
Goals as Parallel Program Specifications*

Leslie Pack Kaelbling
Artificial Intelligence Center

SRI International
and Center for the Study of Language and Information

St anford University

Abstract

Classical planning is inappropriate for generating
actions in a dynamic world. This paper presents a
formalism, called Gapps, that allows a program-
mer to specify an agent’s behavior using symbolic
goal-reduction rules that are compiled into an ef-
ficient parallel program. Gapps is designed for
use in domains that require real-time response,
that cannot be completely characterized by oper-
ator descriptions, and that allow multiple actions
to be carried out in parallel.

1 IntrcsductiorI!
It has been standard practice in the field of artificial in-
telligence to use planning as the method of action selec-
tion in such computer agents as robots. Classical planning
consists of encoding the domain in terms of atomic ac-
tions, their preconditions, and their effects in the world,
and then, given an initial situation and a goal situation,
searching through the space of operator sequences until
one is found that will transform the initial state into the
goal state. This method of action generation is attrac-
tive for two reasons. First, the style of programming is
highly declarative, making it easy to modify incrementally
the characterization of the domain. Second, the method is
quite general, allowing the agent to solve a wide range of
problems in its domain.

Unfortunately, many properties of classical planning
make it inappropriate for use in real domains in which
time is critical, the world is unpredictable, actions are
fine-grained, and an agent can perform many actions in
parallel. Moreover, planning is undecidable in the general
case, and highly computationally intractable, even in its
simpler forms [Chapman, 19871. When an agent must gen-
erate prompt responses to events in its environment, it will
not, in general, have enough time to devote to planning.
The standard model of planning requires that the effects
of actions be completely known at plan-time, but this is
an unrealistic assumption for most real domains. A con-
tributing factor to this lack of knowledge about actions is
that in many cases the actions that the agent must reason
about in the process of plan formation are at a very low
level, more like “set the left wheel velocity to 200” than “go
through door4.” Finally, planning seldom recognizes that
some agents can perform different actions, such as moving
and talking, in parallel.

*This work was supported in part by a gift from the System
Development Foundation and in part by DARPA and NASA
under NASA grant PR5671 (SRI Project 4099).

These limitations of classical planning have been known
for some time, and many researchers have sought to de-
velop new action-generation methods that surmount them.
Systems that interleave planning and execution [Wilkins,
19851 allow for the failure of actions and make it possi-
ble to take unanticipated events into account. They still
use fundamentally intractable algorithms for the planning
phases, however. Georgeff and Lansky’s reactive plan-
ning [Georgeff and Lansky, 19871 is really not planning at
all, but run-time interpretation of highly conditional user-
specified plans. Schoppers [Schoppers, 19871 has proposed
a system in which planning is carried out automatically a.t
programming time, generating a tree of plans to achieve
a goal from all possible initial situations, thus affording a
high degree of robustness and the ability to recover from
unexpected events. This approach is interesting, but the
plans generated are too large for use in practical domains.
Lansky [Lansky, 19871 has done interesting work in gen-
erating synchronized concurrent plans that uses the struc-
ture of the domain to make the reasoning process more
tractable, but her approach still relies on complete infor-
mation and plans completely in advance of acting.

In this paper we describe Gapps, a language for specify-
ing behaviors of computer agents that retains the advan-
tage of declarative specification, but generates run-time
programs that are reactive, do parallel actions, and carry
out strategies made up of very low-level actions. Gapps
does not provide for classical run-time planning, but we
find this acceptable because we believe that the vast major-
ity of the activity of any agent is routine and requires none
of the sophistication of general planning systems [Agre and
Chapman, 19871. In th e na section we will explore meth- fi 1
ods for integrating classical planning into Gapps programs.

2 alpI?s
Gapps is based on a model of computation in which an
agent is seen to perform a finite transduction from a stream
of input into a stream of output. A program, in this model,
is a function that maps an input and the current value of
the state into an output and a new value of the state. We
require of this function that there be a small, finite up-
per bound on its computation time. This guarantees that
the agent can react quickly to external events by having a
fixed delay between the arrival of any given input and the
generation of an output that depends on that input.

Rosenschein and Kaelbling have developed a language,
called Rex, for programming in this model [Rosenschein
and Kaelbling, 1986; Kaelbling, 1987131. Rex takes a Lisp-
like program specification and generates the description of
a synchronous digital circuit with delay components that

GO Automated Reasoning

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

Figure 1:
ponents.

Decomposition into perception and action com-

satisfies the specification. Because the computation is de-
scribed in terms of a finite circuit that delivers an output
on every cycle, it can be carried out in constant time. This
language has been used for programming the SRI mobile
robot, with state updates being computed many times per
second.

One convenient way to view computations of this sort
is to divide them into two components: perception and
action (as shown in Figure 1.) The perception component
contains all of the state and the computation required to
update it. This allows the action component to be state-
free, taking its input from the output of the perception
component.

Gapps is intended to be used to specify the action com-
ponent of an agent. The Gapps compiler takes as input a
declarative specification of the agent’s top-level goal and a
set of goal-reduction rules, and transforms them into the
description of a circuit that has the output of the percep-
tion component as its input, and the output of the agent
as a whole as its output. The output of the agent may be
divided into a number of separately controllable actions, so
that we can independently specify procedures that allow
an agent to move and talk at the same time. A sample
action vector declaration is:

(declare-action-vector
(left-wheel-velocity int)
(right-wheel-velocity int)
(speech string>>

This states that the agent has three independently control-
lable effecters and declares the types of the output values
that control them.

In the following sections, we shall present a formal de-
scription of Gapps and its goal evaluation algorithm, and
explain how Gapps specifications can be instantiated as
circuit descriptions.

2.1 Goals and Programs
The Gapps compiler maps a top-level goal and a set of
goal-reduction rules into a program. In this section we
shall clarify the concepts of goal, goal-reduction rule, and
program.

There are three primitive goal types: goals of execution,
achievement, and maintenance. Goals of execution are of
the form do(u), with a specifying an instantaneous action
that can be taken by the agent in the world-the agent’s
goal is simply to perform that action. If an agent has a goal
of maintenance, notated maint(p), then if the proposition
p is true, the agent should strive to maintain the truth
of p for as long as it can. The goal ach(p) is a goal of
achievement, for which the agent should try to bring about
the truth of proposition p as soon as possible. The set of

goals is made up of the primitive goal types, closed under
the Boolean operators. The notions of achievement and
maintenance are dual, so we have lath(p) E maint(lp)
and lmaint(p) E ach(lp).

In order to characterize the correctness of programs with
respect to the goals that specify them, we must have a no-
tion of an action leading to a goal. Informally, an action
a leads to a goal G (notated a - G) if it constitutes a
correct step toward the satisfaction of a goal. For a goal
of achievement, the action must be consistent with the
goal condition’s eventually being true; for a goal of main-
tenance, if the condition is already true, the action must
imply that it will be true at the next instant of time. The
leads to operator must also have the following formal prop-
erties:

a - do(u)
(a-G)A(u- G’) + a- (GAG’)
(a - G) v (a - G’) =+ a - (G v G’)

cond(p, a - G, a - G’) + a - cond(p, G, G’).
This definition captures a weak intuition of what it means
for an action to lead to a goal. The goal of doing an action
is immediately satisfied by doing that action. If an action
leads to each of two goals, it leads to their conjunction;
similarly for disjunction and conditionals. The definition
of leads to for goals of achievement may seem too weak-
rather than saying that doing the action is consistent with
achieving the goal, we would like somehow to say that the
action actually constitutes progress toward the goal con-
dition. Unfortunately, there seems to be no good way to
formalize this notion in a domain-independent way. In
fact, any definition of leads to that satisfies this definition
is compatible with the goal reduction algorithm used by
Gapps, so the definition may be strengthened for a partic-
ular domain.

Goal reduction rules are of the form (defgoalr G G’)
and have the semantics that the goal G can be reduced to
the goal G’; that is, that any action that leads to G’ will
also lead to G.

A program is a finite set of condition-action pairs, in
which the condition is a run-time expression (actually a
piece of Rex circuitry with a Boolean output) and an action
is a vector of run-time expressions, one corresponding to
each primitive output field. These actions are run-time
mappings from the perceptual inputs into output values,
and can be viewed as strategies, in which the particular
output to be generated depends on the external state of
the world and the internal state of the agent. Allowing the
actions to be entire strategies is very flexible, but makes it
impossible to enumerate the possible values of an output
field. In order to specify a program that controls only
the speech field of an action vector, we need to be able
to create a program that requires the speech field to have
a certain value, but makes no constraints on the values of
the other fields. One way to do this would be to generate a
set of action vectors with the specified speech value, each
of which has different values for the other action vector
components. Instead of doing this, we allow elements of
an action vector to contain the value 0, which stands for
all possible instantiations of that field.

A program II, consisting of the condition-action pairs
{(cl, al), . . . , (c,, a,)}, is said to weakly satisfy a goal G if,

Kaelbling 61

define eval(G)
case first(G)

for every condition ci, if that condition is true, the corre-
sponding action ai leads to G. That is,

II weakly satisfies G u Vi.ci ----f (ai -+ G).
Note that the conditions in a program need not be
exhaustive-satisfaction does not require that there be an
action that leads to the goal in every situation, since this
is impossible in general. We will refer to the class of sit-
uations in which a program does specify an action as the
domain of the program. We define the domain of II as

dom(II) = V ci .

A goal G is strongly satisfied by program II if it is weakly
satisfied by II and dom(II) = true; that is, if for every situ-
ation, II supplies an action that leads to G. The conditions
in a program need not be mutually exclusive. When more
than one condition of a program is true, the action associ-
ated with each of them leads to the goal, and an execution
of the program ma,y choose among these actions nondeter-
ministically.

2.2 Recursive Goal Evaluatioln
Procedure

Gapps is implemented on top of Rex, and makes use of con-
structs from the Rex language to provide perceptual tests.
There is not room here to describe the details of the Rex
language, so we refer the interested reader to other papers
[Kaelbling, 198713; Kaelbling and Wilson, 19881. Gapps
programs are made up of a set of goal reduction rules and
a top-level goal-expression. The general form of a goal-
reduction rule is

(def goalr goal-pat goal-expr > ,

where
goal-pat ::=

goal-expr ::=

(ach put rex-parums >

(maint put rex-parums >

(do index rex-expr)

(and goal-expr goal-expr >

(or goal-expr goal-expr >

(not goal-expr >

(if rex-expr goal-expr goakexpr >

(ach put rex-expr >
(maint put rex-expr >

index is an integer, put is a compile time pattern with unifi-
able variables, rex-expr is a Rex expression specifying a
run-time function of input variables, and rex-parums is a
structure of variables that becomes bound to the result of a
rex-expr. The details of these constructs will be discussed
in the following sections.

The Gapps compiler is an implementation of an evalu-
ation function that maps goal expressions into programs,
using a set of goal reduction rules supplied by the pro-
grammer. In this section we shall present the evaluation
procedure; we have shown that it is correct; that is, that
given a goal G and a set of reduction rules I’, eval(G, I’)
weakly satisfies G.

Given a reduction-rule set Gamma, we define the evalua-
tion procedure as follows:

do : make-primitive-program(second(G),third(G)I
and: conjoin-programs(eval(second(G)),eval(third(G)))
or : disjoin-programs(eval(second(G)),eval(third(G)))
not: eval (negate-goal-expr(second(G))I
if : disjoin-programs

(conjoin-cond(second(G),eval(third(G))),
conjoin-condcnegate-cond(G),eval(fourth(G))))

maint,
ach: for all R in Gamma such that match(G,head (RI)

disjoin-programs(eval(body0)

We shall now consider each of these cases in turn.

DO

The function make-primitive-program takes an index
and a Rex expression and returns a program. The index
indicates which of the fields of the action vector is being
assigned, and the Rex expression denotes a function from
the input to values for that action field. It is formally
defined as

make-primitive-program (i, rez-expr) =

{(true, (0,. . . , rex-expr,. . . , a)))},

with the rex-exprin the ith component of the action vector.
This program allows any action so long as component i of
the action is the strategy described by rex-expr.

And
Programs are conjoined by ta.king the cross-product of

their condition-action pairs and merging each of elements
of the cross-product together. In conjoining two programs,
the merged action vector is associated with the conjunc-
tion of the conditions of the original pairs, together with
the condition that the two actions are mergeable. The con-
junction procedure simply finds the pairs in each program
that share an action and conjoins their conditions. We can
define the operation formally as

conjoin-programs (II’, II”) =

{(cl A cy A mergeable (a:, a;), merge (al, a;))}

for 16 i < m,l 5 j 5 n where
Ii’ = {(&al,), . . . > (&,ad>)

II” = {(c’l’,al:), . . .)(c;,a;)}.

Two action vectors are mergeable if, for each component,
at least one of them is unspecified or they are equal.

mergeable ((al,. . . , a,), (bl, . . . , bn)) z

Vi.ai = 0 V bi = 0 V ai = bi.

If either component is unspecified, the test can be com-
pleted at compile-time and no additional circuitry is gen-
erated. Otherwise, an equality test is conjoined in with
the conditions to be tested at run-time.

Action vectors are merged at the component level, tak-
ing the defined element if one is available. If the vectors are
unequally defined on a component, the result is undefined:

merge ((al, . . . , a,), (bl, . . . , b,)) = (cl, . . . , c,), where

{

ai if bi = 0 or bi = ai
ci = bi ifai=0

I otherwise.
The merger of two action vectors results in an action vector
that allows the intersection of the actions allowed by the
original ones.

62 Automated Reasoning

Or
The disjunction of two programs is simply the union of

their sets of condition-action pairs. Stated formally,

Not
disjoin-programs (II’, II”) = II’ U II”.

In Gapps, negation is driven into an expression as far
as possible, using DeMorgan’s laws and the duality of ach
and maint, unt#il the only expressions containing not are
those of the form (ach (not pat) >, (maint (not pat>>,
and (not (do index rex-expr)). In the first two cases,
there must be explicit reduction rules for the goal; in the
last case we simply return the empty program.

If
The evaluation procedure for conditional programs

hinges on the definition of the conditional operator
cond(p, (1, r) as (p A a) V (1~ A r). The procedure for con-
joining a. condition and a program is defined as follows:

conjoin-cond (p,II) = {(pAcl,al) ,..., (pAc,,a,)).

Thus,
disjoin-programs (conjoin-cond(p,II'),

conjoin-cond(lp,II")) =
{(p A c:, a;), . . .) (p A c;, al), (1p A c:), a;>, . . .) (7p A c;, uk)}.

Ach ad Maid
Goals of maintenance and achievement are evaluated by

disjoining the results of all applicable reduction rules in the
rulebase I?. A reduction rule whose head is the expression
(ach patI rex-parums) matches the goal expression (ach
pat2 rex-expr) if pat1 and pat2 can be unified in the cur-
rent binding environment. The patterns are s-expressions
with compile-time variables that are marked by a leading
?. The Rex expression and parameter arguments may be
omitted if they are null. The binding environment con-
sists of other bindings of compile-time variables within the
goal expression being evaluated. Thus, when evaluating
the (ach (go ?p)) subgoal of the goal (and (ach (drive
?q ?p> > (ach (go ?p> > 1, we may already have a binding
for ?p. As in Prolog, evaluation of this goal will backtrack
through all possible bindings of ?p and ?q.

Once a pattern has been matched, Gapps sets up a new
compile-time binding environment for evaluating the body
of the rule. This is necessary in case variables in the body
are bound by the invocation, as in

(defgoalr (ach (at ?p> Cdist-err angle-err])
(if (not-facing ?p angle-err)

(ach (facing ?p) angle-err)
(ach (moved-toward ?p) dist-err))) .

In the rule above, (at ?p> is a pattern, ?p is a compile-
time variable, dist-err and angle-err are Rex parame-
ters, and (not-facing ?p angle-err) will be a Rex ex-
pression once a binding is substituted for ?p. A possible
invocation of this rule would be:
(ach (at (office-of s-tan)> C!*distance-eps* !lOl> .

Gapps also creates a new Rex-variable binding environ-
ment upon rule-invocation, binding the Rex variables in
the head to the evaluated Rex expressions in the invoca-
tion. These variables may appear in Rex expressions in
the body of the rule. Note that compile-time variables
may also be used in Rex expressions, in order to chose
at compile time from among a class of available run-time
functions.

Figure 2: Circuit generated from Gapps program

2.3 Generating a Circuit
Once a goal expression has been evaluated, yielding a pro-
gram, a circuit, similar to the one shown in Figure 2, that
instantiates that program is generated.’ The output of
the circuit is the action corresponding to the first condi-
tion that is true. The conditions are tested in an arbitrary
order that is chosen at compile-time. Because any action
whose associated condition is true is sufficient for correct-
ness, the order in which they are arranged is unimportant.
If no condition is satisfied, an error action is output to sig-
nal the programmer that he has made an error. If, at the
final stage of circuit generation, there are still 0 compo-
nents in an action vector, they must be instantiated with
an arbitrary value. The inputs to the circuit are computed
by the Rex expressions supplied in the if and do forms.
The outputs of the circuit are used to control the agent.

For the sake of exposition, the previous section presented
a somewhat simplified version of Gapps. In the follow-
ing sections we shall explain additional features that make
Gapps more effective for use in practical applications.

3.1 educing Conjunctive @oaB
Expressions

In many cases, an effective behavior for achieving 6’ A G”
cannot be generated simply by conjoining programs that
achieve G’ and G” individually. A program for the
goal (and (ach have hammer) (ach have saw>> will al-
most certainly generate errors when the two tools are in
different rooms, because there will be no actions avail-
able that are consistent with the standard programs for
achieving the each of the subgoals. Because of this,
we allow reduction rules of the form (defgoalr (and
(ach-or-maint pat1 rex-paramq > (ach-or-maint pat2 rex-
parums2) > goal-expr) so that special behaviors can be gen-
erated in the face of a conjunctive goal. In this case, we
might write a rule like
(defgoalr (and (ach have hammer) (ach have saw))

(if (have hammer)
(and (maint have hammer) (ach have saw))

‘An equivalent, but more confusing, circuit with log(n)
depth can be generated for improved performance on parallel
machines.

Kaelbling 63

(if (have saw)
(and (maint have saw) (ach have hammer))
(if (closer-than hammer saw)

(ach have hammer)
(ach have saw))>)> ,

in which the agent pursues the closer object until he has it,
then pursues the second while maintaining the first. We
might need a similar rule for reducing the conjunctions
of goa.ls of achievement and maintenance. Alternatively,
we could write a more generic sequencing rule, like the
following:

(defgoalr (and (ach ?gl gl-params) (ach ?g2 g2-prams))
(if (holds ?gl gl-params)

(and .(maint ?gl gl-params) (ach ?g2 g2-params))
(if (holds ?g2 g2-params)

(and (maint ?g2 g2-params)
(ach ?gl gl-params))

(if (better-to-pursue ?gl gl-params
?g2 g2-params)

(ach ?gl gl-params)
(ach ?g2 g2-params))))) .

The generic form of the rule assumes that there is a Rex
function, holds, that takes a compile-time parameter and
generates a circuit that tests to see whether the predicate
encoded by the compile-time parameter and the run-time
parameters is true in the world.

3.2 Prioritized @Soal Lists
It is often convenient to be able to specify a prioritized list
of goals. In Gapps, we can do this with a goal expression of
the form (prio goal-exprr . . . goaJ-expr,). The semantics
of this is

cond(dom(IIr), III,
cond(dom(IIa), II2,. . . ,

cond(dom(k-I), h-1, b> . . .)>,

where l& = eval(goal- expri). The domain of a program
(true in a situation if the program has an applicable ac-
tion in that situation) is the disjunction of the conditions
in the program. A program for a prio goal executes the
first program, unless it has no applicable action, in which
case it executes the second program, and so on. At circuit-
generation time, this construct can be implemented simply
by concatenating the programs in priority order, and ex-
ecuting the first action whose corresponding condition is
satisfied.

An example of the use of the prio construct comes about
when there is more than one way of achieving a particular
goal, and one is preferable to the other for some reason,
but is not always applicable. We might have the rule

(defgoalr (ach in-room r)
(prio (ach follow-planned-route-to r)

(ach use-local-navigation-to r))) .

This rule states that the agent should travel to rooms by
following planned paths, but if for some reason it is impos-
sible to do that, it should do so through local navigation.
The same effect could be achieved with an if expression,
but this rule does not require the higher-level construct to
know the exact conditions under which the higher-priority
goal will fail.

64 Automated Reasoning

3.3 Prioritized Conjunctions
An interesting special case of a prioritized set of goals is
a prioritized conjunction of goals, in which the most pre-
ferred goal is the entire conjunction, and the less preferred
goals are the conjunctions of shorter and shorter prefixes of
the goal sequence. We define (prio-and Gr Ga . . . G,)
to be

(prio (and Gi G:! . . . G,)
(and Gi Ga . . . G,-1) . . .
(and GI G’L)
GI).

Isaac hsimov’s three laws of robotics [Asimov, 19501 are
a well-known example of this type of goal structure. As
another example, consider a robot that can talk and push
blocks. It has as its top-level goal

(prio-and (maint not-crashed)
(ach (in block1 room3))
(maint humans-not-bothered)) .

It also has rules that say that any action with
the null string in the talking field will maintain
humans-not-bothered; that (in ?x ?y> can be achieved
by pushing ?x or by asking a human to pick it up and move
it; and that any action that requires the robot and a wall
to share the same space will not maintain not-crashed.
As long as the robot can push the block, it can satisfy
all three conditions. If, however, the block is in a cor-
ner, getting in a position to push it would require sharing
space with a wall, thus violating the first subgoal. The
most preferred goal cannot be achieved, so we consider the
next-most-preferred goal, obtained by dropping the last
condition from the conjunction. Since it is now allowed
to bother humans, the robot can satisfy its goal by asking
someone to move the block for it. It is important to re-
member that all of the symbolic manipulation of the goals
happens at compile-time; at run-time, we simply execute
the action associated with the first condition that evaluates
to true.

3.4 Merger Functions
In Gapps, as described so far, the only method for com-
bining actions is switching among them, and they may be
conjoined only if they are equal. To allow more flexibility,
the user can declare, for each action field, a Rex function
that tests two values for compatibility, and one that merges
two compatible values. If such a declaration is made, these
functions are used in the conjunction of programs in place
of mergeable and merge as defined above.

Merger functions can be used to implement many low-
level behavior combination schemes. As an example, con-
sider a robot with the dual goals of arriving at a destina-
tion and avoiding crashes, whose control output is a desired
velocity vector. The program satisfying the goal of arriv-
ing at the destination constructs a vector pointing toward
the destination, proportional to its distance away from the
robot; the program satisfying the goal of avoiding crashes
constructs a vector that points away from the nearest ob-
stacle with a length inversely proportional to the square of
the distance. We can define the mergeability function to
be always true with the form

(defmergeability velocity (vl v2) !l)

and define the merger of the two velocities to be their av- Acknowledgments
er a.ge

This work was inspired by Stan Rosenschein, who knew

(defmerger velocity (vl ~2) (Rector-average vl ~2)) .

A safer version of the mergeability definition might allow
two vectors to be merged only if they were in the same
half-plane. Another extension would be for the velocity
vectors to have weights associated with them, and have
the merger function ierform a weighted average, or choose
the one with the higher weight.

there had to be a better way to write robot programs.
Thanks to Stan, Martha Pollack, David Chapman, Phil
Agre, and Tom Dean for helpful comments on previous
drafts.

eferences
[Agre and Chapman, 19871 Philip E. Agre and David

Chapman. Pengi: an implementation of a theory of
activity. In Proceedings of the Sixth National Confer-
ence on Artificial Intelligence, pages 268-272, Morgan
Kauffman, Seattle, Washington, 1987.

[Asimov, 19501 Isaac Asimov. I, Robot. Fawcett Crest,
New York, New York, 1950.

4 Using Gapps
Gapps has been implemented in CommonLisp, in conjunc-
tion with an existing implementation of Rex. It has proven
very useful for writing navigation programs for the SRI mo-
bile robot. This domain exercises all of the important fea-
tures of Gapps programs, including low-level actions whose
results are unpredictable, time-criticality, and parallel ac-
tions. This method of specifying behaviors is especially
convenient because, by virtue of its compositionality, each
subbehavior can be implemented and tested separately.

Although Gapps’ method of specifying goals at compile
time may seem inflexible, it easily handles cases in which
external goals are given to the agent at run-time. In such
a case, we can give the agent the standing goal of following
orders and rules of the form

(def goalr (maint follow-orders)
(if (current-request-pending)

(ach goal-encoded-by (perceived-command) 1
(do twiddle-thumbs)))

(defgoalr (ach goal-encoded-by params)
(if (move-command params)

(ach do-move-command (get-destination params) >
(if (stop-command params)

(ach stopped)
. . . 1)) ,

[Chapman, 19871 David Chapman. Planning for conjunc-
tive goals. Artificial Intelligence, 32(3):333-378, 1987.

[Georgeff and Lansky, 19871 Michael P. Georgeff and
Amy L. Lansky. Reactive reasoning and planning. In
Proceedings of the Sixth National Conference on Arti-
jkial Intellig ence, pages 677.-682, Morgan Kauffman,
Seattle, Washington, 1987.

[Kaelbling, 1987a] Leslie Pack Kaelbling. An architecture
for intelligent reactive systems. In Michael P. Georgeff
and Amy L. Lansky, editors, Reasoning About Actions
and Plans, pages 395-410, Morgan Kauffman, 1987.

[Kaelbling, 1987b] Leslie Pack Kaelbling. Rex: a symbolic
language for the design and parallel implementation of
embedded systems. In Proceedings of the AIAA Con-
ference on Computers in Aerospace, Wakefield, Mas-
sachusetts, 1987.

[Kaelbling and W’l 1 son, 19881 Leslie Pack Kaelbling and
Nathan J. Wilson. Rex Programmer’s Manual. Tech-
nical Report 381R, Artificial Intelligence Center, SRI
International, Menlo Park, California, 1988.

which will cause it to carry out requests as it perceives
them.

It is also straightforward to integrate planning into a
Gapps program. Planning can be seen as the perceptual
process of coming to know which sequence of actions will
lead to the satisfaction of a goal. The following Gapps
program makes use of planning, but also has the potential
for reacting to emergency situations:

(defgoalr (ach (in room) [r t])
(if (know-plan-for-getting-to-room r t>

(ach execute-first-ster,

[Lansky, 19871 Amy L. Lansky. Localized representa-
tion and planning methods for parallel domains. In
Proceedings of the National Conference on Artificial
Intelligence, Morgan Kauffman, Seattle,Washington,
1987.

[Rosenschein and Kaelbling, 19861 Stanley J. Rosenschein
and Leslie Pack Kaelbling. The synthesis of digi-
tal machines with provable epistemic properties. In
Joseph Halpern, editor, Proceedings of the Conference
on Theoretical Aspects of Reasoning About Knowl-

(plan-for-gettinglto-room r t>> edge, pages 83-98, Morgan Kauffman, 1986. An up-
(if (time-is-critical-for-getting-to-room r t.) dated version appears as Technical Note 412, Arti-

(ach drive-in-the-direction-of-room r> ficial Intelligence Center, SRI International, Menlo
(maint sit-still)))) . Park, California.

If the agent has the goal of being in room r at time t, and
he knows a plan for getting there, then he should execute
the first, step of that plan; otherwise, if it looks like time
is running out, the agent should do the best action he can
think of at the moment; if there is no problem with time,
his best course of action is to sit, still and wait until the per-
ception component has produced a plan. These issues of
combining planning and reactive action are explored more
fully in another paper [Kaelbling, 1987a].

[Schoppers, 19871 Marcel J. Schoppers. Universal plans
for reactive robots in unpredictable environments. In
Proceedings of the Tenth International Joint Confer-
ence on Artificial Intelligence, pages 1039-1046, Mor-
gan Kauffman, Milan, 1987.

[Wilkins, 19851 David E. Wilkins. Recovering from execu-
tion errors in SIPE. Computationad IntddigenCe, 1:33-
45, 1985.

Kaelbling 65

