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Abstract 

Classical planning is inappropriate for generating 
actions in a dynamic world. This paper presents a 
formalism, called Gapps, that allows a program- 
mer to specify an agent’s behavior using symbolic 
goal-reduction rules that are compiled into an ef- 
ficient parallel program. Gapps is designed for 
use in domains that require real-time response, 
that cannot be completely characterized by oper- 
ator descriptions, and that allow multiple actions 
to be carried out in parallel. 

1 IntrcsductiorI! 
It has been standard practice in the field of artificial in- 
telligence to use planning as the method of action selec- 
tion in such computer agents as robots. Classical planning 
consists of encoding the domain in terms of atomic ac- 
tions, their preconditions, and their effects in the world, 
and then, given an initial situation and a goal situation, 
searching through the space of operator sequences until 
one is found that will transform the initial state into the 
goal state. This method of action generation is attrac- 
tive for two reasons. First, the style of programming is 
highly declarative, making it easy to modify incrementally 
the characterization of the domain. Second, the method is 
quite general, allowing the agent to solve a wide range of 
problems in its domain. 

Unfortunately, many properties of classical planning 
make it inappropriate for use in real domains in which 
time is critical, the world is unpredictable, actions are 
fine-grained, and an agent can perform many actions in 
parallel. Moreover, planning is undecidable in the general 
case, and highly computationally intractable, even in its 
simpler forms [Chapman, 19871. When an agent must gen- 
erate prompt responses to events in its environment, it will 
not, in general, have enough time to devote to planning. 
The standard model of planning requires that the effects 
of actions be completely known at plan-time, but this is 
an unrealistic assumption for most real domains. A con- 
tributing factor to this lack of knowledge about actions is 
that in many cases the actions that the agent must reason 
about in the process of plan formation are at a very low 
level, more like “set the left wheel velocity to 200” than “go 
through door4.” Finally, planning seldom recognizes that 
some agents can perform different actions, such as moving 
and talking, in parallel. 
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These limitations of classical planning have been known 
for some time, and many researchers have sought to de- 
velop new action-generation methods that surmount them. 
Systems that interleave planning and execution [Wilkins, 
19851 allow for the failure of actions and make it possi- 
ble to take unanticipated events into account. They still 
use fundamentally intractable algorithms for the planning 
phases, however. Georgeff and Lansky’s reactive plan- 
ning [Georgeff and Lansky, 19871 is really not planning at 
all, but run-time interpretation of highly conditional user- 
specified plans. Schoppers [Schoppers, 19871 has proposed 
a system in which planning is carried out automatically a.t 
programming time, generating a tree of plans to achieve 
a goal from all possible initial situations, thus affording a 
high degree of robustness and the ability to recover from 
unexpected events. This approach is interesting, but the 
plans generated are too large for use in practical domains. 
Lansky [Lansky, 19871 has done interesting work in gen- 
erating synchronized concurrent plans that uses the struc- 
ture of the domain to make the reasoning process more 
tractable, but her approach still relies on complete infor- 
mation and plans completely in advance of acting. 

In this paper we describe Gapps, a language for specify- 
ing behaviors of computer agents that retains the advan- 
tage of declarative specification, but generates run-time 
programs that are reactive, do parallel actions, and carry 
out strategies made up of very low-level actions. Gapps 
does not provide for classical run-time planning, but we 
find this acceptable because we believe that the vast major- 
ity of the activity of any agent is routine and requires none 
of the sophistication of general planning systems [Agre and 
Chapman, 19871. In th e na section we will explore meth- fi 1 
ods for integrating classical planning into Gapps programs. 

2 alpI?s 
Gapps is based on a model of computation in which an 
agent is seen to perform a finite transduction from a stream 
of input into a stream of output. A program, in this model, 
is a function that maps an input and the current value of 
the state into an output and a new value of the state. We 
require of this function that there be a small, finite up- 
per bound on its computation time. This guarantees that 
the agent can react quickly to external events by having a 
fixed delay between the arrival of any given input and the 
generation of an output that depends on that input. 

Rosenschein and Kaelbling have developed a language, 
called Rex, for programming in this model [Rosenschein 
and Kaelbling, 1986; Kaelbling, 1987131. Rex takes a Lisp- 
like program specification and generates the description of 
a synchronous digital circuit with delay components that 
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Figure 1: 
ponents. 

Decomposition into perception and action com- 

satisfies the specification. Because the computation is de- 
scribed in terms of a finite circuit that delivers an output 
on every cycle, it can be carried out in constant time. This 
language has been used for programming the SRI mobile 
robot, with state updates being computed many times per 
second. 

One convenient way to view computations of this sort 
is to divide them into two components: perception and 
action (as shown in Figure 1.) The perception component 
contains all of the state and the computation required to 
update it. This allows the action component to be state- 
free, taking its input from the output of the perception 
component. 

Gapps is intended to be used to specify the action com- 
ponent of an agent. The Gapps compiler takes as input a 
declarative specification of the agent’s top-level goal and a 
set of goal-reduction rules, and transforms them into the 
description of a circuit that has the output of the percep- 
tion component as its input, and the output of the agent 
as a whole as its output. The output of the agent may be 
divided into a number of separately controllable actions, so 
that we can independently specify procedures that allow 
an agent to move and talk at the same time. A sample 
action vector declaration is: 

(declare-action-vector 
(left-wheel-velocity int) 
(right-wheel-velocity int) 
(speech string>> 

This states that the agent has three independently control- 
lable effecters and declares the types of the output values 
that control them. 

In the following sections, we shall present a formal de- 
scription of Gapps and its goal evaluation algorithm, and 
explain how Gapps specifications can be instantiated as 
circuit descriptions. 

2.1 Goals and Programs 
The Gapps compiler maps a top-level goal and a set of 
goal-reduction rules into a program. In this section we 
shall clarify the concepts of goal, goal-reduction rule, and 
program. 

There are three primitive goal types: goals of execution, 
achievement, and maintenance. Goals of execution are of 
the form do(u), with a specifying an instantaneous action 
that can be taken by the agent in the world-the agent’s 
goal is simply to perform that action. If an agent has a goal 
of maintenance, notated maint(p), then if the proposition 
p is true, the agent should strive to maintain the truth 
of p for as long as it can. The goal ach(p) is a goal of 
achievement, for which the agent should try to bring about 
the truth of proposition p as soon as possible. The set of 

goals is made up of the primitive goal types, closed under 
the Boolean operators. The notions of achievement and 
maintenance are dual, so we have lath(p) E maint(lp) 
and lmaint(p) E ach(lp). 

In order to characterize the correctness of programs with 
respect to the goals that specify them, we must have a no- 
tion of an action leading to a goal. Informally, an action 
a leads to a goal G (notated a - G) if it constitutes a 
correct step toward the satisfaction of a goal. For a goal 
of achievement, the action must be consistent with the 
goal condition’s eventually being true; for a goal of main- 
tenance, if the condition is already true, the action must 
imply that it will be true at the next instant of time. The 
leads to operator must also have the following formal prop- 
erties: 

a - do(u) 
(a-G)A(u- G’) + a- (GAG’) 
(a - G) v (a - G’) =+ a - (G v G’) 

cond(p, a - G, a - G’) + a - cond(p, G, G’). 
This definition captures a weak intuition of what it means 
for an action to lead to a goal. The goal of doing an action 
is immediately satisfied by doing that action. If an action 
leads to each of two goals, it leads to their conjunction; 
similarly for disjunction and conditionals. The definition 
of leads to for goals of achievement may seem too weak- 
rather than saying that doing the action is consistent with 
achieving the goal, we would like somehow to say that the 
action actually constitutes progress toward the goal con- 
dition. Unfortunately, there seems to be no good way to 
formalize this notion in a domain-independent way. In 
fact, any definition of leads to that satisfies this definition 
is compatible with the goal reduction algorithm used by 
Gapps, so the definition may be strengthened for a partic- 
ular domain. 

Goal reduction rules are of the form (defgoalr G G’) 
and have the semantics that the goal G can be reduced to 
the goal G’; that is, that any action that leads to G’ will 
also lead to G. 

A program is a finite set of condition-action pairs, in 
which the condition is a run-time expression (actually a 
piece of Rex circuitry with a Boolean output) and an action 
is a vector of run-time expressions, one corresponding to 
each primitive output field. These actions are run-time 
mappings from the perceptual inputs into output values, 
and can be viewed as strategies, in which the particular 
output to be generated depends on the external state of 
the world and the internal state of the agent. Allowing the 
actions to be entire strategies is very flexible, but makes it 
impossible to enumerate the possible values of an output 
field. In order to specify a program that controls only 
the speech field of an action vector, we need to be able 
to create a program that requires the speech field to have 
a certain value, but makes no constraints on the values of 
the other fields. One way to do this would be to generate a 
set of action vectors with the specified speech value, each 
of which has different values for the other action vector 
components. Instead of doing this, we allow elements of 
an action vector to contain the value 0, which stands for 
all possible instantiations of that field. 

A program II, consisting of the condition-action pairs 
{(cl, al), . . . , (c,, a,)}, is said to weakly satisfy a goal G if, 
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define eval(G) 
case first(G) 

for every condition ci, if that condition is true, the corre- 
sponding action ai leads to G. That is, 

II weakly satisfies G u Vi.ci ----f (ai -+ G). 
Note that the conditions in a program need not be 
exhaustive-satisfaction does not require that there be an 
action that leads to the goal in every situation, since this 
is impossible in general. We will refer to the class of sit- 
uations in which a program does specify an action as the 
domain of the program. We define the domain of II as 

dom( II) = V ci . 

A goal G is strongly satisfied by program II if it is weakly 
satisfied by II and dom(II) = true; that is, if for every situ- 
ation, II supplies an action that leads to G. The conditions 
in a program need not be mutually exclusive. When more 
than one condition of a program is true, the action associ- 
ated with each of them leads to the goal, and an execution 
of the program ma,y choose among these actions nondeter- 
ministically. 

2.2 Recursive Goal Evaluatioln 
Procedure 

Gapps is implemented on top of Rex, and makes use of con- 
structs from the Rex language to provide perceptual tests. 
There is not room here to describe the details of the Rex 
language, so we refer the interested reader to other papers 
[Kaelbling, 198713; Kaelbling and Wilson, 19881. Gapps 
programs are made up of a set of goal reduction rules and 
a top-level goal-expression. The general form of a goal- 
reduction rule is 

(def goalr goal-pat goal-expr > , 

where 
goal-pat ::= 

goal-expr ::= 

(ach put rex-parums > 

(maint put rex-parums > 

(do index rex-expr ) 

(and goal-expr goal-expr > 

(or goal-expr goal-expr > 

(not goal-expr > 

(if rex-expr goal-expr goakexpr > 

(ach put rex-expr > 
(maint put rex-expr > 

index is an integer, put is a compile time pattern with unifi- 
able variables, rex-expr is a Rex expression specifying a 
run-time function of input variables, and rex-parums is a 
structure of variables that becomes bound to the result of a 
rex-expr. The details of these constructs will be discussed 
in the following sections. 

The Gapps compiler is an implementation of an evalu- 
ation function that maps goal expressions into programs, 
using a set of goal reduction rules supplied by the pro- 
grammer. In this section we shall present the evaluation 
procedure; we have shown that it is correct; that is, that 
given a goal G and a set of reduction rules I’, eval(G, I’) 
weakly satisfies G. 

Given a reduction-rule set Gamma, we define the evalua- 
tion procedure as follows: 

do : make-primitive-program(second(G),third(G)I 
and: conjoin-programs(eval(second(G)),eval(third(G))) 
or : disjoin-programs(eval(second(G)),eval(third(G))) 
not: eval (negate-goal-expr(second(G))I 
if : disjoin-programs 

(conjoin-cond(second(G),eval(third(G))), 
conjoin-condcnegate-cond(G),eval(fourth(G)))) 

maint, 
ach: for all R in Gamma such that match(G,head (RI) 

disjoin-programs(eval(body0) 

We shall now consider each of these cases in turn. 

DO 

The function make-primitive-program takes an index 
and a Rex expression and returns a program. The index 
indicates which of the fields of the action vector is being 
assigned, and the Rex expression denotes a function from 
the input to values for that action field. It is formally 
defined as 

make-primitive-program (i, rez-expr) = 

{(true, (0,. . . , rex-expr,. . . , a)))}, 

with the rex-exprin the ith component of the action vector. 
This program allows any action so long as component i of 
the action is the strategy described by rex-expr. 

And 
Programs are conjoined by ta.king the cross-product of 

their condition-action pairs and merging each of elements 
of the cross-product together. In conjoining two programs, 
the merged action vector is associated with the conjunc- 
tion of the conditions of the original pairs, together with 
the condition that the two actions are mergeable. The con- 
junction procedure simply finds the pairs in each program 
that share an action and conjoins their conditions. We can 
define the operation formally as 

conjoin-programs (II’, II”) = 

{(cl A cy A mergeable (a:, a;), merge (al, a;))} 

for 16 i < m,l 5 j 5 n where 
Ii’ = {(&al,), . . . > (&,ad>) 

II” = {(c’l’,al:), . . . )(c;,a;)}. 

Two action vectors are mergeable if, for each component, 
at least one of them is unspecified or they are equal. 

mergeable ((al,. . . , a,), (bl, . . . , bn)) z 

Vi.ai = 0 V bi = 0 V ai = bi. 

If either component is unspecified, the test can be com- 
pleted at compile-time and no additional circuitry is gen- 
erated. Otherwise, an equality test is conjoined in with 
the conditions to be tested at run-time. 

Action vectors are merged at the component level, tak- 
ing the defined element if one is available. If the vectors are 
unequally defined on a component, the result is undefined: 

merge ((al, . . . , a,), (bl, . . . , b,)) = (cl, . . . , c,), where 

{ 

ai if bi = 0 or bi = ai 
ci = bi ifai=0 

I otherwise. 
The merger of two action vectors results in an action vector 
that allows the intersection of the actions allowed by the 
original ones. 
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Or 
The disjunction of two programs is simply the union of 

their sets of condition-action pairs. Stated formally, 

Not 
disjoin-programs (II’, II”) = II’ U II”. 

In Gapps, negation is driven into an expression as far 
as possible, using DeMorgan’s laws and the duality of ach 
and maint, unt#il the only expressions containing not are 
those of the form (ach (not pat) >, (maint (not pat>>, 
and (not (do index rex-expr)). In the first two cases, 
there must be explicit reduction rules for the goal; in the 
last case we simply return the empty program. 

If 
The evaluation procedure for conditional programs 

hinges on the definition of the conditional operator 
cond(p, (1, r) as (p A a) V (1~ A r). The procedure for con- 
joining a. condition and a program is defined as follows: 

conjoin-cond (p,II) = {(pAcl,al) ,..., (pAc,,a,)). 

Thus, 
disjoin-programs (conjoin-cond(p,II'), 

conjoin-cond(lp,II")) = 
{(p A c:, a;), . . . ) (p A c;, al), (1p A c:), a;>, . . . ) (7p A c;, uk)}. 

Ach ad Maid 
Goals of maintenance and achievement are evaluated by 

disjoining the results of all applicable reduction rules in the 
rulebase I?. A reduction rule whose head is the expression 
(ach patI rex-parums) matches the goal expression (ach 
pat2 rex-expr) if pat1 and pat2 can be unified in the cur- 
rent binding environment. The patterns are s-expressions 
with compile-time variables that are marked by a leading 
?. The Rex expression and parameter arguments may be 
omitted if they are null. The binding environment con- 
sists of other bindings of compile-time variables within the 
goal expression being evaluated. Thus, when evaluating 
the (ach (go ?p)) subgoal of the goal (and (ach (drive 
?q ?p> > (ach (go ?p> > 1, we may already have a binding 
for ?p. As in Prolog, evaluation of this goal will backtrack 
through all possible bindings of ?p and ?q. 

Once a pattern has been matched, Gapps sets up a new 
compile-time binding environment for evaluating the body 
of the rule. This is necessary in case variables in the body 
are bound by the invocation, as in 

(defgoalr (ach (at ?p> Cdist-err angle-err]) 
(if (not-facing ?p angle-err) 

(ach (facing ?p) angle-err) 
(ach (moved-toward ?p) dist-err))) . 

In the rule above, (at ?p> is a pattern, ?p is a compile- 
time variable, dist-err and angle-err are Rex parame- 
ters, and (not-facing ?p angle-err) will be a Rex ex- 
pression once a binding is substituted for ?p. A possible 
invocation of this rule would be: 
(ach (at (office-of s-tan)> C!*distance-eps* !lOl> . 

Gapps also creates a new Rex-variable binding environ- 
ment upon rule-invocation, binding the Rex variables in 
the head to the evaluated Rex expressions in the invoca- 
tion. These variables may appear in Rex expressions in 
the body of the rule. Note that compile-time variables 
may also be used in Rex expressions, in order to chose 
at compile time from among a class of available run-time 
functions. 

Figure 2: Circuit generated from Gapps program 

2.3 Generating a Circuit 
Once a goal expression has been evaluated, yielding a pro- 
gram, a circuit, similar to the one shown in Figure 2, that 
instantiates that program is generated.’ The output of 
the circuit is the action corresponding to the first condi- 
tion that is true. The conditions are tested in an arbitrary 
order that is chosen at compile-time. Because any action 
whose associated condition is true is sufficient for correct- 
ness, the order in which they are arranged is unimportant. 
If no condition is satisfied, an error action is output to sig- 
nal the programmer that he has made an error. If, at the 
final stage of circuit generation, there are still 0 compo- 
nents in an action vector, they must be instantiated with 
an arbitrary value. The inputs to the circuit are computed 
by the Rex expressions supplied in the if and do forms. 
The outputs of the circuit are used to control the agent. 

For the sake of exposition, the previous section presented 
a somewhat simplified version of Gapps. In the follow- 
ing sections we shall explain additional features that make 
Gapps more effective for use in practical applications. 

3.1 educing Conjunctive @oaB 
Expressions 

In many cases, an effective behavior for achieving 6’ A G” 
cannot be generated simply by conjoining programs that 
achieve G’ and G” individually. A program for the 
goal (and (ach have hammer) (ach have saw>> will al- 
most certainly generate errors when the two tools are in 
different rooms, because there will be no actions avail- 
able that are consistent with the standard programs for 
achieving the each of the subgoals. Because of this, 
we allow reduction rules of the form (defgoalr (and 
( ach-or-maint pat1 rex-paramq > (ach-or-maint pat2 rex- 
parums2) > goal-expr) so that special behaviors can be gen- 
erated in the face of a conjunctive goal. In this case, we 
might write a rule like 
(defgoalr (and (ach have hammer) (ach have saw)) 

(if (have hammer) 
(and (maint have hammer) (ach have saw)) 

‘An equivalent, but more confusing, circuit with log(n) 
depth can be generated for improved performance on parallel 
machines. 
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(if (have saw) 
(and (maint have saw) (ach have hammer)) 
(if (closer-than hammer saw) 

(ach have hammer) 
(ach have saw))>)> , 

in which the agent pursues the closer object until he has it, 
then pursues the second while maintaining the first. We 
might need a similar rule for reducing the conjunctions 
of goa.ls of achievement and maintenance. Alternatively, 
we could write a more generic sequencing rule, like the 
following: 

(defgoalr (and (ach ?gl gl-params) (ach ?g2 g2-prams)) 
(if (holds ?gl gl-params) 

(and .(maint ?gl gl-params) (ach ?g2 g2-params)) 
(if (holds ?g2 g2-params) 

(and (maint ?g2 g2-params) 
(ach ?gl gl-params)) 

(if (better-to-pursue ?gl gl-params 
?g2 g2-params) 

(ach ?gl gl-params) 
(ach ?g2 g2-params))))) . 

The generic form of the rule assumes that there is a Rex 
function, holds, that takes a compile-time parameter and 
generates a circuit that tests to see whether the predicate 
encoded by the compile-time parameter and the run-time 
parameters is true in the world. 

3.2 Prioritized @Soal Lists 
It is often convenient to be able to specify a prioritized list 
of goals. In Gapps, we can do this with a goal expression of 
the form (prio goal-exprr . . . goaJ-expr,). The semantics 
of this is 

cond(dom(IIr), III, 
cond(dom(IIa), II2,. . . , 

cond(dom(k-I), h-1, b> . . .)>, 

where l& = eval(goal- expri). The domain of a program 
(true in a situation if the program has an applicable ac- 
tion in that situation) is the disjunction of the conditions 
in the program. A program for a prio goal executes the 
first program, unless it has no applicable action, in which 
case it executes the second program, and so on. At circuit- 
generation time, this construct can be implemented simply 
by concatenating the programs in priority order, and ex- 
ecuting the first action whose corresponding condition is 
satisfied. 

An example of the use of the prio construct comes about 
when there is more than one way of achieving a particular 
goal, and one is preferable to the other for some reason, 
but is not always applicable. We might have the rule 

(defgoalr (ach in-room r) 
(prio (ach follow-planned-route-to r) 

(ach use-local-navigation-to r))) . 

This rule states that the agent should travel to rooms by 
following planned paths, but if for some reason it is impos- 
sible to do that, it should do so through local navigation. 
The same effect could be achieved with an if expression, 
but this rule does not require the higher-level construct to 
know the exact conditions under which the higher-priority 
goal will fail. 
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3.3 Prioritized Conjunctions 
An interesting special case of a prioritized set of goals is 
a prioritized conjunction of goals, in which the most pre- 
ferred goal is the entire conjunction, and the less preferred 
goals are the conjunctions of shorter and shorter prefixes of 
the goal sequence. We define (prio-and Gr Ga . . . G,) 
to be 

(prio (and Gi G:! . . . G,) 
(and Gi Ga . . . G,-1) . . . 
(and GI G’L) 
GI). 

Isaac hsimov’s three laws of robotics [Asimov, 19501 are 
a well-known example of this type of goal structure. As 
another example, consider a robot that can talk and push 
blocks. It has as its top-level goal 

(prio-and (maint not-crashed) 
(ach (in block1 room3)) 
(maint humans-not-bothered)) . 

It also has rules that say that any action with 
the null string in the talking field will maintain 
humans-not-bothered; that (in ?x ?y> can be achieved 
by pushing ?x or by asking a human to pick it up and move 
it; and that any action that requires the robot and a wall 
to share the same space will not maintain not-crashed. 
As long as the robot can push the block, it can satisfy 
all three conditions. If, however, the block is in a cor- 
ner, getting in a position to push it would require sharing 
space with a wall, thus violating the first subgoal. The 
most preferred goal cannot be achieved, so we consider the 
next-most-preferred goal, obtained by dropping the last 
condition from the conjunction. Since it is now allowed 
to bother humans, the robot can satisfy its goal by asking 
someone to move the block for it. It is important to re- 
member that all of the symbolic manipulation of the goals 
happens at compile-time; at run-time, we simply execute 
the action associated with the first condition that evaluates 
to true. 

3.4 Merger Functions 
In Gapps, as described so far, the only method for com- 
bining actions is switching among them, and they may be 
conjoined only if they are equal. To allow more flexibility, 
the user can declare, for each action field, a Rex function 
that tests two values for compatibility, and one that merges 
two compatible values. If such a declaration is made, these 
functions are used in the conjunction of programs in place 
of mergeable and merge as defined above. 

Merger functions can be used to implement many low- 
level behavior combination schemes. As an example, con- 
sider a robot with the dual goals of arriving at a destina- 
tion and avoiding crashes, whose control output is a desired 
velocity vector. The program satisfying the goal of arriv- 
ing at the destination constructs a vector pointing toward 
the destination, proportional to its distance away from the 
robot; the program satisfying the goal of avoiding crashes 
constructs a vector that points away from the nearest ob- 
stacle with a length inversely proportional to the square of 
the distance. We can define the mergeability function to 
be always true with the form 

(defmergeability velocity (vl v2) !l) 
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(ach goal-encoded-by (perceived-command) 1 
(do twiddle-thumbs))) 

(defgoalr (ach goal-encoded-by params) 
(if (move-command params) 

(ach do-move-command (get-destination params) > 
(if (stop-command params) 

(ach stopped) 
. . . 1)) , 
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which will cause it to carry out requests as it perceives 
them. 

It is also straightforward to integrate planning into a 
Gapps program. Planning can be seen as the perceptual 
process of coming to know which sequence of actions will 
lead to the satisfaction of a goal. The following Gapps 
program makes use of planning, but also has the potential 
for reacting to emergency situations: 

(defgoalr (ach (in room) [r t]) 
(if (know-plan-for-getting-to-room r t> 

(ach execute-first-ster, 
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If the agent has the goal of being in room r at time t, and 
he knows a plan for getting there, then he should execute 
the first, step of that plan; otherwise, if it looks like time 
is running out, the agent should do the best action he can 
think of at the moment; if there is no problem with time, 
his best course of action is to sit, still and wait until the per- 
ception component has produced a plan. These issues of 
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