
sesentation A oath to Understan
i&al Circuits

Robert J. Hall Richard EL Lathrop
Artificial Intelligence Lab Artificial Intelligence Lab

M.I.T. M.I.T.
Cambridge, MA 02139 Cambridge, MA 02139

Robert S. Kirk
Semiconductor Division

Gould, Inc.
Santa Clara. CA 950.51

Abstract
We put forth a multiple representation approach to
deriving the behavioral model of a digital circuit au-
tomatically from its structure and the behavioral sim-
ulation models of its components. One represen-
tation supports tempera) reasoning for composition
and simplification, another supports simulation, and
a third helps to partition the translation problem. A
working prototype, FUNSTRUX, is described. ’

I. Introduction
‘I’hc function (time behavior) of a system is determined by
the functions of its parts, together with their structural
connections. Unfortunately, understanding the function of
the whole by understanding the parts is difficult and poorly
understood. The domain of digital circuits is convenient
for investigating this problem because many of its objects
already have well-defined, machine-readable behavior de-
scriptions. These reside in the simulation model libraries
used by the design community.

We have developed a multiple representation approach
to automatically deriving models of overall devjce behavior
from the interconnection structure of its components, to-
gether with their behavior models. Because one of our be-
havior representations is the executable simulation model,
our system can transform executable program code de-
scribing the components’ behavior into executable program
code describing the behavior of the device as a whole.

The naive solution, invisibly simulating the compo-
nents, has no value. Instead, we transform each compo-
nent’s behavior to a representation that highlights value
dependencies over time. These are propagated by substi-
tution according to the circuit structure and simplified to
produce an overall behavior description.

We exploit different representations to facilitate dif-
ferent reasoning tasks:

o The temporal equation representation facilitates rea-
soning about dependencies between values at times.

B The code representation is the executable simulato:
model for the circuit.

Q The absirocl event representation helps partition the
translations .ietween code and equations.

A working r:ototype, FUNSTRUX, accepts as input
the components’ interconnection and simulator models,

a

Figure 1: A dynamic storage cell. Its three components
(l-r) are a clocked inverter with delay 1.7 nsec, a storage
node, and an inverter with delay 0.5 nsec.

and produces an executable simulator model for the en-
tire circuit. The input components’ descriptions (and the
final output) can also be in either of the equivalent abstract,
event or temporal equation representations.

FUNSTRUX has been tested successfully on the
SCORE [Alexander, 19861 standard cell library genera-
tor system, and has successfully generated a behavioral
model for one bit-slice of an AMD 2901 [AMD, 19851 (an
arithmetic-logic unit with memory and control circuitry,
having 370 gate-level components and 365 interconnect-
ing buses). Generating the functional model for this.large
circuit required 7 hours of real time on a Symbolics Lisp
Machine. The resulting module uses less than a third as
much time to simulate and schedules an order of magni-
tude fewer events than the full circuit at component level
[Lathrop et al., 19871.

Behavioral simulators are applications of well-known
event-driven simulation techniques to digital circuits. Each
circuit component has an algorithmic description which
dictates how it propagates value-changes (events).

Consider the circuit shown in Figure 1. For the pur-
poses of this example, we choose a simple set of three logic
levels (values) : 1, 0, and * (“no value,” e.g. the value
of a tri-stated device). The inverter unconditionally puts
out the negation of its input at a delay of 0.5. (Thropgh-
out, times will be in units of nanoseconds.) If the clocked
inverter’s 4 input is 1, then its output becomes the logi-
cal negation of its a input 1.7 time units into the future.
Otherwise, its output will be * 1.7 into the future. The
storage node holds the most recent non-* value. (This ex-

Hall, Lathmop, and Kirk 799

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

substitute
+

simplify

circuit

code
I

conv circuit conv circuit
4

events equation
I I

Figure 21 The FUNSTRUX system has two sorts of mod-
ule. Representation conversion modules change one view
of a circuit into another. Substitute/simplify modules per-
form various sorts of simplification.

ample has been simplified from [Lathrop et al.. 1987 and
reflects minor improvements in FUNSTRUX’ code since
that paper.)

FUNSTRUX produces the following code from this
example. (Only the code for the y output is shown here.)

(defun dynamic-storage-cell-fen (self a y phi)
(depends-on ‘(a phi) ‘0

(if (logone (read-bus phi ‘(bit)))
(put-my-state self ‘(a-state)

(read-bus a ‘(bit)) 0.0)))
(depends-on ’ 0 ’ (a-state)

(drive-bus y self ‘(bit)
(get-my-state self ‘(a-state)) 2.2)))

This says that “when either a or 4 changes, if 4 is
1, schedule an event at the same time to change astate to
the current value of a. Whenever astate changes, schedule
an event 2.2 later to drive y to the value of astate.” This
description omits the double negation and the details of
the storage node changing value.

* e rescentations
ConvePsions

The FUNSTRUX system’s multiple representation scheme
(see [Rich, 19851) is shown in Figure 2. It runs as one
component of the STAR design system [Kirk et al., 19871
and continues an investigation into function, structure, and
their relationships. The STAR system integrates behav-
ioral simulation [Lathrop and Kirk, 1985], netlist manip-
ulation [Lathrop ant >Tirk. 19861, and parameterized cell
generators [Alexander. 19861. STAR’s LISP-based behav-
ioral simulator, SIM?.!ER, is our target.

SIMULATOR CODE REPRESENTATHON. The
code representation is described in [Lathrop and Kirk,
19851. The SIMMER model for the storage node is

(defun storage-node-fen (self b c>
“b input, c output”
(let* ((b-value (read-bus b ’ (bit))) >

(if (#? * b-value)
(put-my-state self ‘(bit) b-value))

(drive-bus c self ‘(bit)
(get-my-state self ‘(bit)))))

ACT EVENTS REPRESENTATION. Dif-
ferent event-driven simulators have differing semantics and
coding conventions; however, they share a common event-
driven core. The abstract event representation partitions
the problem of translating from code to equations (and
back) into (1) a simulator-dependent segment which ab-
stracts from the particular semantics of the simulator into
abstract events, and (2) a simulator-independent segment
which translates from the event representation to the equa-
tion representation. This will make it easier to re-target
the system for different behavior descriptions.

An abstract event description consists of the event
condition predicate, the variable to be scheduled for
change, the relative delay, and the symbolic expression
for the new value. The event condition predicate con-
sists of two parts, the enablement predicate (ep) and the
changing-variable (cv) list. The event occurs if either the
enablement predicate becomes true or one of the changing-
variables changes value while the enablement predicate is
true. jMeinen, 19791 used a notation similar to our enable-
ment predicate (ep) .

The abstract event representation of the storage node,
produced from the code above, is

(Event-cell inputs : (b)
event: ((cv (b) ep <#? * b))

(schedule bstcLte at 0 equal-to b))
event: ((cv(bstate) ep T)

(schedule c at 0 equal-to b,tste>))

This represents a cell with one input, b. bstate repre-
sents the memory of the storage node, and c is the output.
The first event clause indicates that when either the value
of b changes and the predicate [#? * b] is true, or when
the predicate changes from false to true, an event is sched-
uled at the same time which sets bstate to the value of b.
(Note that in the example b is not * only when the clocked
inverter is driving.) The second event clause schedules
a change of c, but since the enablement predicate is T it
happens on any change of bstate.

BORAL EQUATIONS REPRESENTATHON.
One key insight in our approach is that one needs a behav-
ior representation with locality of reference among circuit
values at given times. This means that the time points rel-
evant to the computation of a vai?ue must be explicit, and
that circuit value dependencie: Zould be explicit and local
to uses of the circuit values. For example, applica‘ive pro-
grams have locality of referericsY, while programs which set
and use global variables at widely separated places do not.
[Davis, 19831 has emphasized the importance of locality for
reasoning about the behavior of circuits.

800 Expert Systems

Tinlelines are mappings of the real numbers into val-
ues. We view circuits as mappings between timelines.
[Kelly and Steinberg, 19821 used a timeline notion, but
their time domain was discrete.

A circuit output at time t is expressed in a tempo-
ral equation as an applicative function of its inputs at the
same or earlier times. We use two primitive time opera-
tors, - and + for expressing values at earlier times. The
second argument to - must be a non-negative constant.
-+= allows reference to “the most recent time a predicate
was true.” Thus, {$ [Pu] t} refers to the most recent
time, u, prior (or equal) to t, such that the predicate P
was satisfied at u. This is similar to the left-arrow opera-
tor of [Schwartz et al., 19831; however, they also work with
a discrete time domain. lAmblard et al., 19851 proposed
a similar applicative formalism for representing and rea-
soning about circuits, but did not automate the reasoning
and did not relate the representation to simulation.

We represent computation on values as functional ap-
plication in a side-effects-free LISP-like format. (We have
converted prefix to infix notation here for readability.) The
temporal equations for t,he example’s components are

Clocked Inverter: b(t) = (if (=? I 4(t-1.7)) ;test
- up- 1.7) ;then

*> ;else

Storage Node: c(t) = b({-s [#? 4 b(u)] t})
Inverter: y(t) = 1 c(t-0.5)

REPRESENTATION CONVERSIONS. The repre-
sentation conversion algorithms are treated in more detail
in [Lathrop et al., 19871. Here are the key ideas.

b Code t Abstract Events. The code is symbolically ex-
ecuted to associate each symbol with a formula which
computes its value under the appropriate conditions.
Unknown forms are treated as “black-box” functions
according to the semantics of pure LISP. Forms which
perform side-effects (e.g., reading or setting a global
variable) are not modeled correctly.

o Abstract Events --+ Equations. A value doesn’t change
between events, so the value at time t is the value
of whichever event expression occurred most recently.
By constructing a predicate which indicates when a
variable’s value last changed, we are able to reason
about the last time an event would have triggered.

e Equations -+ Abstract Events. “State objects” may be
created to conditionally delay the values of the inputs.

e Abstract Events + Code. Each variable can be re-
solved into either an I/O port or a state object, using
the circuit structure. Language constructs can then
be generated which produce the effect of each event.

SElW4NTIC CONNECTIONS BETWEEN THE
REPW ESENTATIONS. A multiple representation
scheme must at some point answer the question of seman-
tic equivalence of different representations. We view the
equation representation as a notation for a denotational se-
mantics for the circuit structure. A circuit, together with

inputs and initialization, denotes the unique solution to the
simultaneous equations. The abstract event representation
(and the simulator code) are endowed with event-based op-
erational semantics.]Hall, 19871 shows that our equation
representation is equivalent to an essentially similar ab-
stract events representation as long as zero-delay loops are
disallowed. Proving equivalence of the code and abstract
events representations is an open problem.

MPOSITION. Composing the behaviors of the compo-
nents in equation representation amounts to algebraic sub-
stitution of equations. This process maintains locality of
reference: when a reference to b(t) is expanded by replac-
ing it with b’s definition, the variables on which b depends
appear explicitly everywhere b was used.

Here is the fully substituted example:

y(t) = 1 (if (=? 1 d({Z [#? * (if (=? 1 @(u-1.7)) ;test
1 a(u-1.7) fthen
{)I ;else

1 -O.S}

1 A({$
- 1.7))
‘f? * (if (=? 1 d(v-1.7)) ;test

7 a(z.- 1.7) ;then

*h ;else
t -0.5)

-1.7)
*) ; final else clause

On circuits of even moderate complexity, the combi-
natorial explosion is much worse; hence, simplification is
needed. FUNSTRUX interleaves substitution and simpli-
fication to reduce intermediate expression size.

PATTERN-ACTION SIMPLIFIERS. Our system’s
syntactically local representation supports simple pattern-
action expression transformations, similar to those used by
[Darlington, 19811 for program optimization. The rules in
FUNSTRUX are tailored to simplification. They form a
terminating rule set, so the system applies them until no
more are applicable. Experience has shown that we do not
need to search different application orders.

One simplifier applicable to the equation above is

(#? * (if p re zca e value *)) d’ t

simplifies to
-

(AND predicate (#? * value))

We have implemented a symbolic simplifier which uses ap-
proximately 50-75 rules of this type. It typically reduces
the size of tl-a expressions by about 90%. Syntactic lbcal-
ity is cruciai LO the efficiency of this technique, as hunting
all over a non-local representation would slow down the
pattern matchers. Furthermore, the action parts would be
less efficient, as relatively major surgery would be required.

Hall, Lathrop, and Kirk 801

Simplifiers free of hime operators could also be ap- Simplifiers free of hime operators could also be ap-
plied to the abstract event and/or code representations. plied to the abstract event and/or code representations.
However, the same can not be said for pattern-action sim- However, the same can not be said for pattern-action sim-
plification which involves time relationships. plification which involves time relationships.

REASONING ABOUT TIME RELATIONSHIPS. REASONING ABOUT TIME RELATIONSHIPS.
Locality of reference among time relationships of variables Locality of reference among time relationships of variables
is also important. First, there are several useful time-based is also important. First, there are several useful time-based
pattern-action simplifiers. For example, this is applicable pattern-action simplifiers. For example, this is applicable
to the equation above: to the equation above:

{g [predicate (u-y)] t}-7 {Z [predicate (u-y)] t}-7

simplifies to simplifies to
-

{$ [predicate(u)! (t-y)} {$ Iprediellle’(u)j (t-y)}

Subtracting y from the most recent time u 5 t such that Subtracting y from the most recent time u 5 t such that
predicate is true at u - y, is the same as the most recent predicate is true at u - y, is the same as the most recent
time u 5 t - y that predicate is true. time u 5 t - y that predicate is true.

Applying all of the system’s pattern-action simplifiers Applying all of the system’s pattern-action simplifiers
to the example, we get to the example, we get

y(t) = (if (=? 1 q5 ((2 [=? 14(u)] (t-2.2)})) ; test y(t) = (if (=? 1 4 ((2 [=? 14(u)] (t-2.2)})) ; test
a({-Z I=? 14(u)] (t-2.2)}) a({-Z I=? 14(u)] (t-2.2)}) ; then ; then
- . - . 1 1 ; else ; else

Another crucial feature of the locality property is that Another crucial feature of the locality property is that
it exposes exactly the set (relative to 2) of time points it exposes exactly the set (relative to 2) of time points
which are relevant t.o the output value. These are just which are relevant t.o the output value. These are just
the ones explicitly mentioned in the equation (2, (i-2.2), the ones explicitly mentioned in the equation (2, (i-2.2),
and {g [=? 1 b(u)] (t-2.2)}), plus -00. Note that we and {g [=? 1 b(u)] (t-2.2)}), plus -00. Note that we
have reduced the problem from reasoning about Vt and 3 to have reduced the problem from reasoning about Vt and 3 to
the much easier problem of propositional reasoning about the much easier problem of propositional reasoning about
a finite number of time points. a finite number of time points. It is an open question It is an open question
whether our system will need to reason about any other whether our system will need to reason about any other
times than these for simplification; however, we have not times than these for simplification; however, we have not
yet come across any examples which indicate that it will. yet come across any examples which indicate that it will.

We have implemented a propositional reasoner to sup- We have implemented a propositional reasoner to sup-
port reasoning about the truth of predicates at time points. port reasoning about the truth of predicates at time points.
This is needed in order to incorporate some types of back- This is needed in order to incorporate some types of back-
ground knowledge, such as ground knowledge, such as “if a value is known to be 1 “if a value is known to be 1
at a time, it is not also 0 at that time;” to handle certain at a time, it is not also 0 at that time;” to handle certain
kinds of simplifying assumptions [Feldman and Rich, 19861; kinds of simplifying assumptions [Feldman and Rich, 19861;
and to support simplifications based on logical conditions and to support simplifications based on logical conditions
implied by the context of an expression, for example, pred- implied by the context of an expression, for example, pred-
icates which are true due to nesting within a conditional. icates which are true due to nesting within a conditional.

In the example, (=? 1 c$({-& [=? 1 4(u)] (t-2.2)})) In the example, (=? 1 c$({-& [=? 1 4(u)] (t-2.2)}))
can not be simplified to TRUE, because it could be that can not be simplified to TRUE, because it could be that
4 has never been 1 prior to t - 2.2. Frequently, however, 4 has never been 1 prior to t - 2.2. Frequently, however,
we wish to consider only the normal-case behavior of the we wish to consider only the normal-case behavior of the
circuit, in which 4 will have been 1 prior to t - 2.2 for any t circuit, in which 4 will have been 1 prior to t - 2.2 for any t
under consideration. We can communicate this simplifying under consideration. We can communicate this simplifying
assumption to our system by the axiom assumption to our system by the axiom

iqf ,-- --20).(-z [=? 1 qqu)! t} > -co iqf ,-- --20).(-z [=? 1 qqu)! t} > -co

The system reduces this axiom from a universal quantifi- The system reduces this axiom from a universal quantifi-
cation to a proposition for each time point in the equation cation to a proposition for each time point in the equation
and concludes, through propositional reasoning, that th- and concludes, through propositional reasoning, that th-
predicate is true. With the other simplifiers, this product; predicate is true. With the other simplifiers, this product;

y(t) = a({$ [=? 14(u)] (t-2.2)}) y(t) = a({$ [=? 14(u)] (t-2.2)})

as the simplified equation for the example. Converting this
to abstract events, the system produces

(Event-cell inputs:(a 4)
event:((cv(a 4) ep(=? 1 4))

(schedule astrrte at 0.0 equal-to a>>
event : ((cv(a,tate) ep T)

(schedule y at 2.2 equal-to astnte))

The system then converts this to the code in Section 2.

v. Conchsions an srk

We have explained our multiple representation approach
to understanding the time behavior of digital circuits. To
our knowledge, this is the first system to accept program
code for the functional models of the circuit components,
together with their structural connections, and produce
the

8

program code for the circuit model as a whole.

The equation-based representation makes easier sev-
eral forms of reasoning about the time behavior of
digital circuits. Locality of reference is the crucial
propert,y of this representation.

The code-based representation makes simulation effi-
cient.

The abstract event-based representation partitions the
translation problem between code and equations.

Unknown forms in the program code are treated as
black-boxes according to the semantics of pure LISP.

The system’s local representations support efficient
pattern-action simplification.

The finitely-many relevant time points are made ex-
plicit, allowing propositional reasoning for time-based
simplification.

This work is preliminary and represents only a first
step toward our goal. Currently, FUIVSTRUX is limited
in the class of circuits to which it can be applied. The
restrictions are (1) busses can connect only to blocks (not
to each other), (2) b usses change state only when driven
by a block, and (3) zero-delay loops are disallowed (in par-
ticular, this disallows zero-delay bidirectional elements).

Here are a few issues for further research.

e There are several interesting reasoning tasks in the
realm of digital circuits to which we hope to ex-
tend our representation scheme. Some examples: de-
sign optimization [Steinberg and Mitchell, 19841, trou-
bleshooting [Davis and Shrobe, 19831, testing [Shirley,
19861, and learning about design [Hall, 19861. Each of
these tasks requires its own representations.

e There are several ways the system could be improved:
it currently does not find closed forms for the recursion
equations which result from feedback; ir could allocate
state objects for simulation better than it currently
does; it could recognize low-level implementations of
higher level functions, such as integer +.

802 Expert Systems

o The code which is output by FUNSTRUX is not or-
ganized for readability.

e It may be useful to incorporate work on pattern-action
simplification of VLSI structure [Lathrop and Kirk,
19861.

o What constraints must be met by a particular simu-
lator in order that the abstract event representation
be able to capture an equivalent meaning?

cknowledgments

The authors would like to acknowledge helpful discussions
with Mark Alexander, Walter Hamscher, Chuck Rich, Ron
Rivest, Brian Williams, and Patrick Winston. Personal
support for the first author was furnished by an NSF Grad-
uate Fellowship. Personal support for the second author
was furnished by an IBM Graduate Fellowship, and dur-
ing the early stages of this research by an NSF Gradu-
ate Fellowship. This paper was prepared jointly at the
Gould Semiconductors CAD Research Laboratory and at
the %IJT Artificial Intelligence Laboratory. Support for the
~11’1‘ .4rt,ificial Intelligence Laboratory’s research is pro-
vided in part by the Office of Naval Research under con-
tract X00014-80-C-0505.

eferences

[Alexander, 19861 Mark Alexander. A spatial reasoning
approach to cell layout generation. In Proceedings of
the IEEE 1986 Custom Integrated Circuits Conference
(CICC-86), IEEE, May 1986.

[Amblard et al., 19851 P. Amblard, P. Caspi, and N. Halb-
wachs. Describing and reasoning about circuits be-
havior by means of time functions. In Proceedings of
the 7th International Symposium on Computer Hard-
ware Description Languages and their Applications,
IFIP, 1985.

[AMD, 19851 AMD. Bipolar Microprocessor Logic and In-
terface, AM2900 Family Databook. Advanced Micro
Devices, 1985.

[Darlington, 19811 J. Darlington. An experimental pro-
gram transformation and synthesis system. Artificial
Intelligence, 16, 1981.

[Davis, 19831 Randall Davis. Diagnosis via causal reason-
ing: paths of interaction and the locality principle.
In Proceedings of the Third National Conference on
Artificial Intelligence (AAAI-83), AAAI, 1983.

iDavis and Shrobe, 19831 Randall Davis and Howard
Shrobe. Representing structure and behavior of digi-
tal hardware. Con:puter, 16(10), October 1983..

‘Feldman and Rich, 19+6] Yishai Feldman and Charles
Rich. Reasoning with simplifying assumptions: a
methodology and example. In Proceedings of the Fifth
National Conferer :e on Artijicial Intelligence (AAAI-
86), AAAI, 1986.

IHall, 19861 Robert Joseph Hall. Learning by failing to ex-
plain. In Proceedings of the Fifth National Conference
on Artificial Intelligence (AA,4I-86), AAAI, 1986.

]Hall, 19871 Robert J. Hall. A fully abstract denotational
semantics for event-based simulation. In Proceedings
of the Fifteenth Conference on Applied Simulation
and Modelling, IASTED, 1987.

[Kelly and Steinberg, 19821 Van E. Kelly and Louis Stein-
berg. The CRITTER system: analyzing digital cir-
cuits by propagating behaviors and specifications. In
Proceedings of the Second National Conference on Ar-
tificial Intelligence (AAAI-82), AAAJ, 1982.

[Kirk et al., 19871 Robert S. Kirk. Robert J. Hall, and
Richard H. Lathrop. SCORE cell development en-
vironment. In Proceedings of the IEEE Custom Inte-
grated Circuits Conference (CICC-871, IEEE, 1987.

[Lathrop and Kirk, 19851 Richard H. Lathrop and
Robert S. Kirk. An extensible object-oriented mixed-,
mode functional simulation system. In Proceedings of
the 22nd Design Automation Conference, IEEE, 1985.

iJ,athrop and Kirk. 1986’ Richard H. Lathrop and
Robert S. Kirk. A system M hich uses examples to
fear11 \‘LSl structure manipulation. In Proceedings
of the Fifth ,1’aiiorlal Corlfererlce on Artificial ln1elll-
gence (.4AA4 I-86), .4AAI, 1986.

ilathrop ei al., 1987, Richard II. Lathrop. Robert J. Hall,
and Robert S. Kirk. Functional abstraction from
structure in VLSI simulation models. In Proceedings
of the 24th Design Automation Conference, IEEE,
1987.

[Meinen, 19791 P. Meinen. Formal semantic description of
register transfer language elements and mechanized
simulator construction. In Proceedings of the 4th
IEEE International Symposium on Computer Bard-
ware Description Languages, IEEE, 1979.

[Rich, 19851 Ch ar es 1 Rich. The layered architecture of a
system for reasoning about programs. In Proceedings
of the Ninth International Joint Conference on Arti-
ficial Intelligence, 1985.

[Schwartz et al., 19831 R. L. Schwartz, I’. M. Melliar-
Smith, F.H. Vogt, and D.A. Plaisted. An Interval
Logic for Higher-Level Temporal Reasoning. Contrac-
tors Report: Contract Number NASl-17067, National
Aeronautics And Space Administration, 1983.

[Shirley, 19861 Mark H. Shirley. Generating tests by ex-
ploiting designed behavior. In Proceedings of the Fifth
National Conference on Artificial Intelltigence (AAAI-
86), AAAI, 1986.

ISteinberg and Mitchell, 19841 Louis 1. Steinberg and
Tom 11. Mitchell. A knorvledge based approach to
VLSI CAD: the REDESJ:~;N system. In Proceedings
of the 2lsf Design A v/c. :zation Conference, IEEE,
1984.

Hall, Lathrop, and Kirk 803

