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Abstract 

This paper lays the foundation for a diagnostic 

system that improves its performance by deriv- 

ing symptom-fault associations from an under- 

lying causal model and then utilizes those rela- 

tionships to impose further structure upon the 
“deep” model. A qualitative version of sensitiv- 

ity analysis is introduced to extract the implicit 

symptom-fault information from a set of local 

constraints. Parameter aggregation triggered by 
this new informat ion then simplifies diagnosis by 

forming a more abstract causal representation. 

The resulting diagnostician thus employs both an 
experiential and a first-principle approach, where 

in this case “experiences” are compiled directly 

from first-principles. Key issues include the roles 

of knowledge compilation and abstraction in re- 
fining qualitative models of physical systems. 

Reiter (1987) recognizes two approaches to automated 
diagnosis: 

1. Experiential methods in which direct symptom- 

fault links distilled from human expert knowledge 

facilitate quick diagnoses requiring little or no in- 
depth causal reasoning. 

2. First-principle reasoning whereby explict “deep” 

system models are used to derive the causal path- 

ways from faults to symptoms. 

Drawbacks of the experiential method include the gen- 

eration of multiple fault hypotheses - often resolvable 

only by weak probabilistic means - and limited expla- 

nation capabilities. First-principle diagnosis provides 

causal explanations at the price of extensive reasoning 

and/or simulation. However, a deep-model diagnostic 

system that retains its derived symptom-fault associa- 
tions can reduce future diagnostic effort without sacri- 

ficing explanation abilities. 

*This work was supported by FIPSE grant G008440474-02 and 
a Tektronix Graduate Fellowship. 

This research involves the compilation of symptom- 

fault relationships from a mechanical model of the cir- 

culatory system with the intention of reusing that in- 

formation to simplify later diagnosis and therapy. This 

approach partitions the acquisition of diagnostic skill 

into two stages: 

1. The derivation of symptom-fault connections by 

applying constraint satisfaction to the causal model. 

2. The use of these associations to support the ag- 

gregation of structures and parameters to simplify 

the original model. 

Through this process, an automated diagnostician can 
acquire both rational heuristics supported by an un- 

derlying causal model and useful abstractions of that 
model. This avoids the standard expert-system depen- 
dence upon shallow, ad hoc rules and ill-defined symp- 
tom and disease hierarchies. This paper discusses a 
qualitative version of Campbell’s (1983) sensitivity anal- 

ysis as a knowledge-compilation methodology for sim- 

plifying qualitative reasoning about complex physical 

systems. 

The quantitative cardiovascular model developed by Pe- 

terson and Campbell(1985) serves as the physical sys- 

t em to undergo diagnosis. In this simulation environ- 
ment , observable parameters are partitioned into “prop- 

ert ies” and “variables”. The former represent the rel- 
atively static values of a real circulatory system such 

as vascular resistance to blood flow, or heart strength. 

Property deviations constitute “faults” and result only 

from the actions of external factors not represented in 

the model. Hence, they are always independent param- 

eters in causal relationships. Variables, such as cardiac 

blood flow or atrial pressure shift value either in direct 

response to property changes or indirectly through other 
variable changes. In either case, they represent the de- 

pendent system parameters whose deviations constitute 

“symptoms” . 
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In the absence of compensatory mechanisms, this cor- 

responds to a diagnosis of a clogged artery, a common 
source of super-normal resistance, to account for de- 

pressed cardiac output and elevated arterial pressure. 

Figure 1: Basic Circulatory Topology 

Figure 1 (Peterson and Campbell, 1985) portrays 

the basic circulatory topology. Briefly, the left heart 

pumps oxygen-rich blood through the systemic (body) 

arteries to the body’s capillary beds - - the narrow cap- 

illaries being the major source of resistance to blood 

flow. So blood that exited the left heart at a pressure 

of approximately 100 mm Hg returns to the right heart 

via the systemic veins at a pressure close to 5 nun Hg. 

This carbon-dioxide-laden blood gets pumped through 
the pulmonary arteries to the lungs, where it becomes 

re-oxygenated before returning to the left heart. 

After filling with low-pressure blood, the left and 
right hearts contract with both inflow and outflow valves 
closed, thereby developing enough pressure to open the 
arterial valves and send blood flowing toward the body 
and lungs respectively. Although the blood volume of 
the circulatory system remains constant over the short 
time span of these events, the amount of “active” blood 

in the systemic and pulmonary loops varies inversely 

with venous compliance. A highly compliant vein 

stretches or sags to accomodate more blood without 

drastically raising its pressure, thus functioning like an 

electrical capacitor. Because active-blood volume is the 

single most important factor in circulatory behavior, 
and only the veins have dynamic compliances (regu- 
lated by the nervous system), venous compliance is a 

crucial property whose changes incur inverse changes to 

all pressure and flow variables in the circulatory system. 

Using the standard mapping of pressure to voltage 
and flow to current, Figure 2 (Campbell, 1983) abstracts 

the left or right heart and its load into a simple elec- 
trical model. A flow source of maximal internal pres- 
sure, PO, and internal conductance, G, outputs flow, 
Q, against pressure, P, induced by resistance, R. Intu- 

itively, Q varies directly with the pressure differential, 

(Pi, - P), and with pump (heart) strength. As a simple 
diagnostic example, if P increases while Q decreases, 

then P = RQ indicates that R must have increased. 

Pronerties Variables 
A 

R: Total Circulatory Resistance Q: Cardiac Output 

G: Heart Contractility 

PO: Maximal Heart Pressure 

P: Arterial Pressure 

Q = G(Po - P) 

Constraints 
P = RQ 

Figure 2: Heart Pump and Hydraulic Load 

3 uallitative Sk 
Analysis 

Due to the presence of feedback, via both the cyclic flow 
of blood and the bi-directionality of component interac- 
tions, cardiovascular variables are sensitive to changes 

in many properties. Hence, a great many implicit con- 

straints relating single properties to single variables un- 

derlie the causal model. By uncovering these associa- 
tions, many of which are non-local, the diagnostician 

can circumvent causal reasoning and take advantage 
of the highly-constrained model to identify faults after 

minimal testing. Campbell (1983) introduces quantita- 
tive sensitivities to express the dependence of variables 
on properties. Calculated as the ratio of partial differ- 
entials, the sensitivity of P to R, for instance, is: 

(aP/P)/(m/R) = l/(1 + G *R) (1) 

In Figure 2, this represents the system-wide sensitivity 
of P to changes in R under the single-fault assumption 

that no other properties have changed. Sensitivities pro- 
vide useful diagnostic pointers from changing variables 
(i.e. symptoms) to their most strongly-coupled proper- 
ties, where a “strong” sensitivity has an absolute value 
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close to (but never above) 1. However, during most 

diagnostic reasoning, the salient aspect of any sensitiv- 
ity is its sign. Does the property affect the variable 

directly (positive sensitivity value), inversely (negative 

sensitivity value) or not at all (sensitivity close to 0 )? 

In short, a good deal of diagnostic reasoning exploits 
only qualitative information: “If the arterial pressure is 

up, then the vascular compliance might be down, or the 

arterial resistance might be up.” Quantitative sensitiv- 

ities exceed informational needs while charging a large 

computational cost. 

Qualitative sensitivity analysis (QUALSA) extracts 

only the necessary diagnostic information from a set 

of constraints. QUALSA begins by converting all sys- 

tem constraints to “mixed” confluences (De Kleer and 

Brown, 1985). Next, a set of parameter assumptions 

is created to define a qualitative state of the system. 

These assumptions then enable a one-to-one mapping 

from mixed confluences to “pure” confluences. The lat- 

ter characterize the dynamic behavior of the qualitative 
state. Now, to test the system-wide qualitative sensitiv- 

ities of all variables to a selected property 4, 6’4 is set to 

either -I- or -, and all other property’ derivatives are set 

to 0. By restricting the values of all confluence terms to 

the (-A+) q uantity space (Forbus, 1985), QUALSA en- 

counters the ambiguities of qualitative arithmetic (Sim- 

mons, 1986). Using a constraint-satisfaction technique 
capable of dealing with these ambiguities (Thyagara- 
jan, 1987), all valid interpretations of the qualitative 

state’s confluence set are found subject to the previous 
assignment of property-derivative values. The collec- 
tion of qualitative variable values from each interpreta- 
tion serves as a fault-table index for &$ = x, where x 
is the original setting of a4. For each interpretation, 

a comparison of aX to a4 for any variable X yields a 

qualitative sensitivity defined as: 

+ ifaX=& 

Qwx 4) = - ifdX#b4anddX#O (2) 
0 ifdX=O 

4 A Picat ion 

When applied to the abstract cardiovascular model of 

Figure 2, QUALSA proceeds as follows: 

I. Initial equations with properties = (G, Po, R) and 
variables = (P, Q) 

II. Digerentiate and transform to mixed conji?uences. [x] 
represents the sign of x, whether +, - OT 0. 

8Q = aG * [PO - P] + [G] * (aP, - aP) (5) 

aP=BR*[Q]+[R]*dQ 

III. Make parameter assumptions: 

(6) 

Po>P,G>O,Q>O,R>O 

IV. Apply parameter assumptions to 
to derive pure confluences: 

mixed confhences 

dQ=dG+dPo-dp (7) 

aP=aR+aQ 

V. Modify a property (plant a fault): 

dG t + 

(8) 

VI. Apply Sing&-Fault Assumption: 

aPotO,aR+-0 

VII. Call constraint satisfier with simultaneous conflu- 
ences 7 and 8 and instantiated properties. Receive a 
unique valid interpretation: 

(aQ+, aP+> 

VIII. Calculate Qualitative Sensitivities of both variables 
to G using Definition 2: 

(dP = aG) + (QLS(P,G) + +) 

PQ = => * (QLS(Q, G) + +) 

IX. Repeated calls to the constraint satisfier under the 
single-fault assumption with each property faulted high 
and low yield a complete fault table: 

II aP+ I aP0 I dP- II 
I I 1  

aQ+ dG+ or aPo+ nil 3R- 

890 nil nil nil 

aQ- dR+ nil aG- or ZIP,- 

Table 1: Faults indexed by symptoms 

X. Calculate all qualitative sensitivities , which in this 
case remain unambiguous over the 6 interpretations Te- 
turned by the 6 calls- to the constraint satisfier: 

Q=G*(PO--P) (3) 

Table 2: Qualitative Sensitivities 
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5 Ambiguities 

The ambiguity of qualitative arithmetic often spurns an 
abundance of interpretations, any two of which will have 

conflicting sensitivities QLS(X, 4 ,Il) and QLS(X, 4,12) 
for at least one variable X and property 4. Hence, quali- 
tative sensitivities are sometimes indeterminate. In ad- 

dition, selected properties & and ~$2 can yield one or 

more of the same interpretations when individually in- 

stantiated to + or - and run through QUALSA. This 

creates a one-to-many mapping of indices to faults in the 
fault table. Multiple interpretations for a single prop- 

erty setting (fault) contribute to a many-to-one map- 
ping, but this creates no additional ambiguity for the 

backward causal reasoning indigenous to diagnosis. 

The sensitivities of Table 2 indicate that G and PO have 

identical qualitative effects upon variables P and Q. In 

fact, a more detailed cardiovascular model reveals fur- 

ther similarities in their induced sensitivities. These 
similarities, along with their common location, the left 

heart, make PO and G excellent candidates for a sim- 
plifying aggregation. Let H represent a general heart 

strength and define it as: 

H=G*Po (9) 

Under the assumptions: 

G > 0,Po > 0 

steps II-IV of QUALSA produce the pure confluence: 

dH=dG+aPo (10) 

Substituting Equation 10 into Equation 7, a legal sub- 

stitution in qualitative arithmetic (De Kleer and Brown, 
1986) since the coefficient of G * PO is the same in both 

Equation 9 and 3 , yields: 

aQ=aH-BP (11) 

Four applications (two for each property, H and R) of 

QUALSA steps V-VIII to confluence Equations 11 and 8 

generate simplified fault and sensitivity tables: 
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dP+ dP0 ap- 

aQ+ i3H+ nil aR- 

a90 nil nil nil 

aQ- dR+ nil tlH- 

Table 3: Aggregated Fault Table 

Expert Systems 

Table 4: Aggregated Sensitivity Table 

Now, diagnosis can proceed in the abstracted fault 

space containing only H and R. Only if the fault is 
localized to H will granularity shift to the level of PO 
and G, where variables such as the left heart’s dias- 

tolic( “filling”) and systolic( “emptying”) blood volumes 
will discriminate between the two primitive faults. 

Under the strong assumption that no confluence con- 

tains more than a single property derivative, a “com- 

prehensive” multiple-fault table (i.e. one that covers 
from 0 to n faults, where n is the number of model’ 

properties) can be efficiently generated. Normally, this 

would require 3n calls to the constraint satisfier to test 
the affects of all combinations of property-derivative set- 

tings (+,-, and 0). But under the single-property as- 

sumption, only 3n such calls are required, where each 

call involves only the confluences containing a specified 

property. The interpretations returned from each such 

call are then intersected with the interpretations from 

other calls to create indices into the comprehensive fault 

table. 
For example, Equations 11 and 8 have only single 

property derivatives. Setting: 

dH t + 

and passing Equation 11 to the constraint satisfier cre- 

ates interpretation set: 

1SETl = {(aP+, a$-), (W+, aQo), (aP+, aQ+) 

@PO, aQ+), (a-, aQ+)l (12) 

Next, let: 

and pass Equation 4 to the constraint satisfier. This 

returns: 

mxr2 = {(dp-, ag-), p-,~Qo), (dp-, aQ+), 

(=P aQ+), Cap+, aQ+>l (13) 

After intersecting ISETl and ISET to yield: 

ISETS = {(a-, aQ+), W’O, aQ+), 
W+, aQ+>l (14) 

use each of the three ISETS interpretations as an index 

for the double fault (aH+ and dR-). 



The nature of complex systems precludes the use of 
only local behavioral knowledge to diagnose faults ef- 
ficiently. QUALSA exploits local behavioral constraints 

to uncover implicit interactions, both local and global, 

between properties and variables. Its qualitative basis 

avoids the algebraic complexities of quantitative meth- 
ods at the cost of increased ambiguity in both the for- 
ward causal reasoning indigenous to simulation and in 
backward diagnostic reasoning. By exploiting empiri- 

cal ordinal relationships, such as the fact that arterial 
pressure normally greatly exceeds venous pressure, and 
organizing them in a quantity lattice (Simmons, 1986) 
or similar structure, I expect to reduce this nondeter- 
minism considerably. 

The background empirical-knowledge needs of a di- 

agnostician equipped with QUALSA shift from subjec- 
tive “causal” connections to more objective ordinal re- 

lationships. But deep models (no matter how deep) 

serve only as convenient abstractions of real systems; 

QUALSA cannot entirely replace the induction of causal 

rules from empirical observations, especially in complex 

domains such as human physiology. Bather, by using 

QUALSA-derived symptom-fault associations to sup- 

port or refute those obtained empirically, a true integra- 

tion of first-principle and experiential diagnosis results. 

Not only are both deep and high-level models used, but 

the high-level information is derived both experientially 

and analytically. Also, QUALSA outputs may inspire a 
re-interpretation of empirical data in search of support 

for previously-overlooked causal relationships. It can 

thus add top-down control to data analysis by provid- 

ing well-founded causal expectations. In short, rather 
than treating empirical associations as second-class in- 

formation, QUALSA can fortify the inductive processes 
that generate them. 

Campbell (1983) has detailed the drastic sensitivity 
alterations incurred by minor modifications to the com- 

ponent topology, while de Kleer and Brown (1983) have 
illustrated the importance of locality (and more gen- 
erally, no function in structure) for robust modelling. 
Thus, sensitivities can discriminate among the behav- 

iors of structurally similar models and thereby capture 
the behavioral ramifications of minor structural adjust- 
ments; and their derivation from local constraints en- 
hances robustness. In short, sensitivities are well suited 

for models of evolving systems. 
In addition to supporting structural changes, sensi- 

tivities can suggest structural abstractions to strengthen 

diagnostic capabilities. These aggregations embody a 
more organized understanding of the modeled system - 

an understanding recognized and implemented in diag- 

nostic systems such as ABEL(Pati1 et. al, 1982) and 

INTERNIST-II (Pople, 1982) but supplied externally. 

By deriving structure from within, the integration of 
QUALSA and aggregation exhibits a theory of 
self-contained diagnostic learning that unites experien- 
tial and first-principle techniques for their mutual en- 
richment. 

I owe a special thanks to Nils Peterson, whose original version 
of qualitative sensitivity analysis inspired a deeper investiga- 
tion into its implications for diagnostic reasoning, knowledge 
compilation and aggregation. Also, I must thank P. Thya- 
garajan for his constraint satisfier. His ideas, along with 
those of Art Farley, Steve Finer and Nils fueled our initial 
discussions of qualitative reasoning and diagnosis. My great- 
est debt is to my advisor, Sally Douglas, whose relentless crit- 
icism and encouragement have guided me through not only 
this research but most of my graduate experience. 
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