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Abstract 

An expert system that monitors complex activity requires 
knowledge that is difficult to capture with standard rule-based 
representations. The focus of this research has been to design 
and implement script-based reasoning techniques integrated 
into a rule-based expert system for situation monitoring to 
address this problem. The resulting expert system, Scripted 
ANalyst (SCAN), for battlefield monitoring has the capability 
of reasoning about tactical situations as they develop and pro- 
viding plausible explanations of activities as inferred from intel- 
ligence reports. Sequences of events are monitored through the 
use of script templates which are matched against events and 
the time relations between events. SCAN detects causal rela- 
tions between events, generates multiple hypotheses, fills in 
information gaps, and sets up expectations about time- 
dependent events--all features a simple rule-based expert system 
cannot easily provide. 

1. IntrocSuction 

This paper describes the research and development of 
artificial intelligence paradigms and structures needed to 
build an expert system decision aid for army tactical intel- 
ligence staff as they hypothesize about a battlefield situa- 
tion. In monitoring the situation to support force com- 
mand and control (C2) d ecision-making, a military intelli- 
gence analyst must not only interpret the force disposition 
given reports from multiple sources but must also formu- 
late a sense of how a situation is developing over a long 
period of time. An expert system designed to monitor 
sequences of events can help the analyst keep track of the 
many possible explanations of ongoing actions and inten- 
tions and recognize any unusual or unexpected activity. 

However, such a system must have internal represen- 
tations to deal with sophisticated time and order relation- 
ships so that it can generate multiple hypotheses, fill in 
information gaps, and set up expectations. It must notice 
trends and shifts in the action and activity and provide 
clear explanations of its inferencing. This inferencing 
includes the ability to expect that certain events have 
occurred based on information about related events 
without necessarily asserting these through the rule base. 
All this must be done in an environment where informa- 
tion is potentially sparse or misleading. 
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Scripted ANalyst (SCAN) is an expert system with 
these capabilities made possible by integrating script- 
based event matching and time reasoning into a previously 
developed rule-based system, ANALYST, which supplies a 
situation map of enemy force dispositions and a critical 
indicator monitoring capability. The main contributions of 
this research are the script and time representations as 
coordinated with the rule-based expert system and the 
construction of an inference mechanism that allows an 

expert system to reason about causal relationships as 
recognized from sequences of events. This approach can 
also be viewed as a first step to plan recognition: detecting 
the adversary’s goals. 

The next section discusses the domain, past MITRE 
developments that are the foundation of our research, and 
other relevant work. Section 3 outlines the issues that 
must be addressed for situation monitoring expert sys- 
tems. Definitions and details of the script representation 
are presented in Section 4, while the control of the 
inferencing process is described in Section 5. Finally, we 
summarize research issues for more extensive applications 
of script representations and plan recognition to expert 
systems. 

2. ackgrouncl 

Previously, MITRE researchers developed ANALYST 
[3,6,9], an expert system that is able to infer real-time 
situation displays from multiple sensor sources and also 
processes mission-oriented information requests. 
ANALYST answers these requests with a rule base of 
static critical indicators that refer to the force disposition. 
ANALYST is also part of a project to construct a set of 

cooperating expert systems 
perform a portion of the C 

salled ALLIES [5] designed to 
reasoning process. ALLIES 

includes a military operations planning expert system 
(OPLANNER) d an a object-oriented simulation of the war 
(Battlefield Environment Model). In the context of 
ALLIES, it became apparent that ANALYST was not 
capable of, but had the potential for, in-depth analysis 
that would give a clearer picture of the adversary’s activi- 
ties and intentions. 

The SCAN design was inspired by scripts as applied 
to natural language processing [lO,ll]. However, there are 
few situation monitoring expert systems that have been 
developed for domains as volatile as the SCAN applica- 
tion. In [4] a plan recognizer with a simple goal detector 
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for analyzing aircraft threat is described. Blackboard 
architectures have been used in domains such as speech 
processing, but these do not fully address the problems 
that an expert system must handle in a rapidly changing 
environment. Fall’s work [8] uses a representation called a 
“model” similar to scripts to propagate evidence through 
time for situation monitoring, but without a robust inter- 
face to a rule-based expert system. The Ventilator 
Manager (VM) program [7] is an example of a MYCIN-like 
system with an underlying state transition model for inter- 
preting data in an intensive care unit, but was found to be 
to be inadequate for monitoring data continuously over 
time. The power of SCAN lies in its ability to monitor 
continuously changing situations with missing, inaccurate 
and/or deceptive sensor data and analyze multiple adver- 
saries while at the same time preserving the desirable 
characteristics of a rule-based expert system. 

3. Motivation 

In any situation monitoring expert system applied to 
a rapidly changing environment, time becomes an essential 
element that must be integrated into the knowledge used 
to reason about the situation. The causal relationships 
between events and the expectations of events taking place 
in specific sequences all play a role in painting a picture of 
a situation given partial data about a set of activities. It is 
also crucial to have a well-organized history of events to 
support any conclusions such a system infers. 

ANALYST is goal-driven by user information 
requests which are static critical indicators represented by 
propositions. Answers to the requests have likelihood 
values (Dempster-Shafer likelihood intervals) that indicate 
the configuration on the battlefield based on the current 
situation map (SITMAF’) of military units. ANALYST can 
neither recognize activity as signifying an action develop- 
ing over several snapshots of the SITMAP nor “bootstrap” 
itself into suggesting some explanation of the progress of 
the activity and how it relates to other past, present, or 
future activities. 

While it is possible to place the knowledge about 
sequence of events into ANALYST rules, the rules would 
be very complex because the sequences are long and the 
causal dependencies are not always precisely sequential. 
Events have duration and may overlap in many different 
ways. Rules would require long chains of antecedents or 
long chains of rules to hook up these antecedents. 
Knowledge engineering and debugging these rules would 
be non-intuitive and quite difficult, and explanations 
would be confusing to a user. In other words, the major 
benefits of using an expert system technology over more 
traditional software techniques would be lost. 

For the first design and implementation of SCAN, the 
research concentrated on the script knowledge representa- 
tion and control to illustrate that, indeed, the type of 
knowledge described above could be represented simply. 
Two major assumptions were made. First, SCAN does no 
complicated spatial reasoning; interesting areas on the 
situation map are pre-defined based on the current 
scenario. This focuses where the major activity is located 

and simplifies script searching and matching. The second 
assumption is to use the uncertainty representation (likeli- 
hood intervals and likelihood probabilities) currently in 
ANALYST with little modification. These assumptions 
are re-examined in Section 6. 

4. The Script-Based Approach 

The notion of representing sequences of events as 
templates or scripts is analogous to representing stereotyp- 
ical information for natural language processing as 
explored in Schank’s research [lo]. SCAN is a “goal detec- 
tor” that could be used to guide the search of a plan recog- 
nizer similar to the plan understanding described in [ll]. 

From the SCAN viewpoint, scripts are sequences of 
events, an event being an activity occurring for a specific 
duration that is detectable. Each event is described by 
another script or a proposition and viewed as an indicator 
that the parent script is occurring. We use this script 
paradigm to create a knowledge structure that acts as an 
event template to be matched against a series of time slices 
comprised of SITMAPs and associated inferences. 

This matching process is complex for several reasons. 
Any tactical maneuver unfolds as a sequence of (possibly) 
overlapping steps or events and they must be fit together 
like pieces of a puzzle as they are uncovered. Because 
events are recognized by SCAN as a discrete measurement 
of continuous occurrences, the start and end times of 
events are rough approximations. Matching must then 
take place based on only guesses as to the ordering and 
durations of the events. Some events might not have been 
recognized at all. 

4.1 The Script Knowledge Structure 

The representation for script knowledge was designed 
to be expressive enough not only for monitoring and plan 
recognition applications, but also for ALLIES planning 
and simulation purposes where the impreciseness of sen- 
sors is not a problem. For the purpose of this paper, we 
illustrate the script knowledge structure and control with 
a football example. Although a tactical maneuver in foot- 
ball might last for only a few seconds as opposed to several 
hours in the military domain, the matching algorithms 
used for monitoring and guessing the adversary’s actions 
are similar. 

A script knowledge base is stored as a set of lists in a 
file which are then accessed through a frame language. 
Each script entry has the following format: 

(defscript script-name 
script-elements-list 
script-bindings-list 
necessary-preconditions-list 
sufficient-preconditions-list 
script-analysis) 

The script-elements-list contains names of sub-scripts 
which are either pointers to other scripts (and may be used 
to build up a taxonomy of scripts) or names of proposi- 
tions which will be monitored as as information requests. 
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Each element in script-elements-list has the format: 

(nmne type bindimge-list preamnditicona-Bist) 

The type is used to specify whether the element is another 
script or a proposition. The bindings-list contains variable 
names and their values, if present. The bindings are used 
to describe the context of the instantiation of a script or 
proposition (for example, location, time, or direction of 
movement) and the default constants such as the duration 
and weight of an event. The preconditions-list has predi- 
cates which may refer to the script-name of other script- 
elements in the defscript. This preconditions-list is used to 
specify entry conditions and time relations between the 
event the element represents and the other events in the 
parent script. The time predicates are based on Allen’s 
temporal language (I$]. 

The script-bindings-list has the same format as the 
bindings-list of the script-elements-list describing the con- 
text of the instantiated script. 

The two preconditions-lists are made up of predicates 
and allow the distinction between necessary preconditions 
based on predicates that remain static as opposed to 
dynamic preconditions. For example, a necessary precon- 
dition for a particular football play could be the team pos- 
sessing a ,specific capability such as an extremely strong 
running back, whereas sufficient preconditions could be 
field position, yardage to go, and time remaining in the 
game in the current context. This allows greater efficiency 
in searching scripts--there is no need to monitor a script in 
a context that does not meet the necessary preconditions. 

The script-analysis describes the evaluation function 
used to determine how well a script matches a current 
situation, that is, to calculate its likelihood. 

Typical examples of SCAN football script knowledge 
are a counter-tray-play and a running-back-fake shown in 
Figure I. All time units are in seconds. The counter-tray- 
play contains six events, two of which are sub-scripts--a 
running-back-fake and a quarter-back-fake. An instantia- 
tion of the counter-tray-play script has several contextual 
bindings: the field location of the play, the direction of 
movement, and the time. The likelihood, actual duration, 
and currently occurring event are all stored under this 
context in a script instance frame. 

4.2 Time Representration 

There are several issues in time representation that 
must be dealt with in developing a script knowledge 
representation and script matching heuristics. Time must 
be portrayed in a way that captures the “fuzzinesss’ of the 
domain. An event must not only be recognized as hap- 
pening with a certain degree of likelihood, but its start and 
end times must be approximated as well. Each event has a 
specific duration--it is not enough to postulate a point in 
time. 

The time formalism developed by Allen [I,21 of time 
intervals and relations between intervals provide a 
language well-suited to SCAN’s domain. There are two 
items not in this formalism but required by SCAN: the 

(defscript counter-tray-play 
(script-name counter-trsy-play) 
(script-elements ((end-in-motion prspoeition 

(> location > direction > time (> duratioaa 
(snarp-ball progoeition 
(> locstion > direction > time (> duration 
((meets end-in-motion))) 
(running-back-fake script 
( > location > direction > time) 
((after snap-bell I))) 
(quarter-back-fake script 
(> location > direction > time) 
((equsb ~~~~i~g-~~~~-f~~e))) 
(tackbpuli propositioxn 
(>locdhm >diaectisn >time (>duratio~1 

((OVdZ3~B quarter-back-fake 0.6))) 

(guard-pull paopoaition 
(> llocatioln > direction > time (> duration 
((equals tabckle-pull)))) 

(bindings (> location > direction > time)) 
(neceessbsy-preconditions t) 

ccient-precowditione (offeneive-posture 
short-yardage)) 

(ecript-a~aiyeie time-abvesa@led-script-BikeBiltaso 

2)) 

2)) 

(defmript running-back-fake 
(script-name running-back-fake) 
(script-elemerntsl ((~~~~i~g-~~~~-t~r~~ proposition 

(>loeation >directiow >time (>dwatiow 0.5))) 

((running-bss@k-kceversera pssposition 

(> 10ca&i0~1 > direction > time (> duration 0.5)) 
((meete running-back-turns )))) 

(bindiwge (> location > direction > time)) 
(neceasarry-preconditions t) 

ent-precsditions (0 

duration of an event--how long (doctrinally) an event is 
supposed to occur and relative start times between events. 

Allen’s theory of time is supported by an interval- 
based temporal logic and a set of properties that can hold 
over the intervals. In SCAN, the notion of the time of an 
event is described by a temporal interval, (t , 
is the start time and t is the end time of t tl 

t2) where tI 
e occurrence. 

There is a basic set of &ations that can hold between tem- 
poral intervals. “Meets” is a primitive relation such that if 
interval i meets interval j, i’s end time is equal to j’s start 
time. Twelve other relations can be described in terms of 
meet, such as: after, overlaps, equals, meets, and during. 
For example, in Figure 1, the tackle-pull overlaps the 
quarter-back-fake by .5 seconds. 

We have assumed that the script-elements-list in the 
defscript is ordered by increasing values of the start times 
of the script-elements and hence some time relations are 
implicit. As a result, it is not necessary to list all time 
relations in the preconditions of an element, only those 
that cannot be inferred from the preceding element’s 
preconditions and its preceding elements, given the dura- 
tion information. This simplifies the SCAN scripts and is a 
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natural way to present the script knowledge, but the rela- 
tions could be made entirely explicit if this was desirable 
for a different application. 

6. Control Architecture 

The contro1 architecture shown in Figure 2 consists of 
the script inference procedure which includes a script 
matching function and monitoring facilities. The heart of 
SCAN lies in the script control. At the end of an 
ANALYST cycle, that is, reading in a set of reports, crea- 
tion of a times slice from data fusion, and calculation of 
the status of the information requests (propositions from 
script-elements) the script control evaluates the status of 
the scripts, noting new scripts that have started up and 
monitoring the likelihood of the scripts already being mon- 
itored. All rule-based inferencing is done through the 
request processing under the guidance of the script con- 
trol. 

As the SITMAP is monitored, each script must be 
matched against a particular context and time. These two 
values are used as a key for storing and retrieving the 
inferences about a script and its associated sub-scripts and 
propositions. When a script is matched for the first time, it 
is instantiated with a likelihood. 

Script likelihood is used to compare how well a script 
matches the situation relative to other scripts. The likeli- 
hood value is between 0 and 1, and a script is typically 
considered to be occurring if the value is greater than .5. 
This cutoff value is called the script-occurring-cuto~. As 
likelihoods change from time slice to time slice, they are 
stored using the script instance’s context and the current 
time so that a history is maintained. The start and end 
times of scripts and propositions, as well, are calculated 
based on when the likelihood is above the cutoff. 

As SCAN operates, it maintains two lists of scripts. 
Monitored-scripts list are script-context pairs whose neces- 
sary preconditions are met. This list is used to guide the 

search for scripts that match the current situation. 
Active-scripts are script-context-pairs with a.11 precondi- 
tions met and likelihoods greater than the script- 
occurring-cutoff, that is, the scripts that appear to best 
assess the situation. 

Figure 3 shows the control flow of SCAN and how it 
interfaces with the sensor fusor and request processor. Ini- 
tially, ANALYST applies its fusion rules to reports creat- 
ing units on the SITMAP. Then, the monitored-scripts 
list is constructed by searching all scripts on all pre- 
defined areas of interest for those scripts whose necessary 
preconditions are met. As a script is added to the list, all 
script-elements that are propositions are set up as infor- 
mation requests whose values will be monitored across 
time slices. The initial processing of the requests for the 
first time slice involves backward chaining to calculate all 
their likelihoods. 

After the initialization, the active-scripts list is built 
by searching through the monitored-scripts for scripts 
whose sufficient preconditions are met, calculating a likeli- 
hood for each of those scripts and placing a script on the 
active-scripts list if its likelihood is high enough. 

When the monitoring phase is entered, a new time 
slice is built and all information requests are re-evaluated 
for changes through a forward chaining inference pro- 
cedure. (Only rules that will alter the likelihoods of the 
current information requests are fired.) With the updated 
information available, each active script is re-evaluated to 
update its likelihood and determine if it should remain 
active. Because new scripts might be starting up at any 
point, the monitored-script-list is examined again. At any 
point in time, the active-scripts can be interpreted as a set 
of hypotheses that explain the enemy’s intentions. 

Script likelihood calculation is based on the likeli- 
hoods of the script-elements, the time relations between 
elements, the history of likelihood values, and a current- 
element-pointer denoting the script-element in progress, if 
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combined to determine a script’s overall likelihood using 
weights specified in the bindings-list of the script and the 
function (for example, averaging) specified in the script- 
analysis. 

6. Conclusions and Future Directions 

Scripts do, indeed, provide a more intuitive 
knowledge representation for situation monitoring expert 
systems. SCAN as an implementation of the script 
mechanism is able to recognize trends on the battlefield. 
SCAN has a time representation and an interface to the 
rule-based ANALYST system that allows it to focus on the 
development of activities over time. However, additional 
experimentation is needed to explore the knowledge 
engineering of scripts. SCAN, at present, is very limited 
in its number of scripts and its matching techniques. 

The assumptions that have been made for this first 
version of SCAN need to be re-examined if SCAN is to be 
more that a toy system. Spatial and terrain reasoning is an 
important aspect of SCAN’s domain yet has been virtually 
ignored. The techniques for reasoning about uncertainty 
are quite ad hoc and should be changed to a representation 
with a firmer mathematical footing to avoid inconsistency 
and potential anomalies. 

A goal for SCAN (and one reason for wanting intui- 
tive knowledge representations) is to allow the expert to 
knowledge engineer SCAN directly. A knowledge editor 
with a sophisticated human-machine interface would be a 
step closer to achieving this. 

Finally, SCAN represents only part of the software 
that is necessary to generate and recognize details of plau- 
sible plans. Future work includes building a plan recog- 
nizer based on the planning techniques in the 
OPLANNER plan generator and guided by SCAN’s script 
hypotheses to constrain the plan search space. 

PI 

PI 

PI 

PI 

PI 

PI 

171 

PI 

PI 

References 

Allen, J. F., Towards a general theory of action and 
time, Artificial Intelligence 23 (1984) 123-154. 
Allen, J. F. and Hayes, P. J., A common sense theory 
of time, IJCAI (1985) 528-531. 
Antonisse, H. J., Bonasso, R. P., and Laskowski, S. J., 
ANALYST II: a knowledge-based intelligence support 
system, MITRE Technical Report MTR-84WOO220, 
April 1985. 
Azarewicz, J., et. al., Plan recognition for airborne 
tactical decision-making, AAAI (1986), 805-811. 
Benoit, J. W. et. al., An experiment in cooperating 
expert systems for command and control, Expert Sys- 
tems in Government Conference, October 1986. 
Bonasso, R. P., ANALYST: An expert system for 
processing sensor returns, The First 

3 
rmy Conference 

on Knowledge-Based Systems for C I, Army Model 
Management Office, Ft. Leavenworth, November 
1981, 219-245. 
Buchanan, B. G., and Shortliffe, E. H., eds., Rule- 
Based Expert Systems, Addison-Wesley Publishing 
Co., 1984. 

Fall, T. C., Evidential reasoning with temporal 
aspects, AAAI (1986) 891-895. 
Laskowski, S. J., Antonisse, H. J., and Bonasso, R. P., 
ANALYST II: A knowledge-based intelligence sup- 
port system, Second IEEE Conference on Artificial 
Intelligence Applications, December 1985, 552-563. 

[lo] Schank, R. and Abelson, R. Scripts, Plans, Goab and’ 
Understanding, Lawrence Erlbaum Associated, Inc., 
1977. 

[ll] Wilensky, R, Planning and Understanding: A Compu- 
tational Approach to Human Reasoning, Addison- 
Wesley Publishing Co., 1983. 

Laskowski and Hofmann 823 


