
Andrew Gelman, Susan Altman, Matt Pallakoff, Ke
GO, mce

w

Abstract
FRM is an experimental, knowledge-based
system that assists in the judgmental aspects
of budget planning and financial resource
management. Problem solving in this
domain requires many kinds of knowledge
from many sources. We represent domain
knowledge uniformly as constraints and
view resource management and planning
problems as constraint satisfaction and
resolution tasks. We sketch here the finan-
cial resources management problem, our ap-
proach, and early results, concentrating on
constraint representation and management
issues in the system.

Preparing and managing budgets are knowledge-
based activities that require substantial expertise
to do well. These are constraint satisfaction
tasks, in the abstract, where the constraints are
symbolic as well as numeric, and are judgmental
as well as definitional. They are large tasks in
which the organization of knowledge is critical to
their success.

The FRM system* is a prototype working
program that attempts to integrate many of the
tasks an intelligent financial assistant should per-
form beyond the bookkeeping that a spreadsheet
program does with numerical relations. Tt is an
object-oriented system in which hierarchical or-
ganization among constraints, as well as among
budget items and budgets themselves, is an im-
portant design principle. We use the same
mechanisms to represent a hierarchy of perspec-

1This work was funded in part by: DARPA under contract
N00039-86-C-0033; Boeing Computer Services under contract
W266875; a gift from Price Waterhouse Technology Centre;
Lockheed Missiles and Space Company under gift l-72-LO31;
NASA under cooperative agreement NCC2-274; and NIH un-
der grant RR-00785.

2 FRM runs on Xerox 1186 machines and is implemented in
the CLASSIHYPERCLASS object-oriented programming sys-
tem [SmithR 86, Schoen 831. CLASS and HYPERCLASS are
trademarks of Schlumberger Technology Corporation and were
formerly known as STROBE and IMPULSE respectively.

tives under which to view the same financial in-
formation in different ways. Because of the na-
ture of budgeting tasks, it is important also to
represent temporal segments of budgets implicitly
as sub-budgets and reason with them just as ar-
bitrary collections of line items can be considered
as sub-budgets. A uniform interface is provided
by a form-filling system that is itself driven by
constraints on how to present information under
a perspective.

While constraints, perspectives, and hierarchies
are the central themes of our work to date, we
also include in FRM, and briefly report on, a
replanning system that adjusts finished budgets in
light of new information and an explanation sys-
tem that presents audit trails or explanations un-
der specified perspectives. FRM also includes a
distributed database utility in its design, but not
in its current implementation. Figure 1 shows
the major components of the FRM system that
are described in subsequent sections.

USER

Figure 1: The major components
of the FRM system.

2.1 User Interface: FORMAN

Form filling is a natural metaphor for the
budgeting assistant, and a job that most managers
will gladly turn over to an assistant. FORMAN
is the FRM interface through which users create,

Gelman, Altman, Pallaloff, Doshi, Manago, Rindfleisch and Buchanan 31

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

I AddLine

Add Text
Add Lines
Edit item

Move Item(s)
Line Up Column

Line Up Row

DETAILED BUDGET FOR FIRST 12 NONTH BUDGET PERIOD
DIRECT COSTS ONLY

FROM THROUGH
7-MAR-88 6-MAR-89

DOLLAR AMOUNT REQUESTED (Omit cants)

PERSONNEL (Applicant organization only) TIME/EFFORT

SALARY FRINGE TOTALS
NAME POSITION TITLE % Hours per Wk. BENEFITS

Blttnan, R. Principal Investigator 3% 1 0 2119.50 $ 538.35 $ 2657.85
Ralston, A. Programmer 75% 38 $ 6667.50 $ 32917 58
Chandler, G. Secretary 10% 4 $ 2084.40 $ 529.44 $ 2613.84

---- ---- ---- ---- ---- ---- ---_

SUBTOTALS -> $ 30453.90 $ 7735.29 $ 38169.19

EQUIPMENT
DESCRIPTION YEARLY AMOUNT
Computer Equipment $ 10500.00
Scientific-Tech Equip-NS $ 3400.00

lston, A. : DirectCost =
$ 26250.00

BECAUSE Employee Olrect Cost = Yearly Salary X Level Of Effort, AND

Select item's Section Ralston, A. : PercentageOfHoursWorked =
Add Line 75%

Ralston, A. : Salary =
Why? 35000.0

OTHER EXPENSES
DESCRIPTION

YEARLY AMOUNT

Figure 2: User’s view of a form during an FRM session.

examine, and modify budgets. Users select items,
with a mouse, on images of forms and invoke
operations on the items by selecting commands
from menus (see Figure 2). When a value on the
form is changed, the system may change other
values automatically or after consultation with the
user as a result of applying domain knowledge.
We have attempted to keep interactions simple
and consistent by adopting menu-driven, object-
oriented, and what-you-see-is-what-you-get
(WYSTWYG) approaches to user interfaces.

A key design feature is the separation of data,
stored in the CQNFRM data managing module,
from presentation information which is the
domain of FORMAN. One datum may appear on
several different forms concurrently. Conversely,
a single form may be used repeatedly to view
different budgets.

A form is defined as a collection of text, ac-
tive cells, and sub-forms, all represented inter-
nally as objects. Sub-forms are forms themselves
and may be displayed and edited accordingly. As

3 Ciccarelli’s work[Ciccarelli 84) also emphasizes separating
presentation information from data.

UBTOTALS -> $ 13908.00

UBTOTALS -> ----

an example, the form in Figure 2 has a sub-form
labeled “PERSONNEL”.

FORMAN has three main components: a form
editor, a form data base, and a table that links
items in the form data base to locations in the
budget data base. The form editor is built on the
MYPERCLASS object editor and is responsible
for creating and maintaining the graphic ,images
of forms.4 Form structures are stored and clas-
sified hierarchically in the form database and can
be specialized, copied and edited to create new
form layouts. These layouts become views of
budget data when form’s cells and sub-forms are
linked to locations in the CONFRM database. A
table object maintains these links. Each table
entry points both to a CONFRM location and to
all FORMAN objects that display the location’s
value. The table provides a means for FORMAN
to instruct the database to change a value and for
the database to tell FORMAN when a value needs
to be redisplayed.

4HYPERCLASS editors are hierarchies of CLASS objects
that describe components of an editor (e.g., a window, com-
mand menus, main and sub-editors), along with message
receivers and associated functions that perform the essential
editing tasks.

32 Automated Reasoning

Early use of the system indicates that with
flexibly defined forms and intuitive user inter-
actions, FORMAN provides users of FRM with a
powerful tool for creating views and using them
to manipulate data. Further developments would
increase FORMAN’s utility. These include a
database browser for linking forms to data, and
improvements to the human interface of the copy
and linking mechanisms.

2.2 Constraint Representation and Management

Spreadsheets operate with numerical constraints
on the values of cells in a matrix. FRM extends
the concept of constraints to include not only
relations among numerical values, but also rela-
tions among names, titles, and other symbolic
values. FIRM encodes in constraints its
knowledge of how to fill out or revise a form,
and how to make substantive changes to budgets
[Gelman $71. The system recognizes that some
constraints are strong and must be satisfied with-
out exception, while others reflect weak
preferences, with many judgmental considerations
in between.

The language of constraints must be expressive
enough to capture the following kinds of
knowledge:
8 Definitions -- the total cost of a budget is the

sum of the costs of its sections;
0 Rules & Policies -- a Principal Investigator

must devote at least x% of his/her time to a
project;

e Promises & Commitments -- if you support
my student this quarter, I will support yours
next quarter;

B Judgments & Preferences -- agency A is un-
likely to support more than x% time for
clerical support;

a Planning Heuristics -- try to support student
researchers full time during tbe summer,
giving preference to PhD candidates over MS
candidates;

o Rebsadgeting Strategies -- when reducing a
budget’s total cost, cut non-essential items be-
fore essential items.
The constraint whose syntax is illustrated in

Figure 3 is a symbolic, preferential one that can-
not be represented by a spreadsheet formula.

hen more than two part-time secretaries
provide support in a budget, it may be desirable
to create a view that combines the clerical com-
ponents into a single “super-secretary” item. This
constraint will detect such a situation and modify
the structure of the current budget view, while
retaining a detailed underlying representation for
use when the extra detail is appropriate. Super-
items are described in Section 2.3.

Still other kinds of constraints check on
relationships between parts of a budget. For ex-
ample, experience may show that telephone or

supplies should be budgeted at a constant dollar
amount times the number of full-time-equivalent
employees. Such a constraint has a conditional
corrective action. If no telephone expenses are
yet budgeted, it creates a telephone
with the indicated cost. If telephone costs are
present but have a value inconsistent with the
constraint, it updates the cost accordingly.

CONSTRAINT: SuperSecretary

Arguments = ($Budget $Secretary $AIISecretaries)
IF-Clause = (Type? $Secretary SECRETARY)
THEN-Clause = (Less (Length $AlISecretaries) 3)
CorrectiveActions
BindClause-

= (CreateSuperltem $Budget $AllSecretaries)

BindCIause-2
= (BIND $Secretary (confrm Personnelltems))
= (BTND $Budget (FindRoot $Secretary))

BindClause- = (BIND $AllSecretaries

Strength q 4
(FindItems $Budget SECRETARY))

Priority = 300
ImposedBy = Agency A
Source = Bittman
Author = Ralston
LastEdited = l/01/88

Figure 3: Syntax for a typical
symbolic constraint.

All of the FRM constraints have a common
structure. A constraint is an object, created or
edited through a specialized editor. The editor
guides the input of slot values to ensure they are
valid, and checks for consistency with pre-
existing constraints [Altman 88-J. A constraint
may have any number of arguments, which will
be bound to values at execution time. An in-
dividual clause is an expression consisting of ar-
guments, constants, and the constraint language
operators. The IF-clause corresponds to the pre-
conditions of the constraint and is a logical ex-
pression made up of zero or more clauses. The
2WE’iV-clause is a conjunction of clauses that
describe a desired state. Corrective actions are
statements specifying database modifications to be
invoked upon detection of a violation.

Each argument has a binding clause that binds
it to either a database location, the value stored
at such a location, or to the result of a functional
expression The language allows bindings to be ex-
pressed in terms of other arguments in the same
constraint. Arguments are bound dynamically
during constraint evaluation as their values are
needed. All bindings are generated from the in-
itial binding of the enable argument of the con-
straint. The enable argument is the one cor-
responding to the datum whose changing value
triggered the constraint; it may be a different ar-
gument each time the constraint is activated.

Links between budget data and the constraints
are created at the time a constraint is loaded.
These links depend on binding the arguments to
class objects in the database, and are used to en-
able the constraint when slot values are changed.
Enabled constraints are added to a task agenda
from whence they will be evaluated by the Con-

Gelman, Altman, Pallakoff, Doshi, Manago, Rindfleisch and Buchanan 33

straint Manager/Scheduler. The scheduler decides
which of the pending tasks has highest priority
and executes it. The priority attribute of a con-
straint gives a default measure of the urgency of
considering the constraint.

The evaluation process begins with the IF
clauses of the constraint. The IF-Evaluator
checks each of these clauses to see if the pre-
conditions are met. If they are, the THEN-
Evaluator is called to check for a violation of the
f;sEktnrelationship. If it is satisfied, no action

. Otherwise, corrective actions may be
undertaken to force satisfaction. Possible actions
include filling in or overwriting database values,
creating or deleting budget items, calling the
planner (see Section 2.3, or consulting the user
about an unusual situation.

Our constraint language supports the specifica-
tion of and reasoning about time intervals [Allen
84, Ladkin-A 86, Ladkin-B 86-3. Temporal
representation in constraints supports viewing
time slices of budgets which are equivalent to
sub-budgets along the temporal dimension. Con-
straints use appropriate rate computations that
differentiate, for example, between yearly and
monthly rates, and language operators implicitly
handle variables whose values change over time.
We provide a set of operators describing primi-
tive temporal relations as well as higher level
operators to manipulate intervals. Our extrapola-
tion constraints provide a way to project a budget
from one time interval to another using the time
operators and methods that convert relative time
intervals to absolute ones.

Constraint hierarchies allow users more control
over the invocation of families of constraints.
Constraints are indexed by several attributes, such
as expert source or strength. The user can load
and delete groups of constraints using these or
user-defined indices and thus have the system use
one expert’s preferences or any other desired
combination of constraints. Similarly, evaluation
of some constraints may be deferred during
hypothetical sessions or in early stages of budget
preparation.

There may be times when a manager decides to
violate constraints, or is forced to compromise
because of conflicts between constraints. FRM
currently provides a simple means to manage
these situations. Each constraint has a strength
attribute, which indicates the importance of satis-
fying its relationship. It provides a quantified
measure of the hardness or softness of the con-
straint. We believe negotiation expertise [Lax
861 is relevant when considering conflicting con-
straints that have different criteria for impor-
tance, and are looking at ways of incorporating
this knowledge into the FRM planner.

ecuasive Sub-budgets

The design of CONFRM was guided by the need
for a flexible and extensible representation that
allows for multiple hierarchies. A budget is often
part of a larger budget in an organizational
framework, and conversely may itself represent
the merger of smaller sub-budgets. The ERM sys-
tem must be able to display budget information
at an appropriate level of abstraction. Also, a
budget may be organized quite differently for
presentation to different agencies (e.g. NIH as
opposed to NSF). In order to satisfy these needs
we have implemented the concepts of recursive
sub-budgets and perspectives.

Several object hierarchies exist in the CON-
ERM subsystem, the most central being the
taxonomic Canonical Representation ierarchy
(CRH). CRH class objects contain definitions of
all budget object attributes, including slots for
costs, descriptions, codes, etc. Object types be-
come increasingly specialized as one moves
downward through the CRH, e.g. the object Per-
sonnelItems has slots for EmployeeName and
Salary, while EquipmentItems has a UnitCost slot.
There are two main subtrees in the CRH, one a
hierarchy of budget items, indivisible budget ex-
pense entities, the other of sections, which
represent mergers of sub-budgets. Another CON-
ERM hierarchy contains ItemTypes, a collection
of several hundred objects, each describing a
recognized type of budget expense, e.g.
“Telephone Costs” or “Books and Publications.”
Budget items may be made instances of these ob-
jects, through which they may inherit various slot
values and constraints.

The ability to maintain multiple presentations
of a single set of data is achieved through the use
of perspectives. A perspective is a collection of
objects and constraints that define a particular
view of the full set of budget items. Each
perspective has a designated root object. The sib-
ling perspective objects form a tree of arbitrary
depth below the root, successively refining the
budget organization into sub-budgets. The ob-
jects at the leaves of the perspective tree are sets
(or sub-budgets) of actual budget items from the
canonical hierarchy (see Figure 4).

A perspective constraint may be associated with
any leaf perspective object, e.g:, Domestic Travel
in Figure 4. Such a constraint describes the con-
ditions whereby a budget item could be a sub-
budget of the perspective, and would be loaded
automatically when the perspective is activated.
Suppose, for example, the user preparing a budget
under the NIH perspective adds an item to the
“Supplies” section and enters “Furniture” as its
description. The perspective constraints linked to
the description field will be evaluated and the
one governing membership in the Equipment sec-
tion will fire. The constraint’s corrective action
removes the item from the Supplies section and
adds it to Equipment.

34 Automated Reasoning

/

OTHER EXPENSES

/

CONSORTIUM/CONTRACTUAL COSTS

/ALTERATIONS AND RENOVATIONS

,OUTPATIENf
PATIENT CPlRE COSTS,INPATIENT

BUDGET
TRAVEL

/FOREIGN

---DOMESTIC

SUPPLIES

EQUIPMENT

\
\CONSULTANT COSTS

PERSONNEL

Pig : The structure of the NIH
perspective. Each node in the graph

represents one perspective object.

The sub-budgeting model extends from
perspectives to other sets of budget items. New
super-budgets can be created by combining two
or more budget item sets into a super-set. Each
set involved in such a merger maintains its iden-
tity and may be viewed individually as before.
Sets to be combined may represent different tasks
or sub-projects within a project or may represent
different time-slices of a single budget. The
combining process is recursive in that super-sets
may themselves be merged into larger sets.

Returning to the “super-secretary” example dis-
cussed in Section 2.2, a leaf node of a perspective
hierarchy may be a super-item which is the com-
position of two or more related items, but which
we wish the system to treat for most purposes as
a single item. The final product is a hybrid of a
perspective object and a budget item. A super-
item is a leaf node in the perspective tree to
which it belongs, but is subject to constraints on
perspectives as well as those on budget items.

Controlling how super-items are constrained
may provide the key to manipulating budgets at a
high level of abstraction. If a manager is work-
ing on an abstracted budget for an entire or-
ganization, the items s/he sees will generally be
super-items. Normally changes to costs in super-
items pose complex planning problems in trying
to propagate corresponding changes down to the
component items. But suppose the system is in-
structed to treat, for the interim, these super-
items as items. They would thus be subject to*
item constraints rather than perspective con-
straints, and could be manipulated without resort-
ing to planning processes. The necessary
downward propagation of these changes could be
deferred until such time as the manager wishes to
concentrate on lower budgetary levels. A similar
mechanism operating on the root of the perspec-
tive could defer upward propagation. We are at
present developing this functionality and believe
it to be a feasible solution to potentially massive
scoping and combinatorial explosion problems
inherent in the budgeting process [Duda 873.

xplanation facility has been implemented for
that describes, on request, how a location

red its current value, and if possible justifies
the value. If the current value was set by the
corrective action of a constraint, the explanation
contains an automatically generated description of
the constraint’s clauses and the arguments used in
calculating the value. Explanations are recursive
in that the values of these supporting arguments
may in turn be questioned. In the case of a
user-entered value, the explanation tells when and
by whom the value was entered.

The FRM planner is called by the constraint
manager to determine a sequence of actions to fix
a constraint violation. The current simple plan-
ner [Ghan 87-J proceeds hierarchically. The
generation of the next sequence of actions is
guided by the solution produced at a higher level
and by planning heuristics. Some heuristics
determine the set of corrective actions which can
be chosen at each planning step, while others
prune and order the search space (explicit control
knowledge is defined in the form of meta-rules).
Another type is used to gauge the relative impor-
tance of budget expenses. The hierarchical ap-
proach and the application of heuristics produce
a first solution which minimizes constraint viola-
tions. owever, there are always many possible

on of alternative solutions.

all of the components we have described
-- FO , the Constraint
PLANNER, and the explanation module.
experimental system demonstrates the advantages
of tbe approach reported, even though it runs
with one-half second to 15 second delays on the
Xerox 1186 and has not been put into full opera-
tional use. It duplicates and significantly exceeds
the functionality of an earlier FORTRAN
program that we used for budgeting and that had
a knowledge of the rules for the Stanford en-
vironment built in procedurally. Aside from the
obvious improvements of a graphics-based inter-
face, FRM provides a declarative specification of
the basic budgeting and presentation rules so
these can be changed at will.

The most common budget preparation tools in
use today are spreadsheet packages. hile these
commercial systems are more polished than our
prototype system, ERM has a number of powerful
capabilities not provided by spreadsheets, includ-
ing:

Gelman, Altman, Pallakoff, Doshi, Manago, Rindfieisch and Buchanan 35

FRM can encode judgmental knowledge and
provide suggestions. Constraints do not have
to be rigid relationships.
FRM can handle symbolic as well as numeric
constraints, as exemplified by the “super-
secretary” constraint.
Constraints can produce structural changes to
the budget by causing new items to be created
or deleted as appropriate.
Constraints can be expressed generically and
need not be specifically connected to in-
dividual cells. The delayed binding
mechanisms in FRM allow constraints to be
linked and invoked automatically whenever
the triggering situation is detected in the
budget form.
The recursive sub-budget capability allows a
flexible partitioning or aggregation of budget
elements without specifically having to
program the relationships and combination
actions cell by cell.
Different user preferences and institutional
requirements for budget formats and infor-
mation presentation can be accommodated
through the mechanism of perspectives.
The FRM planner can take into account
tolerances on budget values in order to jointly
satisfy constraints. Constraints can be over-
ridden for specific cases and the planner can
“reverse-engineer” line item changes.
FRM has a simple explanation facility which
allows the user to examine the chain of cal-
culations or actions producing an observed
value. This facility is not a model-based ex-
planation at present as in [Mosy 84], but suf-
fices for relatively tightly constrained budget-
ing situations.
In parallel with experimenting with the FRM

system, we reproduced some of its functionality
in a Microsoft EXCEL spreadsheet template
using the macro facilities available. The EXCEL
spreadsheet was extremely brittle in that it was
not possible to protect users from overwriting
formulas and still give them the ability to
manipulate other items. The spreadsheet im-
plementation tightly embeds the inter-element
relationships with the data presentation, resulting
in a rigid and opaque system. Trying to build in
needed flexibility proved very frustrating because
of the limited nature of the programming lan-
guage provided to relate cells or manipulate them
in macros. We believe that the FRM constraint-
based model provides a much more powerful and
flexible environment in which to express
budgetary relationships and to support user
interactions.

We thank Jean-Luc Bonnetain, Jean-Luc Brouil-
let, Dennis Chan, Craig Cornelius, Don Henager,
and Carla Wong for their contributions to the
FRM project. And we thank Reid Smith, Eric
Schoen, and the Schlumberger Palo Alto Research
center for their contribution and support of the
CLASS/HYPERCLASS object-oriented system on
which FRM is built.

[Allen 841 Allen, J.F. Towards a General Theory
of Action and Time. Artificial Intelligence
23(2):123-154, July, 1984.
[Altman 88] Altman, S. Knowledge Aquisition
and Representation in FRM. Internal Working
Paper KSL 88-45, Stanford University, Knowledge
Systems Laboratory, June, 1988.
[Chan 871 Chan, 19. PLANNER: An Intelligent
Budget Planner. Internal Working Paper KSL
87-74, Stanford University, Knowledge Systems
Laboratory, June 1987.
[Ciccarelli 841 Ciccarelli, E. Presentation Based
User Interfaces. Technical Report AI-TR-794,
MIT Artificial Intelligence Laboratory, August,
1984.
[Duda 871 Duda, R.O., Hart, P.E., Reboh, R.,
Reiter, J. and Risch, T. Syntel: Using a Func-
tional Language for Financial Risk Assessment.
IEEE Expert 2(3):18-31, Fall, 1987.
[Gelman $71 Gelman, A. CONFRM: Managing
Financial Resources with Constraints. In ternal
Working Paper KSL 87-14, Stanford University,
Knowledge Systems Laboratory, February, 1987.
[KQSY 84] Kosy, D.W. and Wise, B.P. Self-
Explanatory Financial Planning Models. In
Proceedings of the National Conference on Ar-
tificial Intelligence, pages 176-181. American
Association for Artificial Intelligence (AAAI),
August, 1984.
[Ladkin-A 861 Ladkin, P. Time Representation:
A Taxonomy of Interval Relations. In Proceed-
ings of AAAI-86, pages 360-366. AAAI, 1986.
[Ladkin-B 861 Ladkin, P. Primitives and Units
for Time Specification. In Proceedings of
MI-86, pages 354-359. AAAI, 1986.
[Lax $61 Lax, D. and Sebenius, J. The Manager
as Negotiator. The Free Press, 1986.
[Schoen 83] Schoen, E. and Smith, R.G. IM-
PULSE, A Display-Oriented Editor for STROBE.
In Proceedings of the National Conference on
Artificial Intelligence, pages 356-358. AAAI,
August, 1983.
[SmithR 861 Smith, R.G. and Carando,
P. Structured Object Programming in STROBE.
Technical Report SYS-86-17, Schlumberger-Doll
Research, October, 1986.

36 Automated Reasoning

