
Assessing the Maintainability of XCQN-in-RIME:
Coping with the Problems of a VERY Large Rule-Base

Elliot Sollow ay
Department of Computer Science

Yale University
New Haven, Connecticut 06520

Abstract

XCON is a rule-based expert system that configures
computer systems. Over 7 years, XCON has grown to
6,200 rules, of which approximately 50% change every
year. While the performance of XCON is satisfactory,
it is increasingly becoming more difficult to change.
With the goal of facilitating maintenance, DEC has
developed a new rule-based language, RIME, in which
the successor to XCON, XCON-in-RIME, is being
written. This paper evaluates the potential for
enhanced maintainability of XCON-in-RIME over
XCON.

I. Introduction: Motivation and Goals
The following properties of XCON, an expert system, make it
a particularly interesting system to examine:

e XCON performs a complex design task: XCON
configures computer systems for DEC; XCON is
used in a production mode, day in, day out -- it
has been used since January 1980.

e XCON is a very large rule-based system:
currently there are approximately 6,200 rules in
XCON, which draw on a database of
approximately 20,000 parts.

o XCON undergoes constant change: 5070 of the
rules in XCON are changed each year.

While there is no problem with XCON’s performance, DEC
nonetheless decided to redesign XCON: as we will describe
below, it has become increasingly more difficult to change
XCON. Since XCON must continually be updated to reflect
new products and new computing concepts coming out of
DEC, it was deemed desirable to develop a rule-based
architecture that would be more supportive of this type of
activity. In this paper, then, we will present an assessment of
the redesigned XCON, called XCON-in-RIME, from the
perspective of maintainability; we will mount two types of
arguments (an in principle argument and an in practice
argument) to support the view that XCON-in-RIME will be
more maintainable. While the discussion here necessarily will
be focused on XCON and‘ XCON-in-RIME, we feel that the
issues we raise will become increasingly more relevant --- and
familiar --- as expert systems grow in size and complexity.

’ The following are trademarks of Digital Equipment Corporation: XCON,
RIME, XCON-in-RIME, DEC.

824 Expert Systems

Judy Bachant and Keith Jensen
Digital Equipment Corporation

Intelligent Systems Technology Group
Hudson, Mass. 01749

II. Problems With XCQN’s Current
Rule-Based Architecture

XCON started as a relatively small, rule-based system (about
700 rules) (McDermott, 1982). It has grown to over 6,200
rules to meet the needs of DEC. Frankly, there is no end
insight: XCON will continue to expand and change.
Unfortunately, the problems of continually updating such a
large system do not grow linearly; moving from 700 rules to
6,200 rules, with 50% of the rules changing every year, makes
for an exceedingly difficult software enhancement problem.
In particular, two basic properties of production rules give
rise to these difficulties:

Dynamic properties OJ rules: As the number of rules grows
_-- and as different programmers work on the same rule-base,
with different levels of understanding of what is in the rule
base and why --- inadvertently, rules that are not appropriate
become triggered, resulting in unwanted and undesirable
interactions among the rules. In OPS5, control of rule firings
is either implicit, in the domain-independent, conflict
resolution strategies (e.g., recency), or it is explicit, but
buried in rules themselves (e.g., special tricks are used to
cause one rule to fire over another.)

Static properties 0J rules: There are no language restrictions
on the number of functions a particular rule can perform. For
example, in Figure 1, we see an Englishified XCON rule that
performs a number of functions (i.e., actions on the right-
hand side of the rule). This open-endedness causes problems
as the rule-base grows. In particular, a typical strategy for
extending the rule base to handle a new device is to copy the
rules that worked for a similar device and then edit them to
handle the new device. Unfortunately, in the editing process,
one isn’t always sure what the rationale for all the functions
are. The result is that one often inadvertently changes a
function, and causes run-time problems; alternatively, one
doesn’t change the functions, but keeps them in the new rules
--- not feeling all that confident about why they are there.

In software engineering terms (Brooks, 1975) what happens
to a large rule base as it changes over time is a “degradation
in integrity:” what may once have been a coherent rule base,
turns into a rat’s nest of special rules, tightly coupled rules,
etc. While software engineers have been able to label this
problem, e.g., see (Soloway, 1987) they have not presented a
general solution to the problem. Note that by “degradation”
we do not mean that the performance of the system is

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

necessarily impaired, e.g., XCON continues to function quite
productively. However, from a rule-developer’s perspective,
the rule-base no longer has its initial unity of structure, of
coherence, thus making additional changes increasingly more
problematic.

Name: rl-unmounted-ubx-options
LHS: Describes certain types of cabinet mountable

disk drives and information necessary to place
one in a cabinet, cable it, and create output

RHS: * Marks the drive "temporarily configured",
* marks the placement in the cabinet "used",
* identifies all of the information for

connecting the drive to it's controller,
+ identifies the containing information

between the drive and cabinet,
* and creates output labeling

Figure 1: An XCON Rule

proposing to go off to another problem space.)

8 ELIMINATE Step: then, there are
domain-specific rules that evaluate the
appropriateness of the candidate operators and
prune the operators down to one, e.g., in Figure 2
we present a rule that decides among the slots
being proposed.

8 APPLY Step:
and executed.

the selected operator is activated

o EVALUATE Step: finally, the goal is reviewed,
and if it has been achieved, the problem space can
exited; if the goal was not achieved, then the
difficulty is handled by going through the problem
space once again, or by going to another problem
space.

III. A New Language for Rewriting XCON: RIME Note that within each step the actual order of “rule firing”

XCON-in-RIME is the successor to XCON; it will perform or activation is irrelevant. Control is realized either by the
the same function as XCON but it is intended to be more
maintainable, i.e., its integrity should be easier to preserve
over time. RIME is the language in which XCON-in-RIME is
being written. In turn, RIME produces OPS5 code. The
major advance of RIME over, say OPS5, is that one can more
easily make explicit domain knowledge, both in structuring of
the rules themselves and in controlling the firing of the rules.
(See also (van de Brug, et al., 1985, Chandrasekaren, 1983,
Neches, et al., 1984, Clancey, 1983, Clancey & Letsinger,
1981).) Below, we identify the more important language

features of RIME:

domain-independent steps in a problem solving method or by
the domain-specific task level control of entering another
problem space.

Subgroup - In order to help insure “one function, one rule,”
there is an additional Dewey-Decimal-like, domain-specific,
classification imposed on the rules: each class makes explicit
the function that the rule is performing. For example, in
Figure 3 we present three rules, each of which performs a
single function, along with the subgroup classification scheme.
Note that this classification scheme is not related to control
and implies nothing about the order of rule activation.

Problem Space - provides a domain-specific “bucket” into
which to throw rules that have a common purpose. For
example, in XCON-in-RIME, there are 40 problem spaces,
each dealing with one functional aspect of the configuration
problem, e.g., CONFIGUREMODULE, SELECT-MODULE,
SELECT-CONTAINER. Some problem spaces are
hierarchically organized, e.g., SELECT-MODULE and
SELECT-CONTAINER are functions that must be done in
order to effectively CONFIGUREMODULE.

RuIe Type - To help insure the creation of rules consistent
with the categories of permisable rules, there are rule
templates that serve as guides for rule creation.

With this necessarily brief description of XCON and
XCON-in-RIME, we can now proceed to assess the impact of
XCON-in-RIME’s new architecture on its maintenance.

Problem Solving Method - a domain-independent sequence
of steps to solve a type of problem; each problem space uses
one problem solving method. Of the 6 current methods, the
most frequently used one is PROPOSE/APPLY, which is, for
example, the method used for achieving CONFIGURE
MODULE, SELECT-MODULE, and SELECT-CONTAINER.
In effect, methods explicitly acknowledge that there are
problem solving algorithms. For example, in the
PROPOSE/APPLY method there are the following steps
(note the following is a simplified description):

@ PROPOSE Step: first an operator (or operators) is
suggested that might be relevant to the
achievement of the current goal, e.g., in Figure 2
we present two rules that suggest a slot that
might be used in finding a place for a drive.
(Operators typically either represent objects, as in
the example above, or actions, as in the case of

IV. The Problems of Software Maintenance:
In General and In XCON

In a software maintenance task there is an existing body of
code that must be augmented in some manner. Typically, the
augmentation is readily understood --- the programmer knows
what needs to be done. However, the problem is in
understanding the existing body of code, and then knowing
where and how to add the augmentation so as not to disturb
the rest of the code. Thus, on the one hand, the maintainer’s
job will be facilitated if the code is “readable,” while on the
other hand, the code will remain in a readable state if the
programming language facilitates “good programming
practice. 11 In effect, reading and writing are duals of each
other, with the goal being “maintaining readable code.” The

question, then is, what will enhance the

Soloway, Bachant, and jensen $25

Rule Name: --
select-drive-space:propose:

llOf:lowest-drive-slot
LHS:

Identifies the lowest numbered drive
slot in the current cabinet

RHS:
Proposes that slot

readability/intelligibility of code? Two
identified that directly influence this issue:

properties can be

* Homogeneity. a small number of readily
discernible plans are used over and over again to
accomplish the various, desired goals. A plan is a
sequence of language constructs used to
accomplish some stereotypic (i.e., oft occurring)
goal (Rich, 1981, Soloway & Ehrlich, 1984). In
contrast, non-homogeneous code contains
idiosyncratic, different solutions to similar goals.
For example, in the configuration task, the code
of laying out a cabinet for different cabinets and
different computers, should still have some
common appearance. Afterall, the goals that need
to be achieved are similar. Moreover, a reader
should not be able to tell who wrote a particular
chunk of code to realize a particular cabinet
layout; different programmers should be using the
same set of programming plans to realize
comparable goals.

Rule Name: --
select-drive-space:propose:

llOj:exclusive-rackmount-drive-space
LHS:

Identifies a drive slot in which only
certain types of drives can be mounted
the current drive is one of those types

RHS:
Proposes that slot

Rule Name: --
select-drive-space:eliminate:

340c:prefer-exclusive-space
LHS:
Two proposed slots,

one of which has restricted use
RHS:

Eliminates the other slot

Figure 2: Sample XCON-in-RIME Rules

Rule Name: --
configure-device:apply:

200a:mark-device-configured
LHS:
Unconfigured device chosen for

RHS:
Marks it's status "configured"

activity

e Predictability: (1) the reader knows where to look
next for an answer to a question, (2) the reader is
not surprised by what he comes upon in the code,
and (3) the reader can trust that nothing
untoward is being done behind the scenes. For
example, if one rule (in the case of production rule
programming) serves more than one function, then
point (3) may be violated. Similarly, if rules that
are intended to serve a related function are
distributed over the rule base, the reader may not
realize he needs to look in a non-local region for
key rules, and hence (1) may be violated.

Clearly, homogeneity and predictability are related : by

definition, predictable code will be homogeneous, and vice

Rule Name: --
configure-device:apply:
420a:update-contained-number

LHS:

versa. Homogeneity focuses on a property of the code itself,
while predictability focuses on a property of the use of the
code.

The current device has a "position-on-bus" identified
RHS:

That is the number used to identify this device
on the output by filling in "contained-number"

Name: Rule
configure-device:apply:
430a:update-containing-info

LHS:
The fact that the device being configured belongs
in a cabinet and the previously chosen cabinet

RHS:
Identifies that the device is contained in this cabinet

LEVEL 1 LEVEL 2 LEVEL 3
200 update-status-or-phase component
420 update-containership contained number
430 update-containership containing

Figure 3: Sample Subgroup Schema -- Rule Type: Apply

Those who have had to maintain XCON have repeatedly
observed: (1) that XCON grows continually more non-
homogeneous, and (2) that predictability in the XCON rule-
base is exceedingly difficult. Why? The basic problem seems
to be the fact that what a code reader needs to know about a
subset of rules, say, in XCON is not explicit in the rules; a
code reader needs to talk to the person who created the rules
and/or tap into the “institutional memory” of how the rules
evolved to where they are. For example, XCON rule
developers use various tricks to force rules to fire in a
particular sequence. And still further, rule developers use
certain rules for more than one purpose. Thus, rule
developers are often uncertain as to what XCON rules are
really doing, and therefore they are afraid to modify the
rules, lest some unwanted behavior might result. The
problem, in a nutshell, then, is that a rule developer needs to
understand at least a major portion of the rules before he can
effectively make some change to the rule base.

We hasten to point out that XCON rule developers are not

826 Expert Systems

malicious individuals, purposely trying to undermine the
project with their non-homogeneous, idiosyncratic code!
Rather, the problem is that there have been few external,
explicit mechanisms to capture the otherwise implicit
knowledge. For example, the OPS5 language encourages the
style of programming that has evolved, e.g., there are no
effective language constructs to aid the rule developer in
creating rules that do not have some order dependence. Also,
coding practices have evolved without clear guidelines as to
how rules should be written. Again, this is not really a fault
of the rule developers; the issues of homogeneity,
predictability, and nature of the task (a very large rule-base
that continually is modified) were not apparent when XCON
started to evolve. In fact, the lessons learned in working on
XCON directly lead to XCON-in-RIME --- where weaknesses
of the sort identified here are meant to be addressed.

The bottom line is this: it is not surprising that XCON is
very hard to maintain (e.g, change, add, delete rules): the
language in which it is written, the architecture of the system
itself, and the coding guidelines do not facilitate rule change.
In what follows, we present a rationale for why XCON-in-
RIME does address the specific weaknesses of XCON and
thus why XCON-in-RIME should be more maintainable than
XCON.

V. In Principle: Why XCON-in-RIME
Should Be More Maintainable Than XCON

Over the years, the configuration group at DEC has had the
need to “push around” a rule-base architecture, e.g.,
(Bachant & McDermott, 1984). This extensive experience has
led directly to the design of RIME and to XCON-in-RIME.
In what follows, we identify two major factors in which
RIME/XCON-in-RIME differs from OPS5/XCON.

A. RIME as a Higher-Order Language

In order to appreciate the evolution of RIME/XCON-in-
RIME from OPS5/XCON, one needs to look to the history of
the development of programming languages. That is,

programming languages have continued to evolve towards
more problem-specific applications: e.g., FORTRAN

(FORmula TRANslation) was considered a major

improvement over assembly language, because it allowed
scientists to write in their own, natural language:
mathematical equations. Similarly, APL, the new crop of
spreadsheet languages (e.g., LOTUS, MULTIPLAN), etc.
have all been specifically crafted to allow domain specialists
to talk to the computer in a language natural to the domain.

It would not be a distortion to view OPS5 as at the
“assembly language level: ‘I afterall, OPS5 is an almost totally
domain independent programming language, which allows the
programmer considerable control, and hence leeway. In
contrast, RIME has been designed specifically to reflect what
has been learned about configuration, and about writing and
changing large rule bases. For example, as mentioned before,
XCON rule developers forced rules to fire in specific orders
and still attempted to reuse subsets of rules for multiple
goals. In contrast, RIME attempts to understand this need

explicitly, and has created explicit language constructs to deal
with this type of situation. For inst#ance, notions such as
problem space, problem solving method, method step, rule
type, have been created to help the rule developer in making
explicit the heretofore implicit procedural relationships
between rules. Thus, RIME can be viewed as more towards
the “spreadsheet end of the problem independent/dependent
language continuum. ‘1 As such, then, RIME could be
considered a “higher-order language” in comparison to OPS5,
much as FORTRAN is considered to be a “higher-order
language” relative to assembly language.

The next question is this: what predictions can be made
about maintaining XCON-in-RIME, written in RIME, on the
basis of experience gained in maintaining systems written in
other higher-order languages ? In particular, how do higher-
order languages help with respect to homogeneity and
predictability of code?

8 Homogeneity: The constructs of a higher-order
language can be viewed as techniques for realizing
oft occurring goals in the problems towards which
the language is directed. Thus, similar problems in
a domain will have similar solutions, which in
turn makes for more homogeneous and less
idiosyncratic code.

e Predictability: Given that the language constructs
are more directed towards problems in the
domain, the decomposition in the code tends to
reflect the decomposition in the problems more
explicitly. Thus, it should be easier to identify
where subgoals are achieved, and hence where
code can be changed.

Given the positive effects promised by the use of higher-order
languages, it would be remiss on our part not to point out
that horrendous looking code has been written in higher-order
languages. Nonetheless, while hard numbers are few and far
between, the overwhelming sense of the software engineering
community is that the use of higher-order languages has had
a positive impact on maintenance, e.g., (McGarry, 1982).
Thus, on these grounds alone, it is quite reasonable to predict
that XCON-in-RIME, written in RIME, a higher-order
language, should be significantly easier to maintain than
XCON, written in a arguably lower-level language.

B. The Programming Environment:
SEAR and Coding Guidelines

Language constructs are not enough to ensure that rule
developers use the constructs in the desired fashion. SEAR is
a tool being developed that will directly interpret RIME code.
Currently, SEAR provides on-line enforcement of coding
guidelines, e.g., there are templates for each rule type which
guide the creation of rules. The coding guidelines, and their
enforcement via SEAR, correspond to “structured
programming” practices advocated by the software
engineering community as leading to more readable code.
However, unlike these vaguely worded practices, SEAR’s can
be tuned to the specifics of the problem.

Soloway, Bachant, and Jensen 827

VI. In Practice: Providing Empirical Support
For The Enhanced Maintainability of XCON-in-RIME
While an in principle argument needs to made, one would
like to see at least some glimmers of evidence for the
veracity of those in principle claims. In this section, then, we
present empirical evidence that does bolster the in principle
claims.

A. Data Collection Methodology

Our goal was to get a sense of strengths and weaknesses of
XCON-in-RIME from a user’s perspective. We interviewed,
on a daily basis, 8 rule developers who rotated into the
XCON-in-RIME project for a short period of time (l-2
weeks). These sessions were recorded on audio-tape.
Interview data of this sort does not provide “statistical
evidence” pro or con. However, anecdotal evidence of this
sort has been found to be quite insightful and reliable, e.g.,
(Lewis, 1982, Littman, et al., 1986). Frankly, it does not

seem appropriate at this stage to go to all the trouble of
carrying out a methodologically rigorous, controlled-study ---
the costs would be to high, and the benefits are not clear.
Note that the observations described below were made on the
basis of interviewing only 4 rotaters. However, the
observations made by the additional 4 rotaters were in almost
unanimous accord with those by the initial group of rotaters.

B. Observations On and Interpretations Of
Rotaters’ Experiences with XCON-in-RIME

The following is a distillation of comments made at the
various debriefing sessions with the rotaters. In carrying out
such a distillation, there is always the danger of
oversimplifying or misrepresenting someone’s comments. We
have, of course, attempted to be as “fair” as we could in our
interpretations. In what follows, we break the rotaters’
comments down with respect to the issues of homogeneity
and predictability of XCON-in-RIME code.

Comments on Homogeneity:

Observation
rules. I’

of the Rotaters: “I can’t tell who wrote the

Interpretation: The rotaters all agreed that the rules they
read in XCON-in-RIME had a certain homogeneity. In
contrast, the rotaters all agreed that, by and large, they could
tell who wrote a rule in XCON, i.e., that rules could differ
substantially as a function of who wrote them. We feel that
the homogeneity in the rules in XCON-in-RIME, in contrast
to XCON, is quite telling: a reasonable interpretation of this
difference is that XCON-in-RIME provides constraints and
guidelines on the rule developers so that they tend to write
similar looking rules. The similarity of the rules across
different rule developers leads directly to the enhanced
readability: when rule developer X sits down to read the
current rule base, he will feel more confident that he has

accurately assessed the content of the rules if the rules have a
homogeneous nature. One of the major readability problems
with the current rules in XCON is that rule developers have
significant difficulty in figuring out what is being implied by
the rules --- since different rule developers have different
styles of writing rules.

Observation of the Rotaters: Each rotater had developed
special rule writing ‘I tricks” for creating rules in XCON.

Interpretation: We asked the various rotaters if they had
developed any special techniques for coding rules in XCON.
Each said they had. For example, one rotater introduced a
mini-context mechanism by including a very general rule at
the end of a set of rules; this general rule, then set a marker,
which, in turn would allow another set of rules to fire.
Another rotater included extra conditionals in his rule in
order to insure that that rule would fire at a special time.
Thus, this point is similar to the last point: the rules in
XCON were often coded by rule developers using
idiosyncratic styles ---- thus, making the XCON rule base less
homogeneous and less readable by other rule developers.

Observation of the Rotaters: The tricks the rule developers
were using typically permitted them to control the order in
which rules were firing.

Interpretation: While in their “pure” state, production rules
are not meant to have this almost algorithmic character, the
reality is that problems may require this type of
procedurality. In XCON-in-RIME this procedurality is
explicitly acknowledged, and the problem spaces, steps, etc.
allow a rule developer to explicitly encode the sequentiality
that they wanted --- that they were using implicitly in
XCON, and doing so with various coding tricks. Again,
readability can only be enhanced if rule developers are given
tools --- the explicit vocabulary of problems spaces, steps, etc.
--- to help them in writing rules. The use of this explicit
vocabulary facilitates the development of a homogeneous rule
set.

Comments on Predictability: -

Observation of the Rotaters:
base to add some new rule. ”

“I know where to go in the rule

Interpretation: A comment made almost universally by the
rotaters was they felt that they could pinpoint where they
needed to make a change in XCON-in-RIME’s rule base. In
contrast, a major problem with XCON’s rule base was the
difficulty in locating the place where the change needed to be
made.

Observation
organized. ‘I

of the Rotaters: “The rules are more

Interpretation: By and large the rotaters all said something
like the above statement. In unpacking what it means to be
“organized, ” it appeared that the rotaters felt that rules had

$28 Expert Systems

specific places to be, i.e., those familiar with the
configuration task found the problem spaces, subgroup
classification scheme, etc. to be natural, organizational units.
Again, this observation reflects both a broader understanding
of the task of configuration as well as the encoding strategy
dictated by the design of XCON-in-RIME, i.e., the fact that
there are multiple classification levels using explicit criteria.

VII. Concluding Remarks

Based on the two types of arguments just presented, there is
clearly a prima facie case that: XCON-in-RIME should be
easier to maintain than XCON. While that difference
should be readily observable, it would nonetheless be more
than academic to gather data on two types of measures:

e Human performance: How long does it take to
change/add a rule(s)? How many bugs are made?
How long does it take to identify and fix bugs?

GB Assessing readability status of rule base: Does
the rule base degrade as new rules are
added/changed? How homogeneous are the rules
after 6 months, 12 months, etc.?

However, in order to capture such data, we would first need
to define some metrics (e.g., how does one quantify
homogeneity?). Moreover, we should not expect that all the
maintenance problems will be alleviated by XCON-in-RIME;
afterall, there are many problems yet to be discovered (e.g.,
what happens when the rule base hits 18,000 rules? 27,000
rules?).

Finally, economic reasons dictate that an evaluation, of the
sort described here, be carried out before one undertakes a
redesign/reimplementation of a system of the magnitude of
XCON. Moreover, as expert systems continue to become
more of an engineering enterprise, we will need to develop a
range of evaluation tools: evaluation is an integral part of
an engineering effort. Thus, besides evaluating XCON-in-
RIME’s design, we have attempted to articulate one strategy
for carrying out a design evaluation: in principle and in
practice type arguments.

Acknowledgements

We would like to thank Diane Muise and Michael Grimes for
their continuing contributions to the RIME Project, and
Virginia Barker and Dennis O’Connor for their unflagging
support, encouragement, and above all, patience.

Bachant, J., McDermott, J. Rl Revisited: Four Years in the
Trenches. AI Magazine, 1984, S(S), .

Brooks, F. The Mythical Man-Month. Addison-Wesley
Publishing Co., 1975.

Chandrasekaren, B. Towards a Taxonomy of Problem
Solving Types. Al Magazine, 1983, 4(l), .

Clancey, W. The Advantages of Abstract Control
Knowledge in Expert System Design. Proceedings of
the AAAI National Conference on AI, Washington, DC,
1983.

Clancey, W., Letsinger, R. NEOMYCIN: Reconfiguring a
Rule-based Expert System for Application to Teaching.
Proceedings of the Seventh IJCAI Conference, 1981.

Lewis, C. Using the “Thinking-aloud n Method in Cognitive
Interface Design. Technical Report RC 9265, IBM
Watson Research Center, Yorktown Heights, NY., 1982.

Littman, D., Pinto, J., Letovsky, S., Soloway, E. Software
Maintenance and Mental Models. In Soloway, E.,
Iyengar, S. (Eds.), Empirical Studies of Programmers,
Ablex, Inc., 1986.

McDermott, J. Rl: A Rule-based Configurer of Computer
Systems. Artificial Intelligence, 1982, 19, .

McGarry, F. What We Have Learned In The Past 6 Years:
Measuring Software Development Technology.
Proceedings of the Seventh NASA/Goddard Workshop
on Software Engineering, Md., 1982.

Neches, R, Swartout, W., Moore, J. Enhanced Maintenance
and Explanation of Expert Systems Through Explicit
Models of Their Development. Proceedings of the
IEEE Workshop on Principles of Knowledge-based
Systems, Denver, CO, 1984.

Rich, C. Inspection Methods in Programming. Technical
Report AI-TR-604, MIT AI Lab, 1981.

Soloway, E. “I Can’t Tell What In The Code Implements
What In The Specs n. Proceedings of the Second
International Human-Computer Interaction Conference,
Honolulu, Hawaii, 1987.

Soloway, E., Ehrlich, K. Empirical Studies of Programming
Knowledge. IEEE Transactions on Software
Engineering, 1984, SE-10(5), 595-609.

van de Brug, A., Bachant, J., McDermott, J. Doing R1 With
Style. Proceedings of the Second IEEE Conference on
AI Applications, Miami, FL, 1985.

Soloway, Bachant, and jensen $29

