
IM. Development Environment for
respective Reasoning Systems

Pad R. C&en and Michael Greenberg and Jefferson DeLisio
Experimental Knowledge Systems Laboratory

University of Massachusetts
Amherst, Massachusetts 01IO03~

Abstract
We describe a style of problem solving, prospective
reasoning, and a development environment, MU, for
building prospective reasoning systems. Prospective
reasoning is a form of planning in which knowledge
of the state of the world and the effects of actions
is incomplete. We illustrate one implementation of
prospective reasoning in MU with examples from
medical diagnosis.

0

MU is a development environment for knowledge systems
that reason with incomplete knowledge. It has evolved
from a program called MUM that planned diagnostic se-
quences of questions, tests, and treatments for chest and
abdominal pain [Cohen et al., 19871. This task is called
prospective diagnosis, because it emphasizes the selection
of actions based on their potential outcomes and the cur-
rent state of the patient. Prospective diagnosis is uncer-
tain because the precise outcomes of actions cannot be
predicted, in part because knowledge of the state of the
patient is incomplete. Yet we have found that physicians
have rich strategic knowledge with which they plan diag-
noses in spite of their their uncertainty. MU does not pro-
vide a knowledge engineer with any particular strategies,
but rather provides an environment in which it is easy to
acquire, represent, and experiment with a wide variety of
strategies for prospective diagnosis and other prospective
reasone’ag tasks.

Three goals underlie our research and motivate the
MU system. First, MU is intended to provide knowledge-
engineering tools to help acquire expert problem-solving
strategies. MU allows us to define explicit control features,
which are the terms an expert uses to discuss strategies.
Control features in medical diagnosis include degrees of
belief in disease hypotheses, monetary costs of evidence,
the consequences of incorrect conclusions, and “intangi-
bles” such as anxiety and discomfort. Some, like degrees
of belief, have values that change dynamically during prob-
lem solving. MU helps the knowledge engineer define the
functions that compute these dynamic values and keeps
the values accessible during problem solving. For exam-

1 We thank Carole Beal for many helpful comments on drafts of
this paper. This research is funded by DARPA/RADC Contract
F30602-85-C-0014 and by NSF Grant IST 8409623.

ple, with MU we can easily define a control feature called
criticality in terms of two others, say dangerousness and
degree of belief, and acquire a function for dynamically as-
sessing the criticality of a hypothesis as its degree of belief
changes.

Second, we want to show that strategies enable a
prospective reasoning system to produce solutions that are
eficient in the sense of minimizing the costs of attaining
given levels of certainty. MU has no “built in” problem
solving strategies, but we have been able to acquire and
implement efficient, expert strategies in MU because we
can define explicit control features that represent the vari-
ous costs of actions, as well as the levels of certainty in the
evidence produced by actions.

Third, we want to implement in MU a tasMevel ar-
chitecture for prospective reasoning [Gruber and Cohen,
19871, an environment for building systems that plan effi-
cient sequences of actions, despite uncertainty about their
outcomes. After working in the domains of medicine and
plant pathology, we now think that many control features
pertain to diagnostic tasks in general. Moreover, diagnos-
ticians in many fields seem to use similar strategies to solve
problems efficiently. This view is influenced by the recent
trend in AI toward defining generic tasks [Chandrasakeran,
19861 such as classification [Clancey, 19851 and the archi-
tectures that support their implementation. MU shares
the orientation toward explicit control efforts such as BB*
[Hayes-Roth, 1985, Hayes-Roth et al., 19861 and Heracles
[Clancey, 19861 but emphasizes control features that are
appropriate for prospective reasoning.

In sum, MU is a tool for representing and providing
access to the knowledge that underlies efficient prospective
reasoning. This paper begins with an analysis of prospec-
tive reasoning, then describes the MU environment first as
a program, emphasizing its structure and function, then
from the perspective of the knowledge engineer who uses
it. As an illustration, we describe how MUM was reimple-
mented in MU. We conclude with a summary of current
work.

0 eas
Prospective reasoning is reasoning about the question
“What shall I do next,” given that

1. knowledge
complete,

about the current state of the world is in-

Cohen, Greenberg, and DeLisio 783

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

2. the outcomes of actions are uncertain,

3. there are tradeoffs between the costs of actions with
respect to the problem solver’s goals and the utility of
the evidence they provide,

4. states of knowledge that result from
ence the utility of other actions.

actions can

An example
characteristics:

from medical diagnosis illustrates these

influ-

A middle-aged man reports episodes of chest
pain that could be either angina or esophageal
spasm; the physician orders an EKG, but it pro-
vides no evidence about either hypothesis; then
he prescribes a trial prescription of vasodilators;
the patient has no further episodes of pain, so
the physician keeps him on long-acting vasodila-
tors and eventually suggests a modified stress test
to gauge the patient’s exercise tolerance.

The first and second characteristics of prospective rea-
soning are clearly seen in this case: Knowledge about the
state of the patient is incomplete throughout diagnosis,
and the outcomes of actions (the EKG, trial therapy, stress
test) are uncertain until they are performed and are some-
times ambiguous afterwards. Less obvious is the third
characteristic, the tradeoffs inherent in each action. Sta-
tistically, an EKG is not likely to provide useful evidence,
but if it does, the evidence will be completely diagnostic.
The EKG is given because its minimal costs (e.g., time,
money, risk, and anxiety) are offset by the possibility of
obtaining diagnostic evidence2. Similarly, trial therapy
satisfies many goals; it protects the patient, costs little,
has few side-effects and, if successful, is good evidence for
the angina hypothesis.

The fourth characteristic of prospective reasoning is
that states of knowledge that result from actions can af-
fect the utility other actions. This is because the costs
and benefits of actions are judged in the context of what is
already known about the patient. For example, trial ther-
apy is worthwhile if the EKG does not produce diagnostic
evidence, but is redundant otherwise. The outcome of an
EKG thus affects the utility of trial therapy. This implies
a dependency between the actions, and suggests a strat-
egy: do the EKG first because, if it is positive, then trial
therapy will be unnecessary.

Dependencies between actions help the prospective
reasoner to order actions. We call this planning, though it
is not planning in the usual AI sense of the word [Sacer-
doti, 1979, Cohen and Feigenbaum, 19821. The differences
are due to the first and second characteristics of prospec-
tive reasoning: the state of the world and the effects of
actions are both uncertain. The prospective planner must
“feel its way” by estimating the likely outcomes of one or
more actions, executing them, then checking whether the

actual state of the world is as expected. Plans in prospec-
tive reasoning tend to be short. In contrast, uncertainty is
excised from most AI planners by assuming that the initial
state of the world and the effects of all actions are com-
pletely known (e.g., the STRIPS assumption, [Fikes, Hart,
and Nilsson, 19721. AI planners can proceed by “dead-
reckoning,” because it follows from these assumptions that
every state of the world is completely known. All further
discussions of planning in this paper refer to the “feel your
way” variety, not to “dead reckoning.”

Prospective diagnosis requires a planner to select ac-
tions based on their costs and utility given the current
state of knowledge about the patient. We have described
prospective reasoning as planning because the evidence
from one action may affect the utility of another. Alter-
natively, prospective reasoning can be viewed as a series
of decisions about actions, each conditioned on the cur-
rent state of knowledge about the patient. We consid-
ered decision analysis [Raiffa, 1970, Howard, 19661 as a
mechanism for selecting actions in prospective reasoning,
but rejected it for two reasons. First, collapsing control
features such as monetary expense, time, and criticality
into a single measure of utility negates our goals of ex-
plicit control and providing a task-level architecture for
prospective reasoning [Cohen, 1985, Gruber and Cohen,
19871. Second, decision analysis requires too many num-
bers - a complete, combinatorial model of each decision.
The expected utility of each potential action can only be
calculated from the joint probability distribution of the
possible outcomes of the previous actions. Hut although
we do not implement prospective reasoning with decision
analysis, MU is designed to provide qualitative versions of
several decision-analytic concepts, including the utility of
evidence and sensitivity analysis.

verview
A coarse view of MU’s structure reveals these components:

o a frame-based representation language,
o tools for building inference networks,
e an interface for defining control features and the func-

tions that maintain their values,
8 a language for asking questions about the state of a

problem and how to change its state.
* a user interface

solving,
for acquiring data during problem-

With these tools, a knowledge engineer can build a
knowledge system with a planner for prospective reason-
ing. MU does not “come with” any particular planners,
but it provides tools for building planners and incorporat-
ing expert problem-solving strategies within them.

Among MU’s tools is an editor for encoding domain
inferences, such as if EKG shows ischemic changes then
angina is confirmed, in an inference network. MU does not
dictate what the nodes in the inference network should rep-
resent, except in the weak sense that nodes “lower” in the

2This example oversimplifies the reasons for giving an EKG, but
not the cost/benefit analysis that underlies the decision.

784 Expert Systems

network - relative to the direction of inference - provide
evidence for those “higher” up. However, the nodes in the
network are usually differentiated; for example, in Figure 1
some nodes represent raw data, others represent combina-
tions of data (called clusters), and a third class represents
hypotheses. In the medical domain, data nodes represent
individual questions, tests, or treatments. Clusters com-
bine several data; for example, the risk-factors-for-aPtgina
cluster combines the patient’s blood pressure, family his-
tory, past medical history, gender, and so on. Hypothesis
nodes represent diseases such as angina.

Since MU does not provide a planner, the knowledge
engineer is required to build one. The planner should an-
swer two questions:

e Which node(s) in the network should be in the focus
set, and which of these should be the immediate focus
of attention?

e Which actions are applicable, given the focus set, and
which of these should be taken?

For example, in the medical domain the focus set might in-
clude all disease hypotheses that have some support, and
the immediate focus of attention might be the most dan-
gerous one. The potential actions might be the leaf nodes
of the tree rooted at the focus of attention (Fig. I), and
the selected action might be the cheapest of the potential
actions.

An Inference Net in MU

I

C.F. = Combining
Function

Figure P: Organization of Knowledge Within MU

MU provides an interface to help the knowledge engi-
neer define control features such as the degree of belief in
hypotheses, the dangerousness of diseases, and the costs
of diagnostic actions. It also provides a language with
which a planner can query the values of features and ask
about actions that would change those values. IPlanners
can ask, for example, “What is the current level of belief
in angina?” or “Tell me all the inexpensive ways to increase
the level of belief in angina,” or even the hypothetical ques-
tion, “Would the level of belief in angina change if blood
pressure was high?”

The relationship between these functions of MU and
the functions of a planner are shown in Figure 2. Us-
ing MU, a knowledge engineer can: define a control fea-

ture such as criticality in terms of other features such as
dangerousness and degree of belief; specify a combining
function for calculating dynamically the value of critical-
ity from these other features during problem solving; asso-
ciate criticality and its combining function with a class of
nodes, such as diseases, and have each member of the class
inherit the definitions; and write a planner that encodes
an expert strategy for dealing with critical or potentially-
critical diseases. MU facilitates the development of plan-
ners, and makes their behavior explicit and efficient, but
the design of planners, and the acquisition of strategies
and the control features on which they depend, is the job
of the knowledge engineer.

MIJ System

Gluer I es User

Figure 2: Mu System Schematic

IV. The MU Environment -

Knowledge representation in MU centers around features.
Features and their values are the information with which
planning decisions are made. Each node in a MU inference
network can have several features; for example, the node
that represents trial therapy for angina includes features
for monetary cost and risk to the patient. Features are
defined in the normal course of knowledge engineering to
support expert strategies for prospective reasoning. We
have identified four classes of features, digerentiated by
their value types, how they are calculated, and the opera-
tions that MU can perform on them:

Static The value of a static feature is specified by the
expert and does not change at run time. AJoaetary
cost is a typical static feature, as the cost of an action
does not change during a session.

Datum The value of a datum feature is acquired at run
time by asking the user questions. Data are often the
results of actions; for example EKG shows ischemic
changes is a potential result of performing an EKG.

Dynamic The value of a dynamic feature is computed
from the values of other feature values in the network.

Cohen, Greenberg, and Delisio 785

The value of each dynamic feature is calculated by a
combining function, acquired through knowledge en-
gineering. A dynamic feature of every hypothesis is its
degree of belief - a function of the degrees of belief of
its evidence.

FOCUS The value of a focus feature is a set of nodes whose
features satisfy a user-defined predicate. Focus fea-
tures are a subclass of dynamic features. In medicine,
the diflerential focus feature can be defined as the list
of all triggered hypotheses that are not confirmed or
disconfirmed.

Feature values can belong to several data types, in-
cluding integers, sets, normal (one of an unordered set of
possible values), ordinal (one of an ordered set of possible
values), boolean, and relational (e.g., isa).

Four operations are defined for features: one can set a
feature value (e.g., assert that the monetary cost of a test
is high) get a feature value (e.g., ask for the cost of a test),
ask how to change a feature value, and ask what are the
eflects of changing a feature value. Planners need answers
to these kinds of questions to help them select actions (see
Section 5 for further examples.)

All combinations of feature type, value type, and op-
erations are not possible. Figure 3 summarizes the legal
combinations.

MU provides an interface for defining features. A
full definition includes the feature type, value type, its
range of values, and the domain of its combining func-
tions. For instance, the dynamic feature level of support
is defined to have seven values on an ordinal scale: dis-
confirmed, strongly-detracted, detracted, unknown, sup-
ported, strongly-supported and confirmed. Figure 4 shows
the definition of level of support.

Instances of this feature (and others) are associated
with individual hypotheses, each of which may have its
own, local function for calculating level of support, and its
own, dynamic value for the feature3. For example, Fig-
ure 5 shows part of the frame for the angina hypothesis,
encompassing an instance of the level of support feature,
and showing a fragment of the function for calculating its
value for angina.

Level-Of-Support
Feature-type: Dynamic

Value-Type: Ordinal

Value-restriction: (disconfirmed strongly-detracted
detracted unknown
supported strongly-supported confirmed)

Combination-function-slot: local to each hypothesis

Value: the current level of support of the hypothesis

Figure 4: Definition of Level-Of-Support

Angina
Feature-list: (level-of-support severity)

Current-level-of-support: strongly-supported

Combination-function:
IF value of ekg is ischemic-changes
THEN angina is confirmed
ELSEIF episode-incited-by contains exertion

r!s%actors-for-angina are supported
THEN angina is strongly-supported . . .

Figure 5: Part of the Angina Frame With Local

Combining Function

Combining functions calculate values for dynamic fea-
tures such as level of belief, criticality, elapsed time, and
so on. They serve two important functions: First, they
keep the state of MU’s inference network up-to-date; for
example, when the result of an EKG becomes available,
the combining function for the angina node updates the
value of its level of support feature accordingly.

Second, and perhaps more important from the stand-
point of a planner, combining functions provide a prospec-
tive view of the effects of actions; for example, the combin-
ing function for angina can be interpreted prospectively to
say that EKG can potentially confirm angina. The same

r Data Types Questions
Feature Number Set Ordinal Normal Get Set How To Effect Of
static x x x X X
datum x x x X x x X
dynamic X X X X X
focus X X

Figure 3: Capabilities By Feature Type

SNot all feature values are calculated locally, but, for reasons dis-
cussed in [Cohen, Shafer, and Shenoy, 19871 and [Cohen eb al., 19871
level8 of belief are.

786 Expert Systems

point holds for the combining functions for other features:
MU can prospectively assess the potential effects of actions
on all dynamic features. A planner can ask MU, “If EKG
is negative, what changes?” and get back a list of all the
features of all data, clusters, and hypotheses that are in
some way affected by the value of EKG. The effects of ac-
tions are assessed in the context of MU’s current state of
knowledge (i.e., the state of its network). For example, if
an EKG has been given and its results were negative, then
MU knows that the answer to the previous question is that
nothing changes.

The syntax of combining functions is relatively unim-
portant provided they are declarative, so MU’s question-
answering interface can read them, and experts can easily
specify and modify them. Currently, combining functions
look like rules, but we are experimenting with tabular and
graphic forms [Cohen, Shafer, and Shenoy, 19871.

The two major classes of combining functions are Zo-
cal and global. A local function for a node such as angina
refers only to the nodes in the inference network that are
directly connected to angina. In contrast, global functions
survey the state of MU’s entire inference network. l?unc-
tions for focus features take a global perspective because
the value of a focus feature is the subset of nodes in the
network whose features satisfy some predicate. For ex-
ample, Figure 6 illustrates the combining function for the
diferential focus feature. Any node that represents a dis-
ease hypothesis, and is triggered, but is neither confirmed
nor disconfirmed is a member of the differential.

Differential

feature-list: (focus-feature)

current-focus: (angina prinz-metal ulcer)

combining-fuxiction:
Set-of mde member-of disease Such-that

$node$ is triggered AND
level-of-support of $node$ is not confirmed AND
level-of-support of $node$ is not disconfirmed

Figure 6: Part of the Global Focus-Feature Differential

The knowledge engineer can define many focus fea-
tures, each corresponding to a class of nodes that a planner
may want to monitor. Besides the differential, a planner
might maintain the set of critical hypotheses (e.g., all dan-
gerous hypotheses that have moderate support or better),
or the set of hypotheses that have relatively high prior
probability, or the set of all supported clusters that po-
tentially confirm a particular hypothesis. MU supports
set intersection, union, and sorting on the sets of nodes
maintained by focus features. A planner’s current focus
of attention is represented in terms of the results of these
operations.

MU is a development environment for prospective reason-
ing systems. We began our research on prospective reason-
ing when we were building a system, MUM, for prospective
diagnosis [Cohen et al., 19871, and realized that we lacked
the knowledge engineering tools to acquire and modify di-
agnostic strategies. An example will illustrate the knowl-
edge engineering issues in building MU:

MUM had several strategic phases, each of which spec-
ified how to assess a focus of attention and select an action.
One phase, called initial assessment, directed MUM to fo-
cus on triggered hypotheses one by one and take inexpen-
sive actions that potentially support each. This covered a
wide range of situations, and maintained the efficiency of
diagnoses by focusing on low-cost evidence, but it made lit-
tle sense for very dangerous disease hypotheses. For these,
diagnosticity - not cost - is the most important crite-
rion for selecting actions. Once the expert explained this,
we should have immediately added a new strategic phase,
run the system, and iterated if its performance was in-
correct. Unfortunately, control features such as criticality
and diagnosticity did not have declarative representations
in MUM, were implemented in lisp, and could not eas-
ily be composed from other control features. Operations
such as sorting a list of critical hypotheses by their level
of support were also implemented in lisp. Each strategic
phase required a day or two to write and debug. From the
standpoint of the expert, it was an unacceptable delay.

The MUM project showed us that MU should facili-
tate acquisition of control features, maintain their values
efficiently, and support a broad range of questions about
the state of the inference network. MU allows a planner
to ask 6 classes of questions:

Questions about state are concerned with the current
values of features. For example:
Q1: “What is the current level of support for angina?”

$2: “Is an ulcer dangerous?”

QS: “What is the cost of performing an angiogram?”

ach
Another class of questions is asked to find out how

ieve a goal. Examples of questions about goals are :
to

Q4: “Given what I know now, which tests might confirm
angina?”

Q5: “What are all of the tests that might have some bear-
ing on heart disease?”

These questions help a planner identify relevant actions
and select among them. Those that pertain to levels of
belief are answered by refering to the appropriate combin-
ing functions and current levels of belief. For example, the
answer to the question about angina is “EKG,” if an EKG
has not already been performed (Fig. 5).

Questions about the effects of actions allow a planner
to understand the ramifications of an action. For example,

Cohen, Greenberg, and DeLisio 787

asking the expert to supply new control features when the
current set is insufficient to represent the conditions under
which strategies are appropriate. We are also building an
interface to help acquire combining functions. This task
becomes confusing for the expert and knowledge engineer
alike when levels of belief must be specified for combina-
tions of many data. We discuss related work on the design
of functions to extrapolate from user-specified combining
functions in [Cohen, Shafer, and Shenoy, 19871. A third
project is to implement sensitivity analysis in MU. The
goal is to add a seventh class of queries, of the form, “To
which data and/or intermediate conclusions is my current
level of belief in a hypothesis most sensitive.” This will fa-
cilitate prospective reasoning by giving the planner a dy-
namic picture not only of its belief in hypotheses, but also
in its confidence in these beliefs. With sensitivity analysis
the prospective reasoner will be able to find weak spots
in its edifice of inferences and shore them up (or let them
collapse) before they become the basis of unwarranted con-

Q6: “Which disease hypotheses are affected by performing
an EKG?

$7: “What are the possible results of an angiogram?”
Qs: “Does age have an effect on the criticality of colon

cancer?”

MU answers these questions by traversing the relations be-
tween actions and nodes “higher” in the inference network.
For example, QS is answered by finding all the nodes for
which EKG provides evidence. The planner may ask either
for the immediate consequence of knowing EKG, or for the
consequences to any desired depth of inference.

Focus questions help a planner establish focus of at-
tention. For example:

Q9: “Give me all diseases that are triggered and danger-
ous .”

Q10: “What are all of the critical diseases for which I have
no information?”

$11: “Are any hypotheses confirmed?”
Questions about multiple effects allow the planner

to combine the previous question types into more com-
plex queries such as “What tests can discriminate between
angina and esophageal spasm?” In this case, the term dis-
criminate is defined to mean “simultaneously increase the
level of belief in one disease and lower it in an other.”

Hypothetical questions allow the planner to identify
dependencies among actions. For example, one can ask,
“Suppose the response to trial therapy is positive. Now,
could a stress test still have any bearing on my belief in
angina?”

With the ability to define control features and answer
such questions, we quickly reimplemented MUM’s strategic
phase planner. Most of the effort went into adding declar-
ative definitions of control features and their combining
functions to MUM’s medical inference network.

MU supports the construction of systems that have the
characteristics of prospective reasoning identified in Sec-
tion 2: Prospective reasoning involves answering the ques-
tion, “What shall I do next,” given uncertainty about the
state of the world, the effects of actions, tradeoffs between
the costs and benefits of actions, and precondition rela-
tions between actions. The six classes of questions, dis-
cussed above, help planners to decide on courses of action
despite uncertainty. Questions about state make uncer-
tainty about hypotheses explicit. Hypothetical questions
and questions about efEects make uncertainty about the
outcomes of actions explicit. Questions about goals and
multiple effects help a planner identify the tradeoffs be-
tween actions. And hypothetical questions make depen-
dencies between actions explicit.

We are currently extending MU’s abilities in several
ways. One project seeks to automate the process of acquir-
ing strategies. It attempts to infer strategies from cases,

elusions,

eferences
[Chandrasakeran, 19861 Chandrasakeran, B. Generic tasks in

knowledge-based reasoning: high-level building blocks for expert
system design. IEEE Expert, Fall:23-30, (1986).

[Clancey, 19851 Clancey, W. J. Heuristic classification. Artificial Intel-
ligence. 27:289-350, 1985.

[Clancey, 19861 Clancey, W. J. From guidon to neomycin and hera-
cles in twenty short lessons. AI Magazine. 7(3):40-60, 1986.

[Cohen et al., 19871 Cohen, P., Day, D., Delisio, J., Greenberg, RI.,
Kjeldsen, R., Suthers, D., & Berman, P. Management of uncer-
tainty in medicine. International Journal of Approzimate Reasoning.
l(1): Forthcoming.

[Cohen and Feigenbaum, 19821 Cohen, P. R., and Feigenbaum, E. A.
The Han&k of Artificial Intelligence, Vol. 9. Addison-Wesley, Read-
ing, Massachusetts, 1982.

[Cohen, 19851 Cohen, P. R. Heuristic Reasoning about Uncertainty:
An Artificial InteIligence Approach. Pitman Advanced Reseamh Note.
Pitman Publishing, London, 1985.

[Cohen, Shafer, and Shenoy, 19871 Cohen, P. R., Shafer, G., and
Shenoy, P. Modifiable combining functions. EKSL Report 87-05,
Department of Computer and Information Science, University of
Massachusetts, Amherst, MA, 1987.

(Fikes, Hart, and Nilsson, 19721 Fikes, R., Hart, P., and Nilsson, N.
Learning and executing generalized robot plans. Artificial Intelli-
gence 3(4):251-288, 1972.

[Gruber and Cohen, 19871 Gruber, T. R. & Cohen, P. R. Design for
acquisition: principles of knowledge system design to facilitate
knowledge acquisition. To appear in the International Journalof Man
Machine Studies, 1987.

[Hayes-Roth, 19851 Hayes-Roth, B. 1985. A blackboard architecture
for control. Artificial Intelligence, 26:251-321, 1985.

[Hayes-Roth et al., 1986] Hayes-Roth, B., Garvey, A., Johnson,
M.V., and Hewett, M. A layered environment for reasoning about
action. KSL Report No. 86-98. Department of Computer Science.
Stanford University, 1986.

[Howard, 19661 Howard, R.A. Decision Analysis: Applied Decision
Theory. In D.B. Hertz and J. Melese, editors Pruceedings of the fourth
IntemationaJ Conference on Opemtionof Reseanh, pages 55-7 1, Wiley,
New York, 1966.

[Raiffa, 19701 Raiffa, H. Decision Analysis: Introductory Lectures
on Choices Under Uncertainty. Addison-Wesley, Reading, Mas-
sachusetts, 1970.

[Sacerdoti, 19791 Sacerdoti, E. Problem solving tactics. In Pmceedinga
of the Sixth International Joint Confenwcc on Artif%al Intelligence, pages
1077-1085, 1979.

78% Expert Systems

