently, combining functions 
look like rules, but we are experimenting with tabular and 
graphic forms [Cohen, Shafer, and Shenoy, 19871. 

The two major classes of combining functions are Zo- 
cal and global. A local function for a node such as angina 
refers only to the nodes in the inference network that are 
directly connected to angina. In contrast, global functions 
survey the state of MU’s entire inference network. l?unc- 
tions for focus features take a global perspective because 
the value of a focus feature is the subset of nodes in the 
network whose features satisfy some predicate. For ex- 
ample, Figure 6 illustrates the combining function for the 
diferential focus feature. Any node that represents a dis- 
ease hypothesis, and is triggered, but is neither confirmed 
nor disconfirmed is a member of the differential. 

Differential 

feature-list: (focus-feature) 

current-focus: (angina prinz-metal ulcer) 

combining-fuxiction: 
Set-of $mde$ member-of disease Such-that 

$node$ is triggered AND 
level-of-support of $node$ is not confirmed AND 
level-of-support of $node$ is not disconfirmed 

Figure 6: Part of the Global Focus-Feature Differential 

The knowledge engineer can define many focus fea- 
tures, each corresponding to a class of nodes that a planner 
may want to monitor. Besides the differential, a planner 
might maintain the set of critical hypotheses (e.g., all dan- 
gerous hypotheses that have moderate support or better), 
or the set of hypotheses that have relatively high prior 
probability, or the set of all supported clusters that po- 
tentially confirm a particular hypothesis. MU supports 
set intersection, union, and sorting on the sets of nodes 
maintained by focus features. A planner’s current focus 
of attention is represented in terms of the results of these 
operations. 

MU is a development environment for prospective reason- 
ing systems. We began our research on prospective reason- 
ing when we were building a system, MUM, for prospective 
diagnosis [Cohen et al., 19871, and realized that we lacked 
the knowledge engineering tools to acquire and modify di- 
agnostic strategies. An example will illustrate the knowl- 
edge engineering issues in building MU: 

MUM had several strategic phases, each of which spec- 
ified how to assess a focus of attention and select an action. 
One phase, called initial assessment, directed MUM to fo- 
cus on triggered hypotheses one by one and take inexpen- 
sive actions that potentially support each. This covered a 
wide range of situations, and maintained the efficiency of 
diagnoses by focusing on low-cost evidence, but it made lit- 
tle sense for very dangerous disease hypotheses. For these, 
diagnosticity - not cost - is the most important crite- 
rion for selecting actions. Once the expert explained this, 
we should have immediately added a new strategic phase, 
run the system, and iterated if its performance was in- 
correct. Unfortunately, control features such as criticality 
and diagnosticity did not have declarative representations 
in MUM, were implemented in lisp, and could not eas- 
ily be composed from other control features. Operations 
such as sorting a list of critical hypotheses by their level 
of support were also implemented in lisp. Each strategic 
phase required a day or two to write and debug. From the 
standpoint of the expert, it was an unacceptable delay. 

The MUM project showed us that MU should facili- 
tate acquisition of control features, maintain their values 
efficiently, and support a broad range of questions about 
the state of the inference network. MU allows a planner 
to ask 6 classes of questions: 

Questions about state are concerned with the current 
values of features. For example: 
Q1: “What is the current level of support for angina?” 

$2: “Is an ulcer dangerous?” 

QS: “What is the cost of performing an angiogram?” 

ach 
Another class of questions is asked to find out how 

ieve a goal. Examples of questions about goals are : 
to 

Q4: “Given what I know now, which tests might confirm 
angina?” 

Q5: “What are all of the tests that might have some bear- 
ing on heart disease?” 

These questions help a planner identify relevant actions 
and select among them. Those that pertain to levels of 
belief are answered by refering to the appropriate combin- 
ing functions and current levels of belief. For example, the 
answer to the question about angina is “EKG,” if an EKG 
has not already been performed (Fig. 5). 

Questions about the effects of actions allow a planner 
to understand the ramifications of an action. For example, 
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asking the expert to supply new control features when the 
current set is insufficient to represent the conditions under 
which strategies are appropriate. We are also building an 
interface to help acquire combining functions. This task 
becomes confusing for the expert and knowledge engineer 
alike when levels of belief must be specified for combina- 
tions of many data. We discuss related work on the design 
of functions to extrapolate from user-specified combining 
functions in [Cohen, Shafer, and Shenoy, 19871. A third 
project is to implement sensitivity analysis in MU. The 
goal is to add a seventh class of queries, of the form, “To 
which data and/or intermediate conclusions is my current 
level of belief in a hypothesis most sensitive.” This will fa- 
cilitate prospective reasoning by giving the planner a dy- 
namic picture not only of its belief in hypotheses, but also 
in its confidence in these beliefs. With sensitivity analysis 
the prospective reasoner will be able to find weak spots 
in its edifice of inferences and shore them up (or let them 
collapse) before they become the basis of unwarranted con- 

Q6: “Which disease hypotheses are affected by performing 
an EKG? 

$7: “What are the possible results of an angiogram?” 
Qs: “Does age have an effect on the criticality of colon 

cancer?” 

MU answers these questions by traversing the relations be- 
tween actions and nodes “higher” in the inference network. 
For example, QS is answered by finding all the nodes for 
which EKG provides evidence. The planner may ask either 
for the immediate consequence of knowing EKG, or for the 
consequences to any desired depth of inference. 

Focus questions help a planner establish focus of at- 
tention. For example: 

Q9: “Give me all diseases that are triggered and danger- 
ous .” 

Q10: “What are all of the critical diseases for which I have 
no information?” 

$11: “Are any hypotheses confirmed?” 
Questions about multiple effects allow the planner 

to combine the previous question types into more com- 
plex queries such as “What tests can discriminate between 
angina and esophageal spasm?” In this case, the term dis- 
criminate is defined to mean “simultaneously increase the 
level of belief in one disease and lower it in an other.” 

Hypothetical questions allow the planner to identify 
dependencies among actions. For example, one can ask, 
“Suppose the response to trial therapy is positive. Now, 
could a stress test still have any bearing on my belief in 
angina?” 

With the ability to define control features and answer 
such questions, we quickly reimplemented MUM’s strategic 
phase planner. Most of the effort went into adding declar- 
ative definitions of control features and their combining 
functions to MUM’s medical inference network. 

MU supports the construction of systems that have the 
characteristics of prospective reasoning identified in Sec- 
tion 2: Prospective reasoning involves answering the ques- 
tion, “What shall I do next,” given uncertainty about the 
state of the world, the effects of actions, tradeoffs between 
the costs and benefits of actions, and precondition rela- 
tions between actions. The six classes of questions, dis- 
cussed above, help planners to decide on courses of action 
despite uncertainty. Questions about state make uncer- 
tainty about hypotheses explicit. Hypothetical questions 
and questions about efEects make uncertainty about the 
outcomes of actions explicit. Questions about goals and 
multiple effects help a planner identify the tradeoffs be- 
tween actions. And hypothetical questions make depen- 
dencies between actions explicit. 

We are currently extending MU’s abilities in several 
ways. One project seeks to automate the process of acquir- 
ing strategies. It attempts to infer strategies from cases, 
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