
eing Suspicious: Criti uing Problem Specifications 

Stephen Fickas and P. Nagarajan 

Computer Science Department 
University of Oregon 
Eugene, OR. 97403 

Abstract 
One should look closely at problem specifications 
before attempting solutions: we may find that the 
specifier has only a vague or even erroneous notion of 
what is required, that the solution of a more general 
or more specific problem may be of more use, or sim- 
ply that the problem as given is misstated. Using soft- 
ware development as an example, we present a knowl- 
edge-based system for critiquing one form of problem 
specification, that of a formal software specification. 

Suppose one were given a problem P to solve. Suppose fur- 
ther that it was known that generating a solution S for P 
will require a large effort. The question we ask in this 
paper is a pragmatic one: should we take P on blind faith 
and forge ahead, or should we scrutinize P carefully before 
committing resources to its solution? We will argue for 
the latter approach. More specifically, we propose that 
three types of specification critiques can account for a use- 
ful and interesting set of specification errors: 

Unsupported policy: a domain goal or policy that we 
wish the system to obey is not supported by any specifica- 
tion component. 

Obstructed policy: a domain goal or policy that we wish 
the system to obey is actively obstructed by a specification 
component. 

Superfluous component: a specification component can be 
seen to support no domain goal or policy of importance. 

To investigate this hypothesis, we have built a computer- 
based system that, given a problem specification in a specif- 
ic domain, will view the specification as suspect until it 
can be rationalized, using the three criteria above, against a 
set of domain policies. In this paper we describe this sys- 
tem, and report on our efforts to evaluate it on a standard 
specification problem. 

2 Towards a specification critic 

The characterization of P, for our project, is that of a for- 
mal software specification. In earlier work, we also stud- 

This work is supported under National Science Foundation 
g-rant DCR-8603893. 

ied formal and automated means of mapping specifications 
to implementations, i.e., the solution space S Eickas, 
19851. While our project is concerned with soflare speci- 
fication techniques, we suggest that the approach we pro- 
pose here might find application in any domain where 
problem specification is difficult (because of complexity, 
ambiguity, ignorance) and solution techniques are costly. 

Our interest in a specification critic (henceforth, we will 
use problem spec#cation and specification synonymously) 
is one part of a larger project whose goal is to provide 
assistance to a software analyst in producing a formal spec- 
ification. This project, called Kate [Fickas, 19871, rests on 
the following 3 components: 

1. A model of the domain of interest. This includes the 
common objects, operations, and constraints of the domain, 
as well as information on how they meet the types of 
goals or policies one encounters in the domain. 

2. A specification construction component 
the design of the emerging specification. 

that 

3. A critic that attempts 
problem specification. 

to poke holes in the client’2 

controls 

Our focus in this paper is on the first and third compo- 
nents, the domain model and the specification critic (see 
[Swartout 19831 and [Yue 19881 for a complimentary, 
domain independent approach to specification analysis). 

2.1 Basic critic components 

The critic consists of a model part, an example part, and 
correspondence links between components in model and 
example. The use of example is as the representation of a 
specification under review. Our problem description lan- 
guage, used by both model and example, can be viewed as 
equivalent to a Petri-net in its support of places, tokens, 
transitions, and non-deterministic control. However, it 
also extends the basic Petri-net model in the following 
ways: it supports token objects, token types and token 
abstraction through a class hierarchy similar to 
Greenspan’s RML language [Grcenspan, 19841; it intro- 
duces the notion of a place type with capacity [wilbur- 

‘We will use the singular form of client as a useful simpli- 
fication in this paper. In reality, there are often many 
‘ ‘clients’ ’ to satisfy. 

Fickas and Nagarajan 19 

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved. 



Model cases are linked to policies. Each such link can 
take on one of two values: positive - the case supports the 
policy; negative - the case obstructs the policy. Figure 1 
shows a small portion of the resource management model 
with policies denoted by square boxes, domain cases denot- 
ed by rounded boxes, and policy-to-case links as highlight- 
ed arcs: negative arcs end with a black circle, positive arcs 
are drawn normally. Arcs between domain cases are taxo- 
nomic. 

Note that figure 1 presents a static view of model; 
when used in a critique, correspondence links would exist 
between cases and example components. Further, each poli- 
cy would be marked with a value important, unimportant, 
or unknown. Thus, the final step the user must carry out 
to run the critic is to give some or all of the policies a val- 
ue; unmarked policies are given a value unknown, which in 
turn is conservatively viewed as important by the system. 

By choosing various policy values, we can “take the 
view” of various system users. For instance, if we take the 
(selfish) view of a user of the library, we might mark a 
large selection set and unlimited borrowing as important, 
and all other policies as unimportant. We can later change 
policy values to reflect the good of the whole (i.e., take 
the library administration’s view by marking privacy and 
minimization of cost as important) and rerun the critic. 

2.2 Critic execution 

There are three types of problems that are of interest to 
our critic: 

Non-support: A policy marked as important (or 
unknown) is IiRked positively to a model case. A 
case match is not found in example. 

Obstruction: A policy marked as important (or 
unknown) is linked negativezy to a model case. A 
case match is found in example. 

Superfluousness: A policy marked as unimportant is 
linked positively to a model case. A corresponding 
case match is found in example. 

The third critique is based on the notion that components 
added to a specification in support of an unimportant poli- 
cy will tend to add unnecessarily both to the complexity 
of the system, and to the cost of its operation and mainte- 
nance. 

We note that it is possible, and in fact typical, for the 
same case to have both positive and negative links to some 
set of policies. That is, the case may positively support 
policy Pl and negatively affect policy P2. Taking an exam- 
ple from figure 1, Pl is give user’s a good stock on hand, 
P2 is give users a useful working set, and the case is force 
turnaround (or restrict borrowing). While we would like 
to think that Pl and P2 are never both simultaneously 
marked as important, it is not untypical for a client to 
describe a conflicting set of goals or policies. In fact, most 
borrowing systems can be viewed almost solely as compro- 
mises between conflicting concerns. One key process in 

20 Automated Reasoning 

specification design is then coming to grips with conflict- 
ing policies through various forms of trade-off and com- 
promise. While some of our other work on Kate has begun 
to explore this area pickas, 19871, this version of the crit- 
ic does not attempt to temper its criticism by looking 
beyond single links. On the other hand, it does allow poli- 
cy values to be changed and a critique to be rerun. 

There are three forms of output from the critic. The 
first is a parameterized version of canned text, e.g., 
“policy Pl is marked as important and is not supported in 
example’ ’ , “policy P2 is marked as important and is 
obstructed by component C in example”. 

Second, and more importantly, we have begun to explore 
the use of simulation to back up a critique. Our long term 
goal is to be able to provide the rich and seemingly inex- 
haustible example generation (in the form of verbal simu- 
lations) seen in protocols of human analysts attempting 
to back up a point pickas et al, 19871. As a start, we have 
built a simulation component that 1) allows each of the 
critic’s cases to include one or more scenarios for demon- 
strating that case dynamically, and 2) uses the scenarios to 
animate the corresponding portions of example, in the 
form of transitions firing and tokens being moved around 
the net. Each scenario includes an initial marking of the rel- 
evant sub-net in example, and constraints on the non- 
deterministic control to force exemplary paths to be taken. 
The initial marking data may be either a) abstract -- if the 
case pattern uses abstract objects, we can use instances of 
the same abstract objects in setting up an example run -- 
or b) concrete -- we may decide to use a refinement of the 
case objects, e.g., Mary Smith checking out The Life of a 
Gene and keeping it 3 years beyond its due date. In this 
way, the scenario set for any case C may contain a mixture 
of abstract and concrete examples of C. The system runs a 
case’s scenarios, one by one and in ordered fashion, under 
user direction. 

Figure 2 shows a snapshot of a run-on-a-depository sce- 
nario being simulated using its matching example compo- 
nents (shown in parentheses). The corresponding case, that 
of a resource underflow condition, matches on any uncon- 
strained check out action (unpredicated transitions are rep- 
resented by vertical lines) where human borrowers and 
physical resources are involved. As an initial marking for 
this scenario, we set up a small number of resources and a 
larger number of resource users. The simulation will be 
abstract in the sense that tokens represent any physical 
resource (any type of library resource in this case) and any 
human borrower (staff, faculty, students in this case). It 
is concrete in that each token represents a single, physical 
resource or single human user (as opposed to, say, an infor- 
mation resource, a mechanical resource-consumer, or aggre- 
gates of each). 

The other key piece of information necessary to make 
this scenario work is a constraint on non-deterministic con- 
trol, one that will run the check out action continuously 
until no resources are left (but demand still exists). In 
other words, to give the worst case view we will ignore 
other processes that may exist to replenish the resource 
stock (e.g., buy more, force check in) or lessen demand 



s to a useful work- allow users to have a large selection to 

Figure 1: Portion of model 

(e.g., remove borrowers) as long as the check out transi- 
tion is enabled. 

The third and final type of output the critic can supply 
is in a more positive form. In particular, the user can ask 
to see all example components supporting a particular poli- 
cy, or given a specific component in example, he or she cart 
ask to see the cases that have been matched using the com- 
ponent, and the policies those cases support. When integrat- 
ed with a specification editor, this has shown to be a 
useful tool in determining the ramifications of specifica- 
tion changes in terms of the overall goals of the system. 

3 valuation 

We have run the critic on the problem description in the 
Appendix from various points of view, e.g., with policy 
values reflecting selfish users, with policy values reflect- 
ing the good of the whole. In this section, we will discuss 
a critique of our best reconstruction of the implicit poli- 
cies of the problem after looking at the origins of the 
library example and talking to the authors of the version 
used in mSSD 19871. We set the policies to reflect a 
small academic library, possibly a department library run 
by a secretary. While we feel confident in this interpreta- 
tion after talking with the various authors of the text, 
informal descriptions such as this are clearly a problem for 
any translator, human or machine, in terms of ambiguity 
and missing policy information. With this in mind, we 
give several representative findings of our critic: 

1. The query actions in L5 and L6 are found to be obstruc- 
tive; they may be used to give out user-confidential infor- 
mation. In general, any action that gives out information 
about a user’s borrowing record, whether now or in the 
past and whether to the same user, or to someone else, is 
part of a case that is linked negatively to the policy of 
maintaining user privacy; this policy is marked as impor- 
tant here. 

It is worth discussing one supporting scenario for this 
case in more detail, that of a devious-borrower. It consists 
of the following actions (transitions): borrower B checks 
out resource R; borrower C gains access to B’s identity; C 

queries the system, as B, to find what resources B has 
checked out; C learns that B has checked out R. The point 
to note is the need to represent behavior for both the sys- 
tem and its environment. In this case, the scenario uses 
existing components of example (check out, query), but 
also supplies environment components of its own (illicit 
gain of one borrower’s id by another) to run the simula- 
tion. In summary, the scenario extends example with new 
components (objects, places, transitions) to make a point. 

2. The constraint that the check out action must be carried 
out by a staff person (L8) is obstructive; it matches a mon- 
itorcd-withdrawal case, which in turn is linked negatively 
to a (sub) policy of minimizing circulation staff. 

3. Certain actions are not supported. In particular, the 
actions (and associated cases) of adding and removing a 
book (see L3) can be viewed in finer grain, e.g., remove- 
lost, remove-stolen, remove-damaged, replace-lost, 
replace-stolen, replace-damaged. These type of actions are 
captured in cases linked positively to various sub-policies 
of accounting for human foibles. Since the general human 
foibles policy is viewed as important, these cases look for 
a match. None is found. 

Also, the division of users into groups (staff and ordi- 
nary borrowers in L7) is without corresponding actions to 
add and remove members from a group. There are corre- 
sponding cases in model that are linked positively to the 
policy (and sub-policies) of recognizing the human dynam- 
ics of group membership, and these cases expect to match 
if that policy is important. It is and no matches are found. 

While no superfluous components were found on this run, 
it is not hard to change policy values to generate such a cri- 
tique. For instance, by marking the (sub) policy of account- 
ing for human forgetfulness as unimportant, the query in 
L5 becomes not only obstructive (see 1 above), but super- 
fluous as well, a bad combination in general. 

To further evaluate these results, we asked an experi- 
enced library analyst to critique the text description of the 
Appendix outloud, and recorded the session in both audio 
and video form. We will summarize the four major points 
to come from this work; in Eickas, 19871 and Fickas et 

Fickas and Nagarajan 21 



Ham, 19851; it allows computable predicates on both arcs 
and transitions, each of which can reference token/object 
slot values and token/object types. Initial versions used 
NIIU [Kaczmarek et aE, 19861 as the basis for implementa- 
tion; more recent versions are built on the SIMKIT pack- 
age of KEE. 

The model is used to represent a set of “interesting” 
problem specification cases to consider for a particular 
domain. The domain we have chosen initially is that of 
resource management systems. Our cases, to date, are hand- 
coded transcriptions taken from 1) written texts and arti- 
cles on analyzing problems in the resource management 
domain, and 2) protocols of human analysts, familiar with 
the domain, constructing and critiquing specifications. A 
case consists of the following fields: 

. A description of a particular pattern to look for in 
example. As discussed above, the representation used 
in example is that of an augmented state-transition 
net; the pattern here takes the form of a sub-net. 

. A link to a policy. This is used to index the case to 
higher level concerns within the domain. This will be 
discussed shortly. 

. An ordered set of simulation scenarios. These are used 
to demonstrate various aspects of the case. Each sce- 
nario contains operational instructions for 1) setting 
up initial data, 2) constraining non-deterministic con- 
trol to exemplary paths, and 3) running the sub-net 
in example linked to the case. 

. Canned text description. As the name implies. 

The correspondence links tie model cases to actual con- 
structs within the specification, i.e., they bind components 
of a case’s sub-net to components in example. As an illus- 
tration, figure 2 depicts a sub-net pattern in a resource 
underflow case. Correspondence links have been built to 
bind the sub-net components to a particular specification 
of a library under critique; the specific library/example 
components that are bound are shown in parentheses. 

To use the critic, we must first translate the specifica- 
tion to be critiqued into example format, i.e., into our aug- 
mented Petri-net representation. The specification/example 
we will discuss in this paper is that of an automated 
library system, a standard in discussing specification 
research. The particular incarnation we will use comes 
from the problem set handed out prior to the Fourth Inter- 
national Workshop on Software Specification and Design 
[FTWSSD, 19871; it is reproduced, with line numbers for 
reference, in the Appendix. 

After translation, correspondence links must be forged 
between case components in model and specification com- 
ponents in example. The system supplies some matching 
help here by looking in example for token, place, transi- 
tion, and predicate names that are commonly used in 
resource management domains, and hence in model cases. 
Components unrecognized by the system must be manually 
linked by the user. 

Finally, we must deal with the overall goals of the 
client. In particular, we have come to believe that there is 
no such thing as an inherently good or bad specification, 
only one that does not conform to the resource limitations 
and users’ goals in force. Thus, the goodness or badness of 
a component in example can only be judged relative to the 
user’s goals and the resources available. We will use the 
term policy to denote both organizational goals and 
resource constraints. For the latter, we will include 
resource limits on both the development of an implementa- 
tion and on the operational environment, e.g., “minimize 
operational staffing costs”. Based on discussions with 
domain experts and a study of the domain literature, seven 
broad policy classes were defined for resource borrowing 
systems2: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Allow users to have a large selection to choose from. 

Allow users to gain access to a useful working set 
and keep it as long as necessary. 

Maintain the privacy of users. 

Recognize the human dynamics of group (patron, 
staff, administration) membership. 

Account for human foibles, e.g., forgetting, losing 
items, stealing. 

Account for development resource limitations, e.g., 
money, staff, and time available to develop the sys- 
tem. 

Account for production environment limitations, e.g., 
money, staff, and time available to run and maintain 
the delivered system. 

Each of these seven can be further refined, e.g., maintain 
privacy of users’ borrowing record, maintain privacy of 
users’ queries, etc. We can also further specify each policy 
in terms of more specific domains, e.g., maintain an ade- 
quate stock of books on the shelves, maintain an adequate 
stock of video tapes available for rental. 

We allow each policy to be in one of three states: impor- 
tant - the client has explicitly noted that the policy should 
be enforced; unimportant - the client has explicitly noted 
that the policy should be ignored; unknown - no explicit 
statement has been made about the policy. A value given to 
policy P is inherited by all ancestors of P. Thus, marking 
the policy of accounting for human foibles as important 
will in turn mark all refinements of that policy -- forget- 
ting books, stealing video tapes -- as important. Converse- 
ly, we can mark policies in a finer grain if necessary: 
prevention of stolen items is unimportant, but reminding 
forgetful users of borrowed items is important. 

2We make no claim that this is either a necessary or suffi- 
cient list of policies, but simply one that has allowed us 
to handle the set of resource management problems that 
we have studied to date. Also, it is clear that certain poli- 
cies in this list extend beyond this domain. 

22 Automated Reasoning 



physical resources 
(books) 

checked out 
(on loan) 

borrowers 
(patrom) 

Figure 2. Resource underflow case (with bindings) 

al, 19871 we describe our protocol analysis and results 
more fully. 

I. We found general support for our representation of poli- 
cies. The analyst spent the first part of the session estab- 
lishing the “goals” of the library. These goals were all 
covered by our current set of policies. 

2. The analyst’s critique registered well with the critic’s. 
With few exceptions (see below), the same type of 
was given by analyst and critic, if not in the same style. 

case 

3. The major discrepancy between analyst and critic was in 
the analyst’s ability to deftly juggle competing concerns. 
In particular, she was able to weigh the importance of vari- 
ous policies, and order them when considering a particular 
component in the description, e.g., giving borrowers a use- 
ful working set must supersede concerns with keeping ade- 
quate stock on the shelves, the query in L5 along with the 
constraint in L9 could be viewed as a livable compromise. 

4. The analyst’s ability to generate, at will, both abstract 
and concrete examples to back up a point was impressive. 
The critic’s contrasting lack 
discussed in the next section. 

of sophistication in this area is 

In summary, the comparison of the critic’s analysis with 
that of the human analyst points to the representation of 
policies in a specification critic as a key component. Our 
findings also point to the need for a more refined view of 
policies, their interaction, and their connection to domaiu 
cases, and a more powerful means of backing a case with a 
range of scenarios. The next section discusses these issues 
andothers raised by our experience with this critic. 

Below we list the issues that we feel must be of immedi- 
ate concern for the next version of the critic. 

Policy interaction and utility. Wilensky describes different 
types of goal interaction, and plans for handling each of 
the types lWilensky, 19801. It seems clear that we will 
need something similar for our policies, e.g., “user privacy 
always overrides timely access to resources”. Along the 
same line, a notion of policy utility beyond the simple val- 

ues important and unimportant will be necessary. This has 
been brought home, in particular, as we have begun to look 
at compromise strategies that allow two or more conflict- 
ing policies to each be partially met simultaneously 
[Fickas, 19871. 

We also note the correspondence of features in [Chapman 
19821 and goals in [Mostow and Voigt 19871 to our work 
on policies in general. 

Simulation. We have shown how simulation can be an effec- 
tive critiquing tool. However, its full potential would 
seem to rest on better models of explanation in general, 
e.g., when should we use abstract or concrete data, how 
much of the context must be provided, how far do we have 
to follow the results. As an example, we have shown a 
case of “a run on a depository”. Is this enough to convince 
a client that a potential problem exists in his or her speci- 
fication? In particular, we do not show a real consequence 
of a depository running out of resources, i.e., loss of confi- 
dence by borrowers turned away from the depository that 
it is a reliable source. In other words, we expect the client 
to infer this type of knowledge, and to decide if it is 
worth worrying about. Whether this is warranted or not is 
clearly dependent on the sophistication of the client in the 
domain. 

Along the same lines, what is the right mix of scenarios 
to attach to a case? For example, in the scenario in figure 
2, we jump right to the unlikely event of everyone want- 
ing resources at once. Examples such as this are sometimes 
easy to dismiss as too extreme (however, see “Bank 
Runs’ ’ , the formation of the FDIC to prevent them, etc.). 
A more convincing scenario might show a gradual deple- 
tion of resources under average (or even favorable) borrow- 
ing conditions. In the end, we might like a progression of 
best case to worst case scenarios. We can simulate this 
crudely in our current critic by attaching an ordered set of 
scenarios to a case. In operation, we expect a best case criti- 
cism to be presented first. If the user decides to address 
the criticism by editing the specification, the critic moves 
on to a slightly worse case. This cycle of system critiques 
and user fixes continues until either the system has thrown 
its toughest critiques at the specification (e.g., the extreme 
scenario in figure 2 is reached) and the user has addressed 
them all, or the user has decided to live with some scenar- 
ios not being handled (because of limitations in space, 
time, money or any number of other reasons). 

We note the similarity of the above argument style with 
that of Rissland’s work in the area of case-based legal rea- 
soning pissland, 19861. We also note that in her system a 
single case or scenario is represented in addition to one or 
more dimensions along which the case can be stretched (for 
instance, “resource supply and demand”). A separate exam- 
ple generator can instantiate the base case by moving along 
one or more dimensions. In general, this dimen- 
sion/generator approach is clearly more powerful than the 
explicit scenario list we now employ, and is one that we 
believe will move us closer to that seen in our human ana- 
lyst. 

An interactive critic. The goal here is an interactive editor 
for developing specifications, i.e., a system that provides 

Fickas and Nagarajan 23 



tools for both construction and criticism in an interleaved 
fashion. This is in much the same spirit as that of deficien- 
cy-driven algorithm design in Steier and Kant’s DESIGN- 
ER system [Steier and Kant, 19851. Our current system sup- 
ports both a specification/example editor and the critic we 
have discussed in this paper. Thus, a user can edit a specifi- 
cation, run the critic, respond to criticism through further 
editing changes, etc. The problem is a lack of automation 
in matching, and rematching after changes. We are explor- 
ing two approaches to the matching and rematching prob- 
lem. First, we have given the editor a component catalog 
for the resource management domain. These components are 
ones found in our cases. If the user selects components 
from the catalog in the construction of his or her specifica- 
tion, we can automatically match them against cases 
(actually, we just follow component-to-case links, avoid- 
ing matching altogether). If the user supplies non-catalog 
components, then we must fall back on common names, 
and finally, user intervention. 

Interleaving of editing and critiquing brings up the 
rematching problem: given a local editing change, we 
would like to avoid rematching the entire specification to 
the entire case-base. Our approach has been to isolate 
changes to a small subset of specification components, 
rematching these while retaining past matches outside of 
the local context. While we have had some preliminary 
success in localizing changes in the specification language 
we are using [1Fickas, 19871, the problem remains an open 
and difficult one. 

References 

[Chapman, 19821 Chapman, D., A program testing assis- 
tant, Communications of the ACM, September, 1982 

[TFickas, 19851 Fickas, S., Automating the Transformation- 
al Development of Software, IEEE Transactions on Soft- 
ware Engineering, Vol. 11, No. 11, November, 1985 

[IFickas, 19871 Fickas, S., Automating the Software Specifi- 
cation Process, Technical Report 87-05, December, 1987, 
Computer Science Department, University of Oregon, 
Eugene, OR. 97403 

pickas et al, 19871 Fickas, S., Collins, S., Olivier, S., 
Problem Acquisition in Software Analysis: A Prelimi- 
nary Study, Technical Report 87-04, August, 1987, Com- 
puter Science Department, University of Oregon, Eugene, 
OR. 97403 

EIWSSD, 19871 Fourth International Workshop on Soft- 
ware Specification and Design, IEEE Computer Society, 
Order Number 769, Monterey, 1987 

[Greenspan, 19841 Greenspan, S., Requirements Modeling: 
A Knowledge Representation Approach to Software 
Requirements Definition, Ph.D. Thesis, Computer Science 
Dept., Toronto, 1984 

[Kaczmarek et al, 19861 Kaczmarek, T., Bates, R., Robins, 
G., Recent Developments in NIKL, In Proceedings of 
AAAl-86, Philadelphia, 1986 

[Mostow and Voigt, 19871 Mostow, J., Voigt, K., Explic- 

it integration of multiple goals in heuristic algorithm 
design, In Proceedings of IJCAI-87, Milan, 1987 

[Rissland, 19861 Rissland, E., Dimension-based analysis of 
Hypotheticals from Supreme Court Oral Argument, 
COINS, University of Massachusetts 

[Steier and Kant, 19851 Steier, D., Kant, E., The Roles of 
Execution and Analysis in Algorithm Design, IEEE 
Transactions on Software Engineering, Vol. 11, No. 11, 
Nov. 1985 

[Swartout, 19831 Swat-tout, W., The GIST Behavior 
Explainer, In Proceedings of M-83, Washington, DC, 
1983 

Wilbur-Ham, 19851 Wilbur-Ham, M., Numerical Petri 
Nets - A Guide, Report 7791, Telecom Research Labora- 
tories, 1985, 770 Blackbum Road, Clayton, Victoria, 
Australia 3 168 

wilensky, 19801 Wilensky, R., Meta-planning, In Pro- 
ceedings of AAAI-80, Stanford, 1980 

[Yue 19881 Yue, K., Directionality and stability in system 
behaviors, In Proceedings of the 4th Conference on Al 
Applications, San Diego, 1988 

Ll. 

L2. 

L3. 

L4. 

L5. 

L6. 

L7. 

L8. 

L9. 

LlO. 

Lll. 

L12. 

L13. 

Consider a small library database with the follow- 
ing transactions: 

1. Check out a copy of a book / Return a copy of a 
book; 

2. Add a copy of a book to / Remove a copy of a 
book from the library; 

3. Get a list of books by a particular author or in a 
particular subject area; 

4. Find out the list of books currently checked out 
by a particular borrower; 

5. Find out what borrower last checked out a par- 
ticular copy of a book. 
There are two types of users: staff and ordinary 
borrowers. 
Transactions 1, 2, 4 and 5 are restricted to staff 
users, 
except that ordinary borrowers can perform transac- 
tion 4 to find out the list of books currently bor- 
rowed by themselves. 
The data base must also satisfy the following con- 
straints: 

- All copies in the library must be available for 
checkout or be checked out. 

- No copy of the book may be both available and 
checked out at the same time. 

- A borrower may not have more than a predefined 
number of books checked out at one time. 

24 Automated Reasoning 


