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Abstract 
We put forth a multiple representation approach to 
deriving the behavioral model of a digital circuit au- 
tomatically from its structure and the behavioral sim- 
ulation models of its components. One represen- 
tation supports tempera) reasoning for composition 
and simplification, another supports simulation, and 
a third helps to partition the translation problem. A 
working prototype, FUNSTRUX, is described. ’ 

I. Introduction 
‘I’hc function (time behavior) of a system is determined by 
the functions of its parts, together with their structural 
connections. Unfortunately, understanding the function of 
the whole by understanding the parts is difficult and poorly 
understood. The domain of digital circuits is convenient 
for investigating this problem because many of its objects 
already have well-defined, machine-readable behavior de- 
scriptions. These reside in the simulation model libraries 
used by the design community. 

We have developed a multiple representation approach 
to automatically deriving models of overall devjce behavior 
from the interconnection structure of its components, to- 
gether with their behavior models. Because one of our be- 
havior representations is the executable simulation model, 
our system can transform executable program code de- 
scribing the components’ behavior into executable program 
code describing the behavior of the device as a whole. 

The naive solution, invisibly simulating the compo- 
nents, has no value. Instead, we transform each compo- 
nent’s behavior to a representation that highlights value 
dependencies over time. These are propagated by substi- 
tution according to the circuit structure and simplified to 
produce an overall behavior description. 

We exploit different representations to facilitate dif- 
ferent reasoning tasks: 

o The temporal equation representation facilitates rea- 
soning about dependencies between values at times. 

B The code representation is the executable simulato: 
model for the circuit. 

Q The absirocl event representation helps partition the 
translations .ietween code and equations. 

A working r:ototype, FUNSTRUX, accepts as input 
the components’ interconnection and simulator models, 

a 

Figure 1: A dynamic storage cell. Its three components 
(l-r) are a clocked inverter with delay 1.7 nsec, a storage 
node, and an inverter with delay 0.5 nsec. 

and produces an executable simulator model for the en- 
tire circuit. The input components’ descriptions (and the 
final output) can also be in either of the equivalent abstract, 
event or temporal equation representations. 

FUNSTRUX has been tested successfully on the 
SCORE [Alexander, 19861 standard cell library genera- 
tor system, and has successfully generated a behavioral 
model for one bit-slice of an AMD 2901 [AMD, 19851 (an 
arithmetic-logic unit with memory and control circuitry, 
having 370 gate-level components and 365 interconnect- 
ing buses). Generating the functional model for this.large 
circuit required 7 hours of real time on a Symbolics Lisp 
Machine. The resulting module uses less than a third as 
much time to simulate and schedules an order of magni- 
tude fewer events than the full circuit at component level 
[Lathrop et al., 19871. 

Behavioral simulators are applications of well-known 
event-driven simulation techniques to digital circuits. Each 
circuit component has an algorithmic description which 
dictates how it propagates value-changes (events). 

Consider the circuit shown in Figure 1. For the pur- 
poses of this example, we choose a simple set of three logic 
levels (values) : 1, 0, and * (“no value,” e.g. the value 
of a tri-stated device). The inverter unconditionally puts 
out the negation of its input at a delay of 0.5. (Thropgh- 
out, times will be in units of nanoseconds.) If the clocked 
inverter’s 4 input is 1, then its output becomes the logi- 
cal negation of its a input 1.7 time units into the future. 
Otherwise, its output will be * 1.7 into the future. The 
storage node holds the most recent non-* value. (This ex- 
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Figure 21 The FUNSTRUX system has two sorts of mod- 
ule. Representation conversion modules change one view 
of a circuit into another. Substitute/simplify modules per- 
form various sorts of simplification. 

ample has been simplified from [Lathrop et al.. 1987 and 
reflects minor improvements in FUNSTRUX’ code since 
that paper.) 

FUNSTRUX produces the following code from this 
example. (Only the code for the y output is shown here.) 

(defun dynamic-storage-cell-fen (self a y phi) 
(depends-on ‘(a phi) ‘0 

(if (logone (read-bus phi ‘(bit))) 
(put-my-state self ‘(a-state) 

(read-bus a ‘(bit)) 0.0))) 
(depends-on ’ 0 ’ (a-state) 

(drive-bus y self ‘(bit) 
(get-my-state self ‘(a-state)) 2.2))) 

This says that “when either a or 4 changes, if 4 is 
1, schedule an event at the same time to change astate to 
the current value of a. Whenever astate changes, schedule 
an event 2.2 later to drive y to the value of astate.” This 
description omits the double negation and the details of 
the storage node changing value. 

* e rescentations 
ConvePsions 

The FUNSTRUX system’s multiple representation scheme 
(see [Rich, 19851) is shown in Figure 2. It runs as one 
component of the STAR design system [Kirk et al., 19871 
and continues an investigation into function, structure, and 
their relationships. The STAR system integrates behav- 
ioral simulation [Lathrop and Kirk, 1985], netlist manip- 
ulation [Lathrop ant >Tirk. 19861, and parameterized cell 
generators [Alexander. 19861. STAR’s LISP-based behav- 
ioral simulator, SIM?.!ER, is our target. 

SIMULATOR CODE REPRESENTATHON. The 
code representation is described in [Lathrop and Kirk, 
19851. The SIMMER model for the storage node is 

(defun storage-node-fen (self b c> 
“b input, c output” 
(let* ((b-value (read-bus b ’ (bit))) > 

(if (#? * b-value) 
(put-my-state self ‘(bit) b-value)) 

(drive-bus c self ‘(bit) 
(get-my-state self ‘(bit))))) 

ACT EVENTS REPRESENTATION. Dif- 
ferent event-driven simulators have differing semantics and 
coding conventions; however, they share a common event- 
driven core. The abstract event representation partitions 
the problem of translating from code to equations (and 
back) into (1) a simulator-dependent segment which ab- 
stracts from the particular semantics of the simulator into 
abstract events, and (2) a simulator-independent segment 
which translates from the event representation to the equa- 
tion representation. This will make it easier to re-target 
the system for different behavior descriptions. 

An abstract event description consists of the event 
condition predicate, the variable to be scheduled for 
change, the relative delay, and the symbolic expression 
for the new value. The event condition predicate con- 
sists of two parts, the enablement predicate (ep) and the 
changing-variable (cv) list. The event occurs if either the 
enablement predicate becomes true or one of the changing- 
variables changes value while the enablement predicate is 
true. jMeinen, 19791 used a notation similar to our enable- 
ment predicate (ep) . 

The abstract event representation of the storage node, 
produced from the code above, is 

(Event-cell inputs : (b) 
event: ((cv (b) ep <#? * b)) 

(schedule bstcLte at 0 equal-to b)) 
event: ( (cv(bstate) ep T) 

(schedule c at 0 equal-to b,tste>)) 

This represents a cell with one input, b. bstate repre- 
sents the memory of the storage node, and c is the output. 
The first event clause indicates that when either the value 
of b changes and the predicate [#? * b] is true, or when 
the predicate changes from false to true, an event is sched- 
uled at the same time which sets bstate to the value of b. 
(Note that in the example b is not * only when the clocked 
inverter is driving.) The second event clause schedules 
a change of c, but since the enablement predicate is T it 
happens on any change of bstate. 

BORAL EQUATIONS REPRESENTATHON. 
One key insight in our approach is that one needs a behav- 
ior representation with locality of reference among circuit 
values at given times. This means that the time points rel- 
evant to the computation of a vai?ue must be explicit, and 
that circuit value dependencie: Zould be explicit and local 
to uses of the circuit values. For example, applica‘ive pro- 
grams have locality of referericsY, while programs which set 
and use global variables at widely separated places do not. 
[Davis, 19831 has emphasized the importance of locality for 
reasoning about the behavior of circuits. 
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Tinlelines are mappings of the real numbers into val- 
ues. We view circuits as mappings between timelines. 
[Kelly and Steinberg, 19821 used a timeline notion, but 
their time domain was discrete. 

A circuit output at time t is expressed in a tempo- 
ral equation as an applicative function of its inputs at the 
same or earlier times. We use two primitive time opera- 
tors, - and + for expressing values at earlier times. The 
second argument to - must be a non-negative constant. 
-+= allows reference to “the most recent time a predicate 
was true.” Thus, {$ [Pu] t} refers to the most recent 
time, u, prior (or equal) to t, such that the predicate P 
was satisfied at u. This is similar to the left-arrow opera- 
tor of [Schwartz et al., 19831; however, they also work with 
a discrete time domain. lAmblard et al., 19851 proposed 
a similar applicative formalism for representing and rea- 
soning about circuits, but did not automate the reasoning 
and did not relate the representation to simulation. 

We represent computation on values as functional ap- 
plication in a side-effects-free LISP-like format. (We have 
converted prefix to infix notation here for readability.) The 
temporal equations for t,he example’s components are 

Clocked Inverter: b(t) = (if (=? I 4(t-1.7)) ;test 
- up- 1.7) ;then 

*> ;else 

Storage Node: c(t) = b({-s [#? 4 b(u)] t}) 
Inverter: y(t) = 1 c(t-0.5) 

REPRESENTATION CONVERSIONS. The repre- 
sentation conversion algorithms are treated in more detail 
in [Lathrop et al., 19871. Here are the key ideas. 

b Code t Abstract Events. The code is symbolically ex- 
ecuted to associate each symbol with a formula which 
computes its value under the appropriate conditions. 
Unknown forms are treated as “black-box” functions 
according to the semantics of pure LISP. Forms which 
perform side-effects (e.g., reading or setting a global 
variable) are not modeled correctly. 

o Abstract Events --+ Equations. A value doesn’t change 
between events, so the value at time t is the value 
of whichever event expression occurred most recently. 
By constructing a predicate which indicates when a 
variable’s value last changed, we are able to reason 
about the last time an event would have triggered. 

e Equations -+ Abstract Events. “State objects” may be 
created to conditionally delay the values of the inputs. 

e Abstract Events + Code. Each variable can be re- 
solved into either an I/O port or a state object, using 
the circuit structure. Language constructs can then 
be generated which produce the effect of each event. 

SElW4NTIC CONNECTIONS BETWEEN THE 
REPW ESENTATIONS. A multiple representation 
scheme must at some point answer the question of seman- 
tic equivalence of different representations. We view the 
equation representation as a notation for a denotational se- 
mantics for the circuit structure. A circuit, together with 

inputs and initialization, denotes the unique solution to the 
simultaneous equations. The abstract event representation 
(and the simulator code) are endowed with event-based op- 
erational semantics. ]Hall, 19871 shows that our equation 
representation is equivalent to an essentially similar ab- 
stract events representation as long as zero-delay loops are 
disallowed. Proving equivalence of the code and abstract 
events representations is an open problem. 

MPOSITION. Composing the behaviors of the compo- 
nents in equation representation amounts to algebraic sub- 
stitution of equations. This process maintains locality of 
reference: when a reference to b(t) is expanded by replac- 
ing it with b’s definition, the variables on which b depends 
appear explicitly everywhere b was used. 

Here is the fully substituted example: 

y(t) = 1 (if (=? 1 d({Z [#? * (if (=? 1 @(u-1.7)) ;test 
1 a(u-1.7) fthen 
{)I ;else 

1 -O.S} 

1 A({$ 
- 1.7)) 
‘f? * (if (=? 1 d(v-1.7)) ;test 

7 a(z.- 1.7) ;then 

*h ;else 
t -0.5) 

-1.7) 
*) ; final else clause 

On circuits of even moderate complexity, the combi- 
natorial explosion is much worse; hence, simplification is 
needed. FUNSTRUX interleaves substitution and simpli- 
fication to reduce intermediate expression size. 

PATTERN-ACTION SIMPLIFIERS. Our system’s 
syntactically local representation supports simple pattern- 
action expression transformations, similar to those used by 
[Darlington, 19811 for program optimization. The rules in 
FUNSTRUX are tailored to simplification. They form a 
terminating rule set, so the system applies them until no 
more are applicable. Experience has shown that we do not 
need to search different application orders. 

One simplifier applicable to the equation above is 

(#? * (if p re zca e value *)) d’ t 

simplifies to 
- 

(AND predicate (#? * value)) 

We have implemented a symbolic simplifier which uses ap- 
proximately 50-75 rules of this type. It typically reduces 
the size of tl-a expressions by about 90%. Syntactic lbcal- 
ity is cruciai LO the efficiency of this technique, as hunting 
all over a non-local representation would slow down the 
pattern matchers. Furthermore, the action parts would be 
less efficient, as relatively major surgery would be required. 
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Simplifiers free of hime operators could also be ap- Simplifiers free of hime operators could also be ap- 
plied to the abstract event and/or code representations. plied to the abstract event and/or code representations. 
However, the same can not be said for pattern-action sim- However, the same can not be said for pattern-action sim- 
plification which involves time relationships. plification which involves time relationships. 

REASONING ABOUT TIME RELATIONSHIPS. REASONING ABOUT TIME RELATIONSHIPS. 
Locality of reference among time relationships of variables Locality of reference among time relationships of variables 
is also important. First, there are several useful time-based is also important. First, there are several useful time-based 
pattern-action simplifiers. For example, this is applicable pattern-action simplifiers. For example, this is applicable 
to the equation above: to the equation above: 

{g [predicate (u-y)] t}-7 {Z [predicate (u-y)] t}-7 

simplifies to simplifies to 
- 

{$ [predicate(u)! (t-y)} {$ Iprediellle’(u)j (t-y)} 

Subtracting y from the most recent time u 5 t such that Subtracting y from the most recent time u 5 t such that 
predicate is true at u - y, is the same as the most recent predicate is true at u - y, is the same as the most recent 
time u 5 t - y that predicate is true. time u 5 t - y that predicate is true. 

Applying all of the system’s pattern-action simplifiers Applying all of the system’s pattern-action simplifiers 
to the example, we get to the example, we get 

y(t) = (if (=? 1 q5 ((2 [=? 14(u)] (t-2.2)})) ; test y(t) = (if (=? 1 4 ((2 [=? 14(u)] (t-2.2)})) ; test 
a({-Z I=? 14(u)] (t-2.2)}) a({-Z I=? 14(u)] (t-2.2)}) ; then ; then 
- . - . 1 1 ; else ; else 

Another crucial feature of the locality property is that Another crucial feature of the locality property is that 
it exposes exactly the set (relative to 2) of time points it exposes exactly the set (relative to 2) of time points 
which are relevant t.o the output value. These are just which are relevant t.o the output value. These are just 
the ones explicitly mentioned in the equation (2, (i-2.2), the ones explicitly mentioned in the equation (2, (i-2.2), 
and {g [=? 1 b(u)] (t-2.2)}), plus -00. Note that we and {g [=? 1 b(u)] (t-2.2)}), plus -00. Note that we 
have reduced the problem from reasoning about Vt and 3 to have reduced the problem from reasoning about Vt and 3 to 
the much easier problem of propositional reasoning about the much easier problem of propositional reasoning about 
a finite number of time points. a finite number of time points. It is an open question It is an open question 
whether our system will need to reason about any other whether our system will need to reason about any other 
times than these for simplification; however, we have not times than these for simplification; however, we have not 
yet come across any examples which indicate that it will. yet come across any examples which indicate that it will. 

We have implemented a propositional reasoner to sup- We have implemented a propositional reasoner to sup- 
port reasoning about the truth of predicates at time points. port reasoning about the truth of predicates at time points. 
This is needed in order to incorporate some types of back- This is needed in order to incorporate some types of back- 
ground knowledge, such as ground knowledge, such as “if a value is known to be 1 “if a value is known to be 1 
at a time, it is not also 0 at that time;” to handle certain at a time, it is not also 0 at that time;” to handle certain 
kinds of simplifying assumptions [Feldman and Rich, 19861; kinds of simplifying assumptions [Feldman and Rich, 19861; 
and to support simplifications based on logical conditions and to support simplifications based on logical conditions 
implied by the context of an expression, for example, pred- implied by the context of an expression, for example, pred- 
icates which are true due to nesting within a conditional. icates which are true due to nesting within a conditional. 

In the example, (=? 1 c$({-& [=? 1 4(u)] (t-2.2)})) In the example, (=? 1 c$({-& [=? 1 4(u)] (t-2.2)})) 
can not be simplified to TRUE, because it could be that can not be simplified to TRUE, because it could be that 
4 has never been 1 prior to t - 2.2. Frequently, however, 4 has never been 1 prior to t - 2.2. Frequently, however, 
we wish to consider only the normal-case behavior of the we wish to consider only the normal-case behavior of the 
circuit, in which 4 will have been 1 prior to t - 2.2 for any t circuit, in which 4 will have been 1 prior to t - 2.2 for any t 
under consideration. We can communicate this simplifying under consideration. We can communicate this simplifying 
assumption to our system by the axiom assumption to our system by the axiom 

iqf ,-- --20).(-z [=? 1 qqu)! t} > -co iqf ,-- --20).(-z [=? 1 qqu)! t} > -co 

The system reduces this axiom from a universal quantifi- The system reduces this axiom from a universal quantifi- 
cation to a proposition for each time point in the equation cation to a proposition for each time point in the equation 
and concludes, through propositional reasoning, that th- and concludes, through propositional reasoning, that th- 
predicate is true. With the other simplifiers, this product; predicate is true. With the other simplifiers, this product; 

y(t) = a({$ [=? 14(u)] (t-2.2)}) y(t) = a({$ [=? 14(u)] (t-2.2)}) 

as the simplified equation for the example. Converting this 
to abstract events, the system produces 

(Event-cell inputs:(a 4) 
event:((cv(a 4) ep(=? 1 4)) 

(schedule astrrte at 0.0 equal-to a>> 
event : ( (cv(a,tate) ep T) 

(schedule y at 2.2 equal-to astnte)) 

The system then converts this to the code in Section 2. 

v. Conchsions an srk 

We have explained our multiple representation approach 
to understanding the time behavior of digital circuits. To 
our knowledge, this is the first system to accept program 
code for the functional models of the circuit components, 
together with their structural connections, and produce 
the 
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program code for the circuit model as a whole. 

The equation-based representation makes easier sev- 
eral forms of reasoning about the time behavior of 
digital circuits. Locality of reference is the crucial 
propert,y of this representation. 

The code-based representation makes simulation effi- 
cient. 

The abstract event-based representation partitions the 
translation problem between code and equations. 

Unknown forms in the program code are treated as 
black-boxes according to the semantics of pure LISP. 

The system’s local representations support efficient 
pattern-action simplification. 

The finitely-many relevant time points are made ex- 
plicit, allowing propositional reasoning for time-based 
simplification. 

This work is preliminary and represents only a first 
step toward our goal. Currently, FUIVSTRUX is limited 
in the class of circuits to which it can be applied. The 
restrictions are (1) busses can connect only to blocks (not 
to each other), (2) b usses change state only when driven 
by a block, and (3) zero-delay loops are disallowed (in par- 
ticular, this disallows zero-delay bidirectional elements). 

Here are a few issues for further research. 

e There are several interesting reasoning tasks in the 
realm of digital circuits to which we hope to ex- 
tend our representation scheme. Some examples: de- 
sign optimization [Steinberg and Mitchell, 19841, trou- 
bleshooting [Davis and Shrobe, 19831, testing [Shirley, 
19861, and learning about design [Hall, 19861. Each of 
these tasks requires its own representations. 

e There are several ways the system could be improved: 
it currently does not find closed forms for the recursion 
equations which result from feedback; ir could allocate 
state objects for simulation better than it currently 
does; it could recognize low-level implementations of 
higher level functions, such as integer +. 
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o The code which is output by FUNSTRUX is not or- 
ganized for readability. 

e It may be useful to incorporate work on pattern-action 
simplification of VLSI structure [Lathrop and Kirk, 
19861. 

o What constraints must be met by a particular simu- 
lator in order that the abstract event representation 
be able to capture an equivalent meaning? 
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