
Invariant Logic: A. Calculus for Problem Reformulation

Michael R. Lowry
Stanford Robotics Laboratory
Box 3350, Stanford CA 94309

And Kestrel Institute
1801 Page Mill Road, Palo Alto CA 94304

lowry@kestrel.arpa

Abstract

Symmetries abound in nature. Observing sym-
metries often provides the key to discovering in-
ternal structure. In problem solving, observing
and reasoning about symmetries is a powerful
tool for shifting viewpoints on a problem.
A calculus for reasoning about problem sym-
metries has been developed, called Invariant
Logic. Invariant Logic is partially implemented in
STRATA, a system which synthesizes algorithms
through problem reformulation.
In STRATA, Invariant Logic is used to reason
about generalized problem symmetries for several
purposes. The first purpose is as a calculus for
generating expressions denoting problem symme-
tries. The second purpose is problem abstraction
- generating abstract problem descriptions which
denote models in which the problem symmetries
have been collapsed. The third purpose is prob-
lem reduction - specializing a problem description
by adding constraints in order to realize perfor-
mance gains.

1 Introduction
One hundred years ago mathematics was undergoing a rev-
olution. The Kantian dictate that Euclidean Geometry is
the only rationally conceivable basis for the physical uni-
verse had been debunked. Numerous alternative geome-
tries, each self-consistent, were being discovered, axioma-
tized, and developed. Felix Klein found a unifying prin-
ciple for relating and classifying the various geometries -
Invariant Theory. The key idea is to classify mathematical
structures by the transformations under which they are
invariant. Invariant Theory has achieved wide influence
in mathematics, physics (including relativity and quantum
mechanics), and computer science. The calculus developed
here is based upon relatively simple aspects of Invariant
Theory.

This paper presents initial work on Invariant Logic- a
tool to automate reasoning about symmetries (denoted by
groups of transformations) and invariants. In the STRATA
system, Invariant Logic is used for problem reformulation,
generating abstract data types, and algorithm synthesis.
Section 2 overviews the basic concepts of Invariant Logic,
illustrated with Euclidean symmetries of geometric figures.
Section 3 shows how Invariant Logic can be used to ab-
stract the representation of a simple combinatorial prob-
lem. Section 4 demonstrates Invariant Logic applied to

14 Automated Reasoning

generating abstract data types, when given a domain the-
ory and a problem specification. Section 5 explores math-
ematical aspects related to problem reformulation, includ-
ing duality and isomorphism between theories. More tech-
nical detail can be found in [Lowry, 19881.

Prior work in problem reformulation and algorithm syn-
thesis has addressed specific aspects of the use of symme-
try. Amarel[Amarel, 1968] 1 s lowed how the symmetry un-
der time reversal of solutions to the missionary and canni-
bals problem could be used to halve the depth of the search
space. Cohen[Cohen, 19771 later generalized this work to
the class of state space search problems. Korf [Korf, 19801
gave many interesting examples of the potential use of sym-
metries in abstracting problem representations, and devel-
oped a set of primitive “isomorphic” reformulation rules.
The mathematical basis for isomorphism between theories
is formalized in section 5 of this paper. Kokar’s COPER
system[Kokar, 19861 d iscovers equations for physical laws
from experimental data. COPER uses the same mathe-
matical foundation as Invariant Logic, though in a differ-
ent setting - dimensional analysis. RlcCartney’s hfedusa
system [McCartney, 19871 uses predefined geometric dual
transforms for synthesizing algorithms in computational
geometry.

2 Symmetry, Invariance, and
Transformat ions

This section describes the underlying concepts
Logic using geometric figures and shapes.

of Invariant

The double headed eagle, crest of the Dukes of Savoy,
has bilateral symmetry. It is mapped to itself through re-
flection about the line 1. Reflection about 1 defines a one-
to-one transformation &? which leaves the figure invariant.
R maps point p to point p’, and vice versa. Note that R is
its own inverse, applying R twice takes p back to itself: R
compose R = identity. R and the identity transformation
form a group of transformations. A group of transforma-
tions is a set of transformations which include the identity,
an inverse for each transformation, and is closed under
composition. Cl osure under composition means that two
transformations composed together result in another trans-
formation from the group. In order to be invertible, each
transformation must be one-to-one. Formally, the group

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

elements are the transformations, the group operation is
composition of transformations.

The hexagram, or Star of David, s both rotational
and reflective symmetries. It is invariant under the six ro-
tations about its center (multiples of 60 degrees) and six
axis of reflection. In Invariant Logic, this is denoted:
Invariant (hexagram, Rot at ions Join Re f dect ions). The
Join operation takes two groups of transformations, forms
the union, and then generates the closure of this union un-
der composition. (An interesting geometric fact is that the
closure of the reflective symmetries includes the rotational
symmetries.) The Meet operation takes two groups of
transformations and returns their intersection. The meet
of the rotational symmetries and the 3 reflective symme-
tries with axis through apexes of the hexagram are the
rotations of multiples of 120 degrees. This is because two
reflections whose axis form an angle of n x 60 degrees gen-
erate a rotation of n x 120 degrees. The group of trans-
formations which leave a geometric figure invariant form a
lattice structure with respect to its subgroups, illustrated
below for the hexagram. A subgroup is a subset of transfor-
mations which are closed under composition and inverses.
Notice that as more subgroups are joined together they
converge upon the total group of transformations. The
search space is commutative and convergent. In later sec-
tions of the paper problem specifications will be abstracted
by discovering problem symmetries and incorporating these
symmetries into the problem formulation. l3ecause of
the commutative and convergent lattice structure
of the subgroups of a group, search control is a
minor issue in problem abstractiou using Invariant
Logic.

Symmetry Group

ions

n x 120

I
identity

The orbit of an object under a transformation group
is the equivalence class of objects to which it is trans-
formed. It is an equivalence class because a transformation
group includes the identity (reflexivity), inverses (symme-
try), and is closed under composition (transitivity). The
metaphorical origin of the term orbit is illustrated by the
orbits of the triangles in a hexagram under rotations of
multiples of 120 degrees. The black triangles are mapped
to each other, as are the checkered triangles, thereby form-
ing two equivalence classes of triangles in the hexagram.
Each equivalence class can be generated by a representa-
tive element and the group of transformations.

Symmetry can be used for simplifying representations.
With bilateral symmetry only half a figure needs to be
given, along with the axis of reflective symmetry. The
hexagram, considered as a set of line segments, can be
represented by an isoceles triangle (one of the apexes), and
the transformation group defined by the six rotations:
Hexagram = Apply(Rotations, triangle).

3 xtensioiial Invariant easoning
This section shows how Invariant Logic can be applied to
problem abstraction when the semantics are given exten-
sionally, i.e. as an explicit listing of a set. The classic
missionary and cannibals problem [Amarel, 19681, is to
move 6 people across a river in a 2 man boat without any
of them eating each other. hiost accounts of this problem
begin with the formulation that there are 3 missionaries
and 3 cannibals, and a legal intermediate state is one in
which the missionaries are never outnumbered and then
eaten on either side of the river. However this is already
an abstract formulation which incorporates a great deal of
relevant information about the legal states. An observer
would not see this formulation, instead he would see distri-
butions of specific people on the left and right banks. He
would probably begin to notice patterns, especially nearly
identical intermediate states which only differed by inter-
changing specific people.

Just like the triangles of a hexagram described orbits un-
der rotations of multiples of 120 degrees, so do the inter-
mediate states describe orbits under the transformations
defined by interchanging specific people. Assume the peo-
ple are Mike,Max,Cal,Cindy,Cory, and that our observer
notes that Mike,Mary,Max are mutually interchangeable,
as are Cal, Cindy, Cory. He also notes that the left and
right banks can be switched. On this basis he is able to
partition the 34 legal states he observes into five orbits.
Representative states in the five orbits are given below (the
river is represented by !!):

nobody !! Cal Cindy Cory Mary Max Mike
Cal Cindy !! Cory Mary Max Mike
Cal Cindy Cory !! Mary Max Mike
Cal Mary !! Cindy Cory Max Mike
Cal !! Cindy Cory Mary Max Mike

These five representative states contain sufficient infor-
mation to generate the complete set of 34 states given the
transformation group which arises from the possible in-
terchanges among people and banks. Note that each of
these representative states are the smallest representative
in their orbits with respect to lexicographic ordering on
names. Except for the fourth state, they are all lexico-
graphically ordered. This is the basic idea for problem
reduction through transformations - choosing a representa-
tion which satisfies additional constraints, such as ordered.
A constraiut cau be added to a problem descrip-
tion if some representative of each orbit satisfies
the additional constraint. This is especially useful for
algorithm synthesis, because a more efficient algorithm can
often be synthesized when additional constraints can be as-
sumed in an input-output specification.

While problem reduction chooses a representative for
each orbit, problem abstraction generates an abstract de-
scription in terms of invariant properties for each orbit.

Lowry 15

Invariance under a transformation group is a filter to de-
termine which properties are relevant to an abstract de-
scription. The value of an invariant property is shared by
every element in an orbit. A set of invariant properties
is complete if they uniquely determine an orbit from the
abstract values and the transformation group.

As an example, let X be a set, P be the powerset of
X, and R be a subset of P. Thus R is a set of subsets of
X. Let AZZPi(X) d enote the group of all possible premu-
tations of the elements in X. A permutation is a one-to-
one mapping of the elements in a finite set to themselves.
It can be thought of as a reordering of a sequence. If
Invariant(R, AZZPi(X)), th is means that the size of the
subsets in R is a complete set of invariants. Proof: Let
rl be an element of R, e.g. a subset of X, whose size is
nl. Then for any other r2, subset of X with size nl, there
is a one-to-one transformation from the elements of rl to
the elements of r2. This transformation is contained in
AZZPi(X). For any subset of X, si, whose size is not nl,
there is no one-to-one transformation from rl to si. Thus
the orbit of rl contains all subsets of equal size from X and
only the subsets of equal size. QED,

The following partial set of rules abstract set-theoretic
types in terms of invariant properties. Proofs similar to
the one above can be found in [Lowry, 19881. In the rules,
MS is some mathematical structure which is being ab-
stracted. In the missionary and cannibals example, MS
is the set of legal intermediate states. MS is invariant
under AZZPi(X), where X is some set used in MS. R
is a subtype of MS. The type declarations are based on
the REFINETn’ language. Map(domain, range) is the
declaration for a partial function from domain to range.
Set(domain) is the declaration for a set with elements
from domain. TupZe(domainl...domainN) is the decla-
ration for an ordered tuple with successive elements from
domainl, domain2, etc. The abstraction of both the sub-
type and the extension are given.

1. The invariant of a subset of X is its size:
R : set(X) AND Invariant(MS,AZlPi(X))
3 R : integer
The extension is the size of the subset.

2. The proof given above, and embedding rule 1.
R : set(set(X)) AND Invariant(MS, AZZPi(X))
+ R : set(integer)
The extension is a set of integers, representing the size of
the subsets in R.

3. If the value of a multi-argument function is indepen-
dent of one of its arguments, then delete the argument.
R : map(tupZe(..X..), range)
AND Invariant(MS, AlZPi(X))
+ R : map(tupZe(....), range)
Extension: project out the argument whose domain is X.

4. A similar rule for a relation.
R : set(tupZe(..X..)) AND Invariant(h4S, AZZPi(X))
=+ R : set(tupZe(....))
Extension: project out the argument whose domain is X.

5. A function from domain to range can be transformed
to a function from range to subsets of domain - i.e. the
domain elements which map to a given range element. The
invariant in this rule is the number of domain elements
which map to a range element.
R : map(X, range) AND Invariant(MS, AZlPi(X))

+ R : map(range, integer)
Alternatively j R : bag(range)
Extension: the range is mapped to the number of elements
in the inverseimage.

6. Every function defines an equivalence relation on its
domain - the elements which map to the same range ele-
ment. This partitioning of the domain is the invariant in
this rule.
R : map(Domain, X) AND Invariant(MS, AZZPi(X))
+ R : partition(Domain)
Extension: the domain is partitioned.

When X is only a subset of the domain or range Y the
following rules apply, where D is the set difference between
Y and X. The extensions and subtypes are analogous to the
previous rules, but involve tupling to separate X and D.
7. R : set(Y) AND Invariant(MS, AZZPi(X))
+ R : tupZe(integer, set(D))
8. R : map(Y, range) AND Invariant(MS, AllPi(
+ R : map(range,tupZe(integer, set(D)))
9. R : map(Domain, Y)
AND Invariant(MS,AZZPi(X)) r~
R : tupZe(partition(Subdomainl), map(Subdomain2,D))
Subdomainl is the elements of Domain which map to X,
and Subdomain is those which don’t map to X.

These rules can be applied to obtain an abstract rep-
resentation for the set of legal intermediate states in the
missionary and cannibals problem. These rules are not
strictly compositional on subtypes, technical details can
be found in [Lowry, 19881. Each state is a mapping from
people to locations, so the set of legal states has the fol-
lowing type:
set(map({Mibe, Mary, Max, Cindy, Cal, Cory}, {left, right}))

The transformation group which leaves the 34 legal
states invariant is defined usiug the AZZPi(X) construc-
tion:
AllPi(Mike, Mary, Max) Join AllPi(CaZ, Gory, Cindy)
Join AlZPi(le ft, right). This transformation group is
composed of three subgroups which are joined together.
These subgroups will be used in successive rules to ab-
stract the representation.

Rule 8 uses AZZPi(Mike, Mary, Max) to obtain the ab-
stracted type:
set(map({Zeft, right}, tupZe(integer,set(CaZ, Gory, Cindy))))

Rule 1 then uses AZZPi(CaZ, Gory, Cindy) to obtain:
set(map({Zeft, right), tupZe(integer,integer)))

Finally Rule 5 uses AZZPi(Zeft, right) to obtain:
set(bag(tupZe(integer, integer)))

The extension for this abstract type is given below, with
the corresponding representative state from each orbit.

bag((0,0),(3,3)) nobody !! Cal Cindy Cory Mary Max Mike
bag((0,2),(3,1)) Cal Cindy !! Cory Mary Max Mike
bag((0,3),(3,0)) Cal Cindy Cory !! Mary Max Mike
bag((1,1),(2,2)) Cal Mary !! Cindy Cory Max Mike
bag((0,1),(3,2)) Cal !! Cindy Cory Mary Max Mike

4 Intensional Invariant Reasoning
This section describes how STRATA uses Invariant Logic
for abstracting a problem when the semantics are given
intensionally, i.e. as a theory. First the rules for comput-
ing symmetries for composite relations are given. Then

16 Automated Reasoning

a simple problem is introduced, and it is shown how the
Knuth-Bendix completion algorithm can be used to cal-
culate additional problem symmetries. A special type of
symmetry - congruences - are described. The application
of Invariant Logic to the abstraction process is shown, and
the alternative of specialization through problem reduction
is described.

The following rules of invariant logic provide a calcu-
lus for determining the invariants of a composite relation
based on the invariants of its subparts. The primary ob-
servation for boolean operations on relations is that the
result is invariant under the intersection (meet) of transfor-
mation groups for the separate arguments. This supports
“greatest common divisor” reasoning on composite rela
tions. In the rules which follow, R is a relation i.e. type
tuple(domainl,domain2.... domainN), and TG is a trans-
formation group over the tuples. These rules are slightly
simplified versions of ones in [Lowry, 19881, which address
some technical issues concerning whether the domains are
distinct.

If a relation is invariant, then so is its complement:
Invariant (R, TG) z Invariant(lR, TG)

Boolean operations such as union and intersection pre-
serve invariance with respect to the meet of transformation
groups (Rl,R2 are sets of tuples of the same type):
Invariant(Rl,TGl) AND Invariant(R2, TG2)
+ Invariant(R1 boolop R2, (TGl meet TG2))

The Cartesian product over relations preserves invariance
under the direct product of transformation groups.
Invariant(Rl,TGl) AND Invariant(R2,TG2)
+ Invariant (Rl @ R2, TGl @ TG2)

IF a relation is invariant under a transformation group,
then it is invariant under any of its subgroups:
Invariant(R,TG) AND Subgroup(TGl,TG)
+ Invariant (R, TGl)

Consider the problem of common-members: given two
lists as input, output a list whose elements are the com-
mon members of the two lists. Abstractly, this problem
is simply set-intersection. The problem can be special-
ized by problem reduction to assume the two input lists
are ordered, an efficient algorithm is to march down the
two ordered lists in tandem. The reduction is achieved by
sorting the two input lists, which is a transformation which
leaves the problem invariant.

STRATA generates abstract problem descriptions from
a concrete problem description and a domaiu theory. The
conceptual foundation is partially described in [Lowry,
19871, this section discusses interesting aspects of the im-
plementation not covered earlier. For common-member,
the domain theory is that of lists; the following equational
theory is given to STRATA, where variables are denoted
by & . Equational theories are often used for specifying
abstract data types. The equations can be turned into a
logic program by making one side of each equation into the
left hand side of a rewrite rule, and the other side into the
right hand side. Equality between ground terms can be de-
cided by rewriting them to normal form with the derived
rewrite rules.

(append nil &l3) = &I3
(append(cons &a &I)&l3)=(cons &a (append &I &13))
(member &x nil) = false
(member &x (cons &y nil)) = (EQ &x &y)

(member &x (append &Ll &l2))
= (member &x &Ll) OR (member &x &L2)

;; equations defining semantics of AND, OR, IFF
(common-member &Ll &L2 &L3) =
(member &x &L3) IFF
(member &x &Ll) AND (member &x &L2)

The first step is to generate the problem symmetries.
The rule for boolean composition of relations deduces that
the symmetries of member are a subset of the symme-
tries of common-member. The symmetries of member are
not known, and the compositional calculus does not apply
(the rules above don’t handle recursive definitions). The
homomorphism method described in [Lowry, 19871 finds
the symmetries of member; it is implemented by applying
the Knuth-Bendix completion algorithm. The basic idea
in setting up the Knuth-Bendix algorithm is to make two
copies of the problem name, and linking them. One copy
has a heavier weight than any other symbol (e.g. member).
The other copy has a lighter weight than any other symbol
(e.g. member’). Intuitively, the K-B algorithm percolates
the problem definition through the domain theory to the
lighter weight problem name, generating problem symme-
tries.

Derived from K-6 when member defined with append
(member’ &x (append &y &z)) =

(member’ &x (append &z &y))
(member’ &x (append &y &y)) =

(member’ &x &y)
Derived from K-B when member defined with cons
(member’ &x (cons &a (cons &b &L))) =

(member’ &x (cons &b (cons &a &L)))
(member’ &x (cons &a (cons &a&L))) =

(member’ &x (cons &a &L))

These derived theorems denote the symmetry of lists
under transformations of reordering and deleting repeated
elements. Structural Induction is used to verify that new
equations can be extracted from these theorems. An equa-
tion represents a special kind of problem symmetry (a con-
gruence), which, when substituted into itself still denotes
a problem symmetry. As part of the structural induction
proof for the commutativity of append, STRATA gener-
ates and proves the following theorem:
(member’ &x (append (append &x &y) &z)) =
(member’ &x (append (append &y &x) &z))

After proving structural induction, STRATA extracts
the following axioms and adds them to the theory of lists,
thereby deriving the abstract data type for sets. The added
axioms for append make it commutative and idempotent,
thus the semantics are set-union, and append becomes
set-union (names don’t matter for the denotation of a
theory) :
Invariant(common-members,

(append’ &y &z) = (append’ &z &y))
Justifies add-axiom((append’ &y &z)=(append’ &z &y))
Invariant(common-members,(append’ &x &x) = &x)

Justifies add-axiom((append’ &x &x) = &x)

An alternative to abstraction is problem reduction -
adding constraints which can be achieved with the trans-
formations which leave the problem invariant. In contrast
to abstraction, there are many possible problem reductions

Lowly 17

because there are many possible representative elements in
each orbit. One source of constraints are derived precondi-
tions for operators. In this example, if the lists are ordered
an inexpensive necessary condition on membership is that
the first element of the list is less than or equal to the
element being tested for membership. This gives rise to
the derived precondition that the input lists are ordered,
which can be achieved by repeatedly switching adjacent
list elements which are out of order (bubble sort). This
switching transformation is denoted by one of the derived
equations for cons:
(cons &a(cons &b &L))=(cons &b (cons &a &L))
See [Lowry, 19881 for the application of problem reduction
to synthesizing Karmarkar’s linear optimization algorithm.

5 Duality and Isomorphic
Theories

Duality can be expressed as a symmetry among the sym-
bols of a theory which leave the true sentences invariant.
A transformation from symbols to symbols is a represen-
tation map, designated RMap. Duality has bilateral sym-
metry, an example is boolean algebra (Not is self dual):
And +-+ Or
true t---+ false
Not c--f Not
This representation map transforms true sentences to true
sentences:
(z And true) = x t----f (x Or false) = x

Duality of a theory is easy to verify - simply trans-
form the axioms with the representation map, and
prove the transformed axioms using the original theory:
Dual(Theory, RMap) G Axioms I- RMap(Axioms) Be-
cause proofs are invariant under renaming of symbols, we
obtain for free the dual proofs by applying the represents
tion map, which is its own inverse:
RMap(Axioms) i- Rmap(Rmap(Axioms)) = Axioms

Duality is often exploited in algorithms. Mini-max
search and alpha-beta pruning use duality to efficiently
search the space of look ahead moves in a competitive
game. Linear optimization problems, particularly the spe-
cial class of network flow problems, can be efficiently solved
by primal-dual algorithms. In geometric algorithms, the
duality between lines and points in 2-D projective geom-
etry can be used to expand theuses of subroutines. For
example, collinearity of points can be mapped to intersec-
tion of lines.

In duality, the representation map is from symbol to
symbol. Isomorphic theories are defined by generalizing
the representation map from symbols to terms. A repre-
sentation map from symbols to terms is not invertible, so
the definition is more complex. Theory A and theory B are
isomorphic iff there exists representation maps Rl from A
to B and R2 from B to A which satisfy:

1. Axioms(B) I- Rl(Axioms(A))

2. Axioms(A) t- R2(Axioms(B))

3. Rl o R2 = Identity(A)

4. R2 o Rl = Identity(B)

Boolean algebra
with primitives Nand,true, false is

18 Automated Reasoning

isomorphic to
defined

boolean

algebra defined with primitives And, Or, Not, true, f alse.
The representation maps Rl, R2 are given below:
Or(x, y) -+ Nand(Nand(x), Nand(y))
And(x, y) -+ Nand(Nand(x, y))
Not(x) ---f Nand(x)
Not(And(x, y)) - Nand(x, y)

The last two conditions on isomorphism between theo-
ries is that the composition of representation maps yields
the identity. This entails that an equivalence be proven,
for Nand the composition of representation maps yield:
Nand(x, y) + Not(And(x, y))
--) Nand(Nand(Nand(x, y))) The following equivalence
has to be proved in order to show that Rl o R2 is the
identity:
Nand(x, y) = Nand(Nand(Nand(x, y))).
Similar equivalences are needed for And, Or, Not.

An alternative definition of isomorphism between theo-
ries is that each can be conservatively extended with de-
fined relations and functions to include the other. Isomor-
phism between theories is one way to define reformulation.

6 Acknowledgements
This paper benefitted from the technical and editing help
provided by Tom Binford, Leonid Frants, Joseph Goguen,
Walter Bill, Douglas Smith, George Stolfi, and Yinyu Ye.
Special thanks go to the reviewers, who made substantial
comments on clarifying the paper. This work was sup-
ported in part by DARPA sub-contract AIADS-S10935-1
and ONR contract N00014-87-K-0550. The views and con-
clusions in this paper are solely those of the author.

References
[Amarel, 19681 Saul Amarel. On representations of prob-

lems of reasoning about actions. Machine Intelligence
3, 1968.

[Cohen, 19771 Brian Cohen. The mechanical discovery of
certain problem properties. Artificial Intelligence, 8,
1977.

[Kokar, 19861 h4 ieczslaw hI. Kokar . Determining argu-
ments of invariant functional descriptions. Machine
Learning, 1, 1986.

[Korf, 19801 Richard E. Korf. Towards a model of repre-
sentation change. Artificial Intelligence, 14(l), April
1980.

[Lowry, 19871 Michael R. Lowry. The abstrac-
tion/implementation model of problem reformulation.
In IJCAI-87, August 1987.

[Lowry, 19881 Michael R. Lowry. Algorithm Synthesis
through Problem Reformulation. PhD thesis, Stan-
ford University, 1988.

[McCartney, 19871 Robert D. McCartney. Synthesizing al-
gorithms with performance constraints. In AAAI-87,
1987.

