
huis I. stein 
AI/VLSI Project 

Computer Science Department 
Rutgers University 

New Brunswick, NJ 08903 

Abstract 
Underlying any system that does design is a model of 
the design process and a division of labor between the 
system and the user. We are just beginning to un- 
derstand what the main alternative models are, what 
their strengths and weaknesses are, and for which do- 
mains and tasks each is appropriate. The research 
reported here is an attempt to further that under- 
standing by studying a particular model, the model of 
design as top down refinement plus constraint prop- 
agation, with the user making control decisions and 
the system carrying them out. We have studied this 
model by embodying it in VEXED, a design aid for 
NMQS digital circuits, and by experimenting with 
this system. Our primary conclusion is that this 
model needs further elaboration, but seems like a 
good basic model on which to build such systems. 

The task of designing something, e.g. a circuit) a program, 
or a mechanical device, is both intellectually challenging 
and economically import ant. It also requires large amounts 
of knowledge of a number of different kinds. Thus it is an 
important domain for AI, both in terms of building useful 
systems and in terms of understanding basic principles. 

A number of researchers have focussed on developing 
useful systems to aid in some specific task in some specific 
domain. These include [Parker and Knapp, 1986, Bushnell 
and Director, 1986, Brewer and Gajski, 1986, Kowalski, 
1985, Joobani and Siewioriek, 1985, Kim and McDermott, 
19831. However, underlying any such system there is either 
implicitly or explicitly a model of the design process, i.e. 

of the stages a design goes through between initial givens 
and final product, and of the operations that move it from 

stage to stage. We are just beginning to understand what 
the main alternative models are, what their strengths and 
weaknesses are, and for which domains and tasks each is 
appropriate. 

The work reported here, like that of [Brown et al., 

lThis work is being supported by NSF under Grant Number 
DMC-8610507, and by the Rutgers Center for Computer Aids to In- 
dustrial Productivity as well as by DARPA under Contract Numbers 
N0001481-K-0394 and N0001485-K-0116. The opinions expressed 
in this paper are those of the author, and do not reflect any policies, 
either expressed or implied, of any granting agency. 

1983, Tong, 19871, is an attempt to extend this under- 
standing by explicitly studying a particular model of the 
design process. This model can be summarized by the 
equation, 

DESIGN = TOP-DOWN REFINEMENT 
9 CONSTRAINT PROPAGATION 

Ideally, in designing a complex structure, one would like 
to use top-down refinement: first decompose the structure 
into a few main pieces and completely define the interfaces 
between the pieces, so that the design of each piece be- 
comes a totally independent sub-problem. Each can be de- 
signed separately, and the pieces simply plugged together 
to solve the original problem. TJnfortunately, until we ex- 
plore the space of possible designs for the pieces, it is often 
impossible to know exactly what the interfaces should be. 

One solution to this is common practice among human 
designers, and has also been used by Stefik in the Molgen 
system [Stefik, 19811: 1 eave the interfaces only partially 
specified. As you proceed with the design, decisions you 
make while working on one piece will further constrain 
what the interfaces of that piece must be, and thus con- 
strain the alternatives for designing other pieces. We refer 
to this process of inferring how decisions at one place put 
constraints on options elsewhere as “constraint propaga- 
tion”. 

In addition to a model of the design process, any de- 
sign aid involves a &&ion of I&or between the system and 
the user. In systems that are to be fully automatic the di- 
vision is simple: the system does it all. We, however, have 
been focussing on interactive systems. In particular, OUT 
approach has been to leave control decisions in the hands 
of the user, but leave all other processing to the system. 
That is, the user chooses which piece to refine next, out of 
all those still needing further refinement, and also chooses 
which way to refine it, out of all the alternatives that the 
system knows about. The system keeps track of which 
pieces need refining and what the alternative refinements 
are for a given module, and ahs does constraint propaga- 
tion. This division of labor seems to build on the strengths 
of each party, making the computer responsible for com- 
pleteness and consistency and the human responsible fox 
strategy. 

This model and division of labor are quite appealing, 
but also quite simple. Indeed, it soon became clear that 
they are too simple, and would have to be augmented to 

830 Expert Systems 

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved. 



handle realistic tasks. However, our research strategy has 
been to stay with this model as much as possible, to see 
how far we can push it, to see where it fails, and whether 
the failures can be fixed by further elaboration of the model 
or whether they require starting over with an entirely dif- 
ferent model. 

to t2, and another module, which uses this stored 
value at time t2 to compute the output.3 

The IF part of the rule describes the class of modules 
that this refinement method applies to. The THEN part 
describes how to do the refinement: the submodules, their 
initial specifications4, and how they are connected. It is 
important to note that these refinement rules describe le- 
gaZ, cowed implementations, but not necessarily optimal 
or even preferred implementations. They define the “legal 
moves” in the search for possible circuit implementations, 
but not a strategy for choosing among alternatives. 

It is also worth noting that in VEXED refinement in- 
volves structural decomposition, breaking a module into its 
pieces, while in Molgen[Stefik, 19811 refinement involves 
going from a more abstract operation to a more specific 
one. 

We first tested the model by using it as the basis for a 
specific design aid, VEXED2, in a specific domain, digital 
circuit design. More recently, we have extended the test 
by using the same model (and indeed almost entirely the 
same code, but with different knowledge bases) to build a 
design aid in another domain, mechanical design[Langrana 
et al, 19861. This paper discusses what we have learned 
from implementing and testing VEXED. The next section 
describes VEXED further, and the final section discusses 
our results and conclusions. 

First we will describe the way VEXED embodies this 
model of design: how it represents the circuit being de- 
signed, how it does refinement and how it does constraint 
propagation. Then we will show an example of VEXED’s 
use. Finally we will discuss the implementation status of 
VEXED and describe the experiments we have done. 

A. of 
esign 

To embody our model of design, VEXED must represent 
both the structure and operation of the partially-designed 
circuit, and must be able carry out refinement and con- 
straint propagation. We will deal with these issues in that 
order. 

VEXED represents the structure of a circuit in a fairly 
standard way. A module represents either a single compo- 
nent or a group of components being viewed as a functional 
block. A data-path similarly represents either a single wire 
or a group of wires. The operation of a circuit is repre- 

sented in a somewhat less standard way. The signal on a 
given data-path is called a “data-stream”, and is thought 
of as a sequence of “data elements”, e.g., a sequence of 
bits or characters. An individual element is referred to 
by its “subscript”, i.e. its position in the sequence. Ele- 

ments have a number of “features”, including Type (e.g. 
Boolean), Data-Value (e.g. FALSE), Encoding (how the 
abstract data-type is encoded as voltages), and various 
timing-related features. For a further discussion of these 

representations, see [Kelly, 19851. 
VEXED’s knowledge of refinement methods is em- 

bodied in a set of “refinement rules”, e.g., INCLUDE- 
MEMORY: 

IF the output at time t2 depends on an input 
at time tl, THEN one way to refine the module 
is into a memory, which holds the value from tl 

%VEXED stands for Vlsi Expert EDitor. 

Constraint propagation in VEXED is done by the 
CRITTER system[Kelly, 19851. Critter does two kinds of 
propagation. 

s Firstly, CRITTER d oes a form of goal regression. 
Given a specification on the data-stream output by a 
module, and given the behavior of this module, CRIT- 
TER can determine what must be true of the inputs 
to the module to ensure that the output specification 
will be met. 

a Secondly, CRITTER d oes a form of symbolic evalu- 
ation. Given a (possibly partial) description of the 
behavior of a module’s inputs, and given the mod- 
ule’s behavior, CRITTER can infer a description of 
the module’s outputs. 

Because of our representations, constraint propaga- 
tion is simply a matter of symbol substitution (see [Kelly, 
19831). However, this process results in very large, complex 
expressions. Therefore, CRITTER also has an expression 
simplifier that uses a set of rewrite rules to simplify the 
resulting expressions as much as possible. Finally, CRIT- 
TER is capable of verifying that the specifications on a 
data-stream are satisfied by that data-stream’s behavior. 
Again, this is done by a process of symbol substitution and 
simplification. 

Figure 1 shows the user interface5 for VEXED, at the be- 
ginning of a typical design session. The circuit being de- 
signed is one bit of a content-addressable memory, and is 
referred to as the CAM-CELL. The screen is divided into 
several regions, or windows. The largest window is the re- 

gion in which the circuit will be designed, and initially con- 
tains a large rectangle representing the CAM-CELL to be 
designed. Th e user has already entered the specifications 

for this circuit. These specifications include a description 

3Th& of course, is an English paraphrase of the formal notation. 

4To be augmented later by constraint propagation. 

5 VEXED is implemented for Xerox Pnterllisp-D machines using the 

Strobe object-oriented programming system from Schuimberger-Doll 
Research. 

Steinberg 831 



Figure 1: The VEXED Interface 

of the inputs and outputs of the CAM-CELL, as well as 
a description of the function to be implemented. Figure 2 
gives part of these specifications: the value of the output 
OUT at each time must equal some expression based on 
the values of the inputs at that and previous times, and 
for this output the boblean values TRUE and FALSE are 
represented by low (0 volts) and tristate (high impedance), 
respectively. 

Attached to the main window is a list of commands 
and a list of pending tasks. As shown in the figure, the only 
pending task at this point is to refine the CAM-CELL. 
This list of pending tasks will be updated as the design 
proceeds, and new circuit submodules are introduced. In 
general, the user controls which portion of the design to 
focus on next by selecting one of the pending tasks from 
this list. 

In this case, the user selects the (REFINE CAM- 
CELL) task, and the system then considers its collection 
of rules to determine which ones apply to this module. In 
this case, the advice offered by the system is that there are 
eight rules which suggest alternative methods for refining 
the CAM-CELL. The user may select one of these rules 
to be executed or, alternatively, may elect to ignore the 
system’s advice, and manually edit the circgt. 

Figure 3 shows the result of the user selecting 

((I (ALL I>> 
(EQUAL 

(DATA-VALUE 0uT I> 
(EQUAL (DATA-VALUE MATCH 11 

(DATA-VALUE DATA-IN 
(PREVIOUS 1 J 

(EQUAL (DATA-VALUE LOAD J> 
(QUOTE HIGH)) 

I>>>> 
(EQUAL 

(ENCODING err I) 
(NMOS-BOOLEAH (FALSE TBISTATE) (TRUE LOW)))) 

Quit 
Do Agenda Item 
Do Selected Rule 
Show Hierarchy 

Check Specifications 
Backtrack 

Rl+Jy 
Make Primitive 

Combine 
Jump 

Vexed Editor 
create Rule 

create CIRCUIT 

Figure 3: Result of Executing the Memory-Rule 

INCLUDE-MEMORY for the system to carry out. (This 
is the rule paraphrased above.) Execution of this rule has 
lead to a refinement of the CAM-CELL, which includes 
a memory module (called MEM:A0059), as well as sec- 
ond module (GMOD:A0062). Both modules have specifi- 
cations given in the same representation as for the origi- 
nal CAM-CELL specifications. The MEM:A0059 specifica- 
tions require that it store the value of the DATA-IN signal, 
whereas the specifications of GMOD:A0062 require that it 
produce an output depending upon a comparison between 
the output of MEM:A0059, and some of the inputs to the 
CAM-CELL. The list of pending tasks has also been up- 
dated so that the new tasks include refining MEM:A0059 
and GMOD:A0062. 

Refinement of the circuit continues in this fashion. 
The user directs the focus of attention by selecting which 

I Include a memory 

Use inverter 
loop d 

Uae & of peas networks 
to implement Foniunction of 

boolean f,uncti,ona 

* I \ Use Figure 8 for 
Use paae 

tranaiator 
for”@ 

statement 

$ &I compare 

-I- T 

Figure 2: Part of the Specifications for CAM-CELL Figure 4: The Design Hierarchy 

832 Expert Systems 



module is to be refined next. The system examines its rule the current circuit, and applies them to the current 

base to determine applicable rules, and presents these to module. To the extent that the refinement operations 

the user. The user may then select one of these, or may used previously are general, and apply in somewhat 

ignore this advice and elect instead to refine the module new circumstances, this is a way to reuse the idea3 

by editing it manually. Figure 4 shows the hierarchy of of a previous design even when the specific circuit is 

refinement steps which lead to a final circuit-level imple- not applicable. See [Mostow and Barley, 19861 for a 

mentation. further discussion of this facility. 

6. Status of VEXED 
There are three points to make about the status of 
VEXED. 

First of all, VEXED has been fully implemented, and 
has about 50 refinement rules. These cover most of the 
standard NMOS design techniques for boolean functions, 
and also a for few latches. Work has recently started on a 
set of rules for CMOS circuits. 

Secondly, VEXED has been used by students in our 
VLSI design class to do a homework assignment. The as- 
signment was done by about ten teams of students, mostly 
two students per team. Each team designed one of three 

small circuits; one circuit was a full adder, and the others 

were of about the same size. 
Thirdly, VEXED has had a number of capabilities 

added to it beyond refinement and constraint propagation. 

Q One facility any real system needs is a backtrack or 
“undo” facility that allows the user to retract decisions 
that turn out not to have the desired effect. VEXED 
has a chronological backtracking facility that allows 
the user to return the circuit to the state it was in at 
any previous time. 

e It turns out that when a module is refined into sub- 
modules, a sub-module may occasionally need a signal 
as input that was not originally among the inputs of 
the parent module. Typically this happens with sig- 
nals like clocks, ground, etc. To handle this situation, 
VEXED has “Get Signal” tasks, which are automat- 
ically entered on the task agenda when needed, and 
are handled by the user manually specifying where the 
needed signal should come from. 

A facility has been added for “Module Combining 
Rules”. These specify how two modules can be com- 
bined into one simpler one, and provide for a kind 

of peephole optimization. For instance, two invert- 
ers in series can be combined into just a simple wire 

(as long as this change does not violate some timing 
constraint). Since it is always appropriate to try to 
combine modules, and since the circuit can be consid- 
ered complete even if no combinations are done, these 
tasks do not go on the agenda. Rather, the user can 
point to a module and request that an attempt be 
made to combine it with each of its neighbors. There 
are currently only a few such rules, and this facility 
was not used by the VLSI students. 

o Finally, there is now a “replay” facility for VEXED. 
This takes the sequence of refinements applied previ- 
ously to some other circuit, or even to other parts of 

. 

AS discussed above, we began with a model of the design 
process and of the division of labor between he user and the 
system, and we implemented VEXED to test these models. 
Our results can be seen as answering two broad questions: 

CB First, can a design aid embodying these models be 
implemented ? Is it possible for a system to have a 
sufficient body of refinement methods, to find those 
applicable to a given module, to carry out the one 
selected by the user, and to do the constraint propa- 
gation? 

o Secondly, if such a system were implemented could de- 
signers, especially those with no AI or even computer 
science background, use it to produce designs? The 
concern here was both whether the users could under- 
stand and use this design process, and also whether 
they could learn our specification language, which is 
quite different from standard hardware specification 
languages in its LISP-like syntax, in its data-flow style 
semantics, and in its representation of a data-stream 
as a sequence of values. 

As the next two sections will describe, the answer to 
both of these is, “Yes, but.” 

The fact that VEXED has been brought to the point where 
students in our regular VLSI class could successfully use 
it is evidence that it has indeed been implemented. Two 
issues remain: the size and coverage of the set of refinement 
rules, and the cost of constraint propagation. 

As noted above, the current refinement rules cover 
most boolean combinational circuits for the NMOS circuit 
technology, and some latches. A truly useful system would 
require more complete coverage of combinational circuits 
and latches, as well as rules for a number of other kinds 
of circuits, e.g. multiplexers, and rules for higher level 
data-types such as integers and characters. However, in 
principle there seems no reason why these rules could not 
be added to VEXED. Based on the number of current rules 
and the coverage they give, we estimate that a version of 
VEXED that would be useful for real designers would need 
less than 1000 rules, and so would be within the scope of 
current technology for building and maintaining rule-based 
systems. 

Remember also that user can step in and do a refine- 
ment manually whenever the system does not have a rule 
for the desired refinement method. This helps in two ways. 

Stein berg 833 



First of all, it means that there need not be as many rules 
before the system is useful; it probably takes far fewer rules 

to cover 90% of the refinement steps in each of a range of 
designs that it would take to cover 100% of the steps. Sec- 
ondly, since the rules do not have to contain any control 
information, i.e. any information on which of the locally 
plausible refinements to actually do in a given design, it 
turns out that it is relatively easy to observe the user do- 
ing such manual refinements, and infer general rules. We 
are building a system called LEAP[Mitchell et al., 19851 
which will do just this. The first version of LEAP is al- 
most completed. 

Finally, VEXED uses an indexing structure to find 
relevant rules for refining a given module without testing 
the left hand sides of every’rule, so the time to find relevant 
rules should grow less than linearly with the number of 
rules, and the time to find relevant rules is currently fairly 
short. Thus we do not expect the time to find relevant 
rules to be a major problem even with many more rules. 

While the size of the rule set does not seem to be a 
problem, the cost, both in terms of memory space and in 
terms of time, to do constraint propagation does seem to 
be a major issue. In a circuit such as a full adder described 
at the transistor level, with about 20 modules, it takes five 
to ten minutes on a Xerox 1109 (DandeTiger) to do the 
constraint propagation after each refinement. The cost 
of constraint propagation seems to grow slightly less than 
linearly with circuit size, based on some initial impressions, 
but the delay for a full adder is barely tolerable and so to 
design anything much larger it will be necessary to reduce 
this cost. 

One simple answer, of course, is to optimize our code, 
which is currently not very optimal, or to get a faster 
machine. In particular, the task of constraint propaga- 
tion seems inherently parallel, since each constraint can be 
propagated along each path more or less independently; 
thus it would seem a natural application for a parallel ma- 
chine. 

Another answer is to find a way to do less propaga- 
tion. At the moment, VEXED propagates every constraint 
everywhere it can as soon as it can. Perhaps limiting or 
delaying some of this propagation can reduce the cost. We 
are currently looking in to this possibility. 

B. Can VEXED be Used? 
Given that VEXED can be implemented, can it be used? 
Can non-AI types learn our specification language, and 

can they successfully do design with such a design aid as 
VEXED? Again, the answer is, “Yes, but.” 

About half of the class were students from the Electri- 
cal Engineering Department with no AI background and 
indeed relatively little Computer Science background, and 
even the Computer Science students included some who 
had not had any AI courses. The students were given 
no more documentation and other help (lecture, hands on 

6Minor in the sense that we were able to quickly fix them. 

help, etc.) than they are typically given for any other de- 
sign aid used in the course. Never the less, they did succeed 
in specifying and designing their circuits. The few who did 
not finish were those who were halted by one or another of 
the minor’ bugs left in VEXED. 

On the other hand, the circuits some students de- 
signed were wildly sub-optimal. They took many more 
transistors than were necessary. That is, when they chose 
which refinement rule to use, they did not choose wisely. 
Partly this may be due to their inexperience as VLSI de- 
signers in general. Partly it may be due to their difficulty 
in understanding what each rule did. Each rule had a 
canned English description that said what its effect was, 
and another that tried to give advice on when to use it, but 
a major complaint from the students was that it was hard 
to understand this documentation and to figure out what 
the rules did. We are beginning to look into the whole area 
of how a system like VEXED could explain the rules and 
the state of the design to the user. 

Finally, the difficulty in choosing rules may be inher- 
ent in the structure of a system like VEXED. I am a bet- 
ter designer than the students, and I understand the rules 
quite well, and thus I can get much better designs out 
of VEXED. However, I have to think very hard to do so. 
The problem is that VEXED’s constraint propagation tells 
you the effects of previous refinement decisions in limiting 
the choices for the current decision, but it does not show 
you how each current alternative will limit the choices you 
will have on later decisions. To get a good circuit out of 
VEXED, the user has to have a clear global strategy in 

mind, and has to weigh each decision in the light of how it 
will contribute to that strategy. 

Perhaps VEXED could try the constraint propagation 
that would result from each alternative, and inform the 
user what the effects of each would be on the remaining 

alternatives elsewhere. However, given the cost of con- 
straint propagation, this may not be practical. The basic 
problem seems to be that since VEXED leaves the control 
issues entirely up to the user, it has no internal represen- 
tation of the goals and plans that go into a strategy for 
designing the circuit, and thus cannot offer the user any 
support in deciding which module to work on next or which 
refinement to make. The DONTE system being developed 
in our research group by Chris Tong[Tong, 19871 is an at- 
tempt to study some of the issues of how a system based 
on top down refinement and constraint propagation might 
also make these control decisions. 

In addition to the problems with choosing the right 
rule that the students actually had, there are two prob- 
lems that did not come up but might have had they been 
designing larger circuits. One is that certain kinds of cir- 
cuit are quite difficult to specify in our language. These 
are the circuits whose output at a given time depend on 
the entire past history of their inputs, or at least on an un- 
bounded set of past inputs. These are not easy to express 
in a data flow oriented form. The solution here is either to 
find a more algorithmic specification language that can be 
translated into the data flow form, or to find a way to do 

834 Expert Systems 



constraint propagation directly with the more algorithmic 

language. 

The second potential problem with larger circuits is 
that design really does involve more kinds of operations 
than just refinement and constraint propagation, and even 
more than get-signal, backtrack, replay, and combining 
modules. Examples include inserting “sub-goal” modules 
to fix conflicts, e.g. when one module produces output 
in serial and the next needs parallel input, you can put 
in a serial to parallel converter. Also, some operations 
are best viewed not as a refinement of a module into sub- 
modules, but rather as a recasting of the specification into 
a semantically equivalent but structurally different form, 
e.g. turning an complex boolean expression into sum-of- 
products form. And there are a few other such examples. 
However, all of them seem to be the kind of thing that 
can be added on top of the basic VEXED model, much as 
the module-combining rules have been added. Of course, 
further work is needed to be sure that they really can be 
added. 

In summary, then, if ways can be found to help the 
user choose the right rules, and if the cost of constraint 

propagation can be controlled, and if the additional kinds 
of operations can indeed be added to the system, the 
VEXED model of design will indeed prove to be a good 
one on which to base interactive, knowledge-based design 
aids. 

Both the programs and the ideas presented here are the 
work of many people in the Rutgers AI/Design group. I 
particularly want to thank Tom Mitchell, Jack Mostow, 
Chris Tong, Jeff Shulman, Tim Weinrich, Mike Barley, 
Atul Agarwal, and Sunil Mohan. Finally, I want to thank 
Chun Liew for help with text formatting. 

[Brewer and Gajski, 19861 F. Brewer and D. Gajski. An 
expert-system paradigm for design. In Proceedinga of 
the 23rd Annual Design Automation Conference, June 
1986. 

[Brown et al., 19831 H. B rown, C. Tong, and G. Foyster. 
Palladio: an exploratory environment for circuit de- 
sign. In IEEE Computer Magazine, December 1983. 

[Bushnell and Director, 19861 M. Bushnell and S. Direc- 
tor. Vlsi cad tool integration using the Ulysses envi- 
ronment. In Proceedings of the 23rd Annual Design 
Automation Conference, June 1986. 

[Joobani and Siewioriek, 19851 R. Joobani and D. Siewior- 
iek. Weaver: a knowledge based routing expert. In 
Proceedings of the 22rd Annual Design Automation 
Conference, June 1985. 

[Kelly, 19831 V. Kelly. The CRITTER System: Auto- 
mated Critiquing of Digital Hardware Designs. Tech- 
nical Report WP-13, Rutgers AI/VLSI Project, 
November 1983. also appearing in the Proceedings 
of the Design Automation Conference, 1984. 

[Kelly, 19851 V. Kelly. The CRITTER System - An AT- 
tificial Intelligence Approach To Digital Circuit De- 
sign Critiquing. PhD thesis, Rutgers University, New 
Brunswick, New Jersey, January 1985. 

[Kim and McDermott, 19831 J. Kim and J. McDermott. 
Talib: an ic layout design assistant. In Proceedings of 
AAAI-83, pages 197-201, 1983. 

[Kowalski, 19851 T Kowalski. An artificial intelligence ap- 
proach to VLSI design. Kluwer Academic Publishers, 
Boston, 1985. 

[Langrana et a!., 19861 N. Langrana, T. Mitchell, and N. 
Ramachandran. Progress Toward A Knowledge-Based 
Aid for Mechanical Design. Technical Memo CAIP- 
TM-002, Center for Computer Aids for Industrial Pro- 
ductivity, Rutgers University, January 1986. 

[Mitchell et al., 19851 T. M. Mitchell, S. Mahadevan, and 
L. Steinberg. Leap: a learning apprentice for vlsi de- 
sign. In Proceedings of IJC’AI-85, Los Angeles, CA., 
August 1985. 

[Mostow and Barley, 19861 J. Mostow and M. Barley. Re- 
use of design plans. In International Conference on 
Engineering Design, Boston, MA., September 1986. 
Abstract accepted for ICED87. 

[Parker and Knapp, 19861 A. Parker and D. Knapp. A de- 
sign utility manager: the adam planning engine. In 
Proceedings of the 23rd Annual Design Automation 
Conference, June 1986. 

[Stefik, 19811 M. Stefik. Planning with constraints (mol- 
gen: part 1). In A&ficial Intelligence 169, 

pages 111-140, May 1981. 

[Tong, 19871 C. Tong. Goal-directed planning of the de- 
sign process. In The 3rd IEEE Conference on AI Ap- 
plications, February 1987. also appears as Rutgers 
AI/VLSI Project Working Paper No. 41. 

Stein berg 835 


