
Predictability Versus Responsiveness: 
Coordinating roblem Solvers in ynamic omains 

Edmund H. Durfee and Victor R. Lesser 
Department of Computer and Information Science 

University of Massachusetts 
Amherst, Massachusetts, 01003 

Abstract 

Coordination in dynamic domains involves bal- 
ancing predictability and responsiveness: agents 
must be predictable enough to anticipate and 
plan future interactions while being responsive 
enough to react to unexpected situations. The 
partial global planning approach to coordination 
provides a framework for flexibly balancing these 
opposing needs. In this approach, agents com- 
municate about their current local plans to build 
up partial global plans (PGPs) that specify co- 
operative actions and interactions. When their 
plans change, agents must decide whether the 
time and effort of reformulating their PGPs is 
worthwhile, or whether working predictably with 
slightly out-of-date PGPs is more cost effective. 
In this paper, we briefly outline the partial global 
planning approach, discuss how it flexibly bal- 
ances predictability and responsiveness, and ex- 
perimentally show how different balances affect 
behavior in a simulated problem-solving network. 

1 Introduction 
Coordination requires predictability. If unable to predict 
each other’s actions, agents cannot coordinate their inter- 
actions. Coordination is therefore easier when agents com- 
mit themselves to explicit, globally-known plans. However, 
committing to such plans prevents agents from dynami- 
cally responding to unexpected situations. To work effec- 
tively in dynamic domains, agents must be responsive, and 
thus unpredictable to a certain extent. Coordination in 
dynamic, uncertain domains thus requires that the agents 
suitably balance responsiveness and predictability. 

In a distributed problem-solving network, for example, 
each agent is a problem-solving node that works with 
other nodes to solve network problems. A node must re- 
spond to changing subproblems: it might get new knowl- 
edge or information that causes it to pursue different sub- 
problems or develop unexpected subproblem solutions. To 
cooperate with others, however, a node must predict (at 

This research was sponsored, in part, by the National Science 
Foundation under CER Grant DCR-8500332, and by the Office 
of Naval Research under University Research Initiative Grant 
Contract N00014-86-K-0764, and under Contract N00014-7% 
C-0439. Edmund Durfee also received support from an IBM 
Graduate Fellowship. 
Edmund Durfee will be with the Department of Electrical En- 
gineering and Computer Science at The University of Michigan 
beginning Fall 1988. 

least roughly) what subproblems other nodes will be solv- 
ing and when, which in turn means that nodes must form 
tentative plans. Nodes therefore must have a framework 
for coordination that allows them to tentatively plan coor- 
dinated interactions and to modify their plans in response 
to unanticipated situations. 

The partial global planning approach is a flexible 
framework for coordination where nodes can balance their 
needs for predictability and responsiveness differently for 
different situations. In this framework, nodes exchange 
information about their tentative local plans and develop 
partial global plans (PGPs) to represent the combined 
activities of some part of the network that is developing a 
more global solution. A node’s PGPs indicate its current 
view of how nodes should coordinate on forming larger 
solutions. Because local plans can change and communi- 
cation about these changes takes time, however, a node’s 
PGPs might at times be based on incomplete, inconsistent, 
and out-of-date information. Such PGPs can degrade net- 
work problem-solving performance because nodes might 
not work as a coordinated team, but on the other hand the 
communication and computation overhead for forming and 
maintaining the best possible PGPs might be prohibitively 
high. In dynamic domains, nodes should strive for satisfac- 
tory, not optimal, cooperation by balancing predictability 
and responsiveness. The partial global planning approach 
allows nodes to strike a balance so that they incur the 
planning overhead only for “significant” deviations from 
planned activity, and so that they develop more robust 
PGPs that need less modification when deviations occur. 

2 Partial Global Plarming in the 
DVMT 

To study and evaluate our approach to coordination, we 
have implemented the partial global planning framework 
in the Distributed Vehicle Monitoring Testbed (DVMT), 
which simulates a network of vehicle monitoring nodes 
that track vehicles moving through an acoustically sensed 
area [Lesser and Corkill, 19831. The acoustic sensors and 
problem-solving nodes are geographically distributed, so 
that each node receives signals from a local subset of sen- 
sors. A node has a blackboard-based problem-solving ar- 
chitecture with knowledge sources and levels of abstraction 
appropriate for vehicle monitoring. Nodes apply their sig- 
nal processing knowledge about the characteristic sounds 
and movements of vehicles in order to correlate their sensor 
data, integrating this data into larger, more abstract hy- 
potheses (partial solutions) about vehicle movements. By 
exchanging the high-level hypotheses formed from their in- 

66 Automated Reasoning 

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved. 



dividual sensor data, nodes use their knowledge about ve- 
hicle movements to integrate their partial hypotheses into 
a complete answer map. 

Nodes act by forming local hypotheses and interact by 
exchanging hypotheses not only to converge on overall so- 
lutions but also to provide information that helps others 
solve local subproblems. By coordinating their actions and 
interactions, they avoid duplicating effort in tracking vehi- 
cles through overlapping sensed areas and they share par- 
tial tracks in a timely manner to resolve uncertainty about 
their information. Nodes should consider their local ex- 
pertise and available computing resources when deciding 
which local subproblems to solve and where to assign fu- 
ture subproblems such as integrating partial results from 
several nodes. Because subproblems, expertise, and other 
resources may be inherently but possibly unevenly dis- 
tributed, nodes need to coordinate for result-sharing and 
task-sharing [Davis and Smith, 1983; Durfee and Lesser, 
1988b]. 

Each node has a local planner that balances the needs for 
predictability and responsiveness by planning incremen- 
taEly [Durfee and Lesser, 1986; Durfee and Lesser, 1988a]. 
For predictability, the planner sketches out a sequence of 
major plan steps that will lead to possible problem solu- 
tions. In the DVMT, the major plan steps correspond to 
extending partial tracks into new time frames (such as ex- 
tending the track di-dj into dj+l, where dk is data sensed 
at time le). A major plan step might take several process- 
ing actions to analyze the new data, filter out noise, and 
integrate the correct data into the track. For responsive- 
ness, the planner only details specific actions for achieving 
a major plan step when that step must be taken, so the 
choice of actions depends on the current situation. Thus, 
the planner interleaves planning and execution, and can 
add new actions to the plan when planned actions fail to 
achieve their desired results. For each major plan step, 
the local planner also roughly estimates what partial re- 
sults will be formed and when, based on models of problem 
solving and on past problem-solving experience. 

Each node also has a partial global planner (PGPlan- 
ner) as an integral part of its control mechanisms [Durfee 
and Lesser, 19871. The PGPlanner forms node-plans to 
summarize a node’s local plans, where a node-plan specifies 
the possible solutions being developed by the plan, and the 
plan’s major steps, including the predictions about when 
the steps will be taken and their expected results. Nodes 
do not communicate about their detailed actions because 
this information is frequently changed and quickly out- 
dated. Where a node sends its node-plans depends on the 
meta-level organization that specifies the coordination 
roles of the nodes (as opposed to the domain-level organiza- 
tion that specifies their problem-solving roles). The meta- 
level organization might have nodes send their node-plans 
to some coordinator nodes that decide how they should 
work together, or it might have nodes simply broadcast 
the plan information to all nodes so that each can develop 
a complete model of the network. 

A node’s PGPlanner scans its current network model 
to identify when several nodes are working on goals that 
are pieces of some larger partial global goal. By com- 
bining information from individual plans, the PGPlanner 
builds PGPs to achieve the partial global goals. The PG- 

Planner forms a plan-activity-map from the separate 
plans by interleaving the plans’ major steps using the pre- 
dictions about when those steps will take place. Thus, 
the plan-activity-map represents concurrent node activi- 
ties. To improve coordination, the PGPlanner reorders 
the activities in the plan-activity-map using expectations 
about their costs, results, and utilities. Rather than ex- 
amining all possible orderings, the PGPlanner uses a hill- 
climbing procedure to cheaply find a better (not always 
optimal) ordering. From the reordered plan-activity-map, 
the PGPlanner modifies the local plans to pursue their 
major plan steps in a more coordinated fashion. The PG- 
Planner also builds a solution-construction-graph that 
represents the interactions between nodes. By examining 
the plan-activity-map, the PGPlanner identifies when and 
where partial results should be exchanged for the nodes to 
integrate them into a complete solution, and this informa- 
tion is represented in the solution-construction-graph. 

ictabillit y and 
esponsiveness 

PGPs represent only rough expectations about network co- 
ordination, and nodes should anticipate, or at least toler- 
ate, deviations from these expectations. If a node changes 
its local plans because it gets unexpected information, 
these changes can affect PGPs because nodes might aban- 
don one PGP in favor of another or might develop and 
transmit partial solutions at times significantly different 
from when originally planned. Partial global planning al- 
lows nodes to balance predictability and responsiveness so 
that they respond to significant temporal deviations with- 
out wasting resources to make minor improvements. This 
balance is specified as a tolerance representing negligible 
time. Nodes use this tolerance as they pursue and modify 
their plans to detect when deviations exceed this tolerance, 
and when this happens nodes respond to the deviations. In 
addition, nodes use this tolerance when they develop PGPs 
in order .to predict (plan 
PGPs are more robust. 

for) possible deviations, so their 

3.1 esponding to eviations. 
A node that has been cooperating with other nodes might 
suddenly begin pursuing another plan because of unex- 
pected information generated locally or received from else- 
where. If either the old plan or the new plan is part of 
some larger PGP that other nodes share, then those nodes 
must be informed of the change or else they will anticipate 
interactions that may never come about. Switching to an- 
other plan is thus a significant deviation of behavior that 
nodes should communicate about and respond to. 

Even when a node consistently pursues the same plan, 
however, its actual behavior may deviate from its predicted 
behavior: the predicted time needs of major plan steps 
are, after all, only approximations. Moreover, additional 
actions may be added to a plan when planned actions fail 
to form desired results. The deviations in when plan steps 
will be completed does not affect the overall goals of PGPs, 
but can change how nodes view their interactions. For ex- 
ample, to cooperatively form di-dc, node A might initially 
expect to generate dr-dz at time 6, while node B expects 
to generate da-d6 at time 12. The PGP indicates that 

Durfee and Lesser 67 



node A should send dl-dz to B, and it will arrive at time 8 
(due to communication delays) but will not be integrated 
with B’s result until after time 12. If node A has underes- 
timated the time it needs to form its result, and in fact it 
cannot get its result to node B until time 12, this change 
is negligible since it will not affect when node B will in- 
tegrate the results. Alternatively, if node A cannot form 
dl-dz until time 20, this change could significantly disrupt 
coordination: rather than waiting to receive and integrate 
dl-d2 at time 22, perhaps node B should send da-d6 to 
A so that A can integrate the results as soon as it forms 
dl-da at time 20. Finally, if node A cannot get dl-da to 
node B until time 13, is the difference of 1 time unit worth 
the effort of communicating about plans and recomputing 
PGPs, or can this minor deviation from expectations be 
ignored and the minor inefficiency tolerated? 

To avoid inefficiencies, nodes must be sensitive to plan 
deviations, but must not be overly sensitive or else they 
will communicate about negligible changes to their plans 
where, after all the effort to reformulate better PGPs, 
the nodes interact no better. Worse yet, when one node 
changes its plans, the modification to the PGP can trig- 
ger another node to change its plans, which modifies the 
PGP further and triggers changes in other nodes, and so 
on. Such a chain-reaction of minor changes to plans can 
be very expensive in overhead and have little or no benefit. 
Nodes may even oscillate between several different PGPs 
as these changes are propagated. Although the oscillation 
must eventually cease, l the nodes would work as a better 
team if they simply chose one of these PGPs and stuck to 
it. 

To dampen their reactions to deviations, nodes need 
to know when deviations are negligible and should be ig- 
nored. The PGPlanner considers a deviation between ac- 
tual and predicted’times to be negligible if that difference 
is no larger than the time-cushion [Durfee, 19881. The 
time-cushion is a user-specified parameter (although we 
eventually hope to have the PGPlanner compute it dy- 
namically) that represents negligible time. It is the time- 
cushion that balances predictability and responsiveness, 
since a small time-cushion forces nodes to respond more 
frequently to deviations while a large time-cushion allows 
them to continue working on their plans in essentially the 
way that they had expected to despite deviations. 

When one of its local plans deviates from expectations, 
a node must decide whether to respond to improve net- 
work coordination. However, the computation and com- 
munication costs in making this decision can be high. To 
completely identify the deviation’s consequences, the node 
cannot assume that its PGPs and models of other nodes 
are complete and up-to-date, so it must communicate with 
other nodes. Alternatively, the node could reduce costs by 
determining the deviation’s significance based on only its 
local view. It could determine how the deviation could 
affect the PGP(s) that the plan contributes to, and how 

‘Because the nodes are constructing partial solutions, they 
make progress over each oscillation so eventually nodes com- 
plete their plans despite oscillations. This assumes that ac- 
tivity is constructive; if nodes could undo each other’s actions, 
then the oscillations could go on indefinitely. For such domains, 
nodes would need additional mechanisms to recognize cyclic ac- 
tivity and terminate it. 

these effects might influence other participating nodes, and 
how these other nodes might as a result deviate in other 
PGPs, and so on. In effect, nodes would duplicate much of 
the same processing they would perform if they had simply 
assumed that the deviation was significant and propagated 
its effects. Rather than incurring this computational over- 
head in exploring all of the repercussions of a local devia- 
tion, our current implementation instead simply compares 
the deviation in the 1ocaI plan with the time-cushion, re- 
sulting in less informed but also less costly decisions about 
when to respond to temporal deviations. 

When a plan’s deviation from temporal expectations is 
greater than the time-cushion, the deviation is propagated 
to the corresponding node-plan, which is transmitted to 
relevant nodes so that nodes will have consistent views 
about the plan. Without consistent views, nodes might not 
only form inconsistent PGPs (which can occur even when 
they do share their views because of domain dynamics and 
communication delays), but they might never converge on 
consistent PGPs (as they will eventually if they share their 
views). When local plan deviations are less than the time- 
cushion, the node-plan is not changed, and so the model 
that the nodes have of this particular node remains the 
same. Similarly, the model this node has of itself with 
respect to the network remains unchanged. Thus, nodes 
maintain two possibly different views of themselves: a view 
of their internal problem solving (represented by their local 
plans), and a view of themselves as part of the network 
(represented by their models of themselves). How far these 
views can diverge depends on the time-cushion. With a 
time-cushion of 0, any deviation in local plans causes nodes 
to change their models so that they have as accurate a view 
of each other as possible. As the time-cushion grows, the 
possibilities for differences increase, so that nodes may be 
coordinating based on outdated views of their plans. 

3.2 Planning for Deviations. 
The PGPlanner also uses the time-cushion to build more 
robust PGPs. When building the solution-construction- 
graph, the PGPlanner uses the time-cushion to build 
more robust (less particular) expectations about where and 
when the partial results from nodes should be integrated. 
For example, the PGPlanner might determine that node 
A could integrate partial results at time t while node B 
could integrate the results at time t + i. If i is no greater 
than the time-cushion, then the PGPlanner considers the 
difference between when the nodes could integrate the re- 
sults to be negligible. The PGPlanner then chooses the 
least busy of these nodes -the node expected to pursue 
the fewest activities or complete the results for all of its 
PGPs soonest-to integrate the results, because this node 
is most likely to carry out the integration as planned. 

The PGPlanner also uses the time-cushion to build more 
robust PGPs when it decides to delay acting on one PGP 
to assist in another. For example, if a node expects to gen- 
erate a partial result long before the related partial results 
are available for integration, then the node may choose 
to delay working on the partial result and instead pur- 
sue other PGPs. However, it should return to the original 
PGP when there is just enough time to form the needed 
partial result. Because of the uncertainty of predictions, 
however, the node might add some “cushion” to the ex- 

68 Automated Reasoning 



overlap overlap - 

overlap 
I 

The four overlapping sensors detect signal data at dis- 
crete sensed times (the dots with associated times). 
Sensor-2 is faulty and not only generates signal data 
at the correct frequencies but also detects noisy sig- 
nals at spurious frequencies. 

Figure 1: Four Node Environment (A). 

petted time needs to form the result, just in case. The 
larger the time-cushion, the more robust and tolerant the 
PGP is to deviations. 

As a final example of how the PGPlanner plans 
for deviations from expected performance, the solution- 
construction-graph can anticipate the possibility of node 
failures by building redundancy into the expected so- 
lution integration. A user-specified parameter called 
the solution-construction-redundancy indicates how 
many nodes should redundantly integrate results. This re- 
dundancy improves reliability by insuring that the network 
will generate overall solutions even if an integrating node 
fails because some other node will also do the integration. 

Building more robust PGPs helps the nodes work as an 
effective team despite domain dynamics. Because these 
PGPs are applicable in a wider range of situations, the 
nodes need not modify their PGPs as often, and this re- 
duces the computation and communication overhead of 
partial global planning. However, more robust PGPs often 
degrade network performance because they let nodes coor- 
dinate less crisply, allowing them to be less precise about 
when they interact so that some nodes may sit idle, waiting 
for others. Building in redundancy also may cause nodes 
to unnecessarily duplicate each other’s efforts. The PG- 
Planner must therefore balance the costs and benefits of 
building robust PGPs, because making overly predictable 
PGPs degrades the network’s ability to advantageously re- 
spond to specific situations. 

This section concentrates on experiments showing how 
different balances between predictability and responsive- 

over1 

- d: 

The four overlapping sensors detect signal data at dis- 
crete sensed times (the dots with associated times). 
Two vehicles move in parallel from the lower left to 
the upper right corners. 

Figure 2: Four Node Environment (B). 

ness affect network performance in a few situations. These 
experiments employ environment A (Figure 1) and envi- 
ronment B (Figure 2), which involve four-node networks 
where node i is connected to sensor i. Environment A 
tests how well the PGPlanner distinguishes between more 
or less globally important plans (node 1 has one plan that 
is more globally important than another), how it allows 
nodes to provide predictive information (node 1 should 
send the short track ds-dg to node 2 to help it disambiguate 
its data), and how it avoids redundant activity in overlap- 
ping areas. In environment B, two vehicles pass among the 
nodes and the network should find both solutions. Envi- 
ronment B tests how well the PGPlanner allows different 
subsets of nodes to work on different PGPs simultaneously 
and how it allows nodes to avoid redundancy despite the 
high degree of data overlap. In these simulated networks, 
a time-unit corresponds to the time needed to execute 1 
knowledge source (KS). It takes 2 time-units for a message 
to get from one node to another. 

Our experiments use two different meta-level organiza- 
tions. In the broadcast meta-level organization, each node 
broadcasts its node-plans and develops PGPs based on 
local artd received node-plans. When centraked, a sin- 
gle node (the node with the least data) is responsible for 
forming and distributing PGPs. In environment A, node 
4 is the coordinator (nodes l-3 send their node-plans to 4 
which forms PGPs and sends them back to l-3) while in 
environment B, node 1 is the coordinator. 

For the four combinations of environments and meta- 
level organizations, we run three experiments: time- 
cushions of 0, 1, or 2 time-units. For comparison, we also 
run experiments with only local planning (no coordination 
though PGPs) and with neither local nor partial global 
planning. We take four measurements in these experiments 

Durfee and Lesser 69 



Table 1: Experiment Summary. 

En Org TC ST RT H-r M-r T-r Store 
El A no - 171 465 44 - 44 3593 
E2 A lo - 81 76 17 - 17 1688 
E3 A bc 0 43 76 5 63 68 1280 
E4 A bc 1 46 64 5 54 59 1352 
E5 A bc 2 47 57 4 42 46 1357 
E6 A cn 0 45 59 6 65 71 1306 
E? A cn 1 48 52 4 48 52 1331 
E8 A cn 2 49 50 4 35 39 1347 
E9 B no - 84/44 221 11’7 - 117 3256 
El0 B lo - 30/44 42 24 - 24 1173 
El1 B bc 0 25/34 45 6 95 101 1015 
El2 B bc 1 25134 37 5 54 59 1006 
El3 B bc 2 26/39 39 7 63 70 1093 
El4 B cn 0 32/41 42 8 85 93 1057 
El5 B cn 1 26/35 32 7 49 56 985 
El6 B cn 2 32147 39 4 41 45 1136 

Abbreviations 
En: The problem-solving environment 
Org: The meta-level organization used, if any: 

:: 
= no planning, lo = local planning only 
= broadcast, cn = centralized 

TC: The time-cushion used (if any) 
ST: The simulated time to find solution(s); 

if more than one, earliest time for each 
is given (di-dk/dl-ds). 

RT: The actual experimental runtime (in minutes). 
H-r: Number of hypotheses communicated. 
M-r: Number of meta-level messages (node-plans 

and PGPs) communicated. 
T-r: Total number of messages communicated. 
Store: The total number of structures stored. 

[Durfee, 19881. First, we measure the simulated runtime 
of the network. Since each time-unit corresponds to ex- 
ecuting a KS, the simulated runtime corresponds to the 
number of KSs run by the nodes, so a lower simulated run- 
time means that the nodes made better, more coordinated 
decisions about how to solve network problems. Second, 
we measure the actual runtime of the simulation. Given 
the current implementation of the KSs and the planning 
mechanisms, this measure indicates how much computa- 
tion was performed in the network on both problem solv- 
ing and planning (the time spent context-switching to sim- 
ulate the network is negligible) to understand whether the 
computation overhead of planning is worthwhile. Third, 
we measure communication of hypotheses and of plan in- 
formation to roughly determine the communication needs 
of the network. Fourth, we measure the number of data 
structures generated, including hypotheses, goals, plans, 
and PGPs to roughly estimate the storage overhead of the 
planning mechanisms. 

The experimental results are summarized in Table 1. 
We begin with environment A. First, note that without 
any planning at all, the simulated and actual runtimes 
are very high, as are the number of hypotheses commu- 
nicated and the amount of storage (El). Introducing local 
planning substantially reduces all four measurements (E2). 

Partial global planning (E3-E8) makes further substantial 
reductions to simulated runtime because the nodes’ con- 
trol decisions are more coordinated. Because computing 
PGPs requires computation, however, the overhead of par- 
tial global planning means that savings in actual runtime 
are less substantial. Moreover, partial global planning re- 
quires significant communication about plans and PGPs, 
so overall communication overhead rises despite the reduc- 
tion in hypotheses exchanged. Whether the improvements 
to coordination are worth the communication depends on 
the relative cost of communication. Finally, partial global 
planning reduces storage needs despite building more plan 
information because fewer KSs are executed, resulting in 
fewer hypotheses and goals. 

Looking more closely at the effects of the time-cushion, 
we begin with environment A using a broadcast organi- 
zation (E3-E5). As the time-cushion increases, several 
trends become apparent. First, the quality of coordina- 
tion decreases because nodes build PGPs that tolerate less 
crisp interactions and because they do not adapt the PGPs 
to changing circumstances as often so that they continue 
with PGPs that may not be the best they could form. Sec- 
ond, the computation overhead is substantially reduced, 
since nodes do not recalculate how they should coordi- 
nate as often. Third, the communication overhead is also 
significantly reduced, since nodes update each other (by 
transmitting node-plans) less often. Fourth, the storage 
overhead slightly increases due to the extra problem solv- 
ing caused by less precise coordination: the extra storage 
is attributable to more hypotheses and goals, while the co- 
ordination storage is essentially the same (since updated 
node-plans replace earlier versions). The same trends are 
seen with the centralized organization (E6-E8). 

In environment B, similar differences are seen between 
having no planning (E9), h aving only local planning (E lo), 
and having partial global planning (El l-E16). However, 
when the time-cushion is varied, different phenomena are 
encountered. In the broadcast organization, the best time- 
cushion is 1 (El2). A 1 ower time-cushion (Ell) does not 
improve coordination (solution time) while it does intro- 
duce substantially more computation and communication 
overhead (because nodes unnecessarily update their node- 
plans and PGPs more often). Meanwhile, a higher time- 
cushion (E13) degrades coordination because nodes do not 
adequately adapt to incorrect predictions about when they 
will exchange results. By the time nodes do respond to in- 
appropriate PGPs, they have already wasted time on un- 
necessary actions (either duplicating each other’s results 
or forming results for inferior plans while waiting for re- 
sults from others) so network computation is increased due 
to this extra work. Also, when a node does finally react 
to deviations in its local plans and updates its node-plans 
and PGPs, the exchange of the changed node-plans causes 
other nodes to change their plans, and these cause other 
nodes to further change, and so on. This chain-reaction in- 
creases the meta-level communication so that nodes com- 
municate more despite the higher time-cushion (comparing 
El3 with E12).2 

2Most of this extra communication activity occurs near the 
end of network problem solving when some nodes have finished 
their local responsibilities for important PGPs and begin pur- 
suing and communicating about less highly-rated plans. 

70 Automated Reasoning 



With a centralized organization, a lower time-cushion 
actually degrades coordination (E14), because nodes are 
too responsive. Specifically, the more constant stream of 
updated plan information received by node 1 (the coor- 
dinating node) causes it to change the network PGPs and 
nodes oscillate between coordinating one way and then an- 
other. For example, the expectation about whether node 
3 or node 4 will integrate d~-d~ and dh-d& changes several 
times, where sticking to either decision would have resulted 
in better performance. A higher time-cushion (E16) also 
degrades coordination, but this time because nodes are not 
responsive enough. In the broadcast organization (E13), 
nodes build their own PGPs and this introduces inconsis- 
tencies that can trigger a chain-reaction of updated plans 
whenever one node changes its plans. Such chain-reactions 
do not occur with a centralized organization, because only 
one node (in this case node 1) forms PGPs for the net- 
work: it determines how all of the nodes should respond 
to a changed plan and imposes this view on the nodes 
so that they cannot respond for themselves. As a conse- 
quence, the nodes must communicate less (comparing El6 
with E15, as opposed to El3 compared with E12). In 
turn, the PGPs formed by node 1 are modified much less 
frequently, so the nodes pursue PGPs based on outdated 
information and solution time (relative to E15) suffers as 
a result. Because the network invokes more KSs, overall 
network computation increases when compared to El5 de- 
spite the lower partial global planning overhead. Whether 
the savings in communication warrant this choice of time- 
cushion over the time-cushion of 1 (E15) depends on the 
available network resources. 

ately balancing the benefits of better coordination against 
the costs of achieving that coordination. 

More generally, by explicitly representing planned ac- 
tions and interactions, and by modeling themselves both 
from a local and more global standpoint, nodes can reason 
about how responses to dynamic situations can affect pre- 
dicted network coordination. Partial global plans contain 
substantial information that can be used in making more 
complex decisions about different types of deviations and 
their significance. As nodes become capable of perform- 
ing more complex reasoning about a variety of types of 
deviations, however, the overhead of deciding whether to 
respond to deviations could outweigh the costs of simply 
responding to all deviations. Meta-level control is needed 
to determine when various reasoning mechanisms are likely 
to be cost effective, and our future research will explore 
such control of control mechanisms. Our preliminary re- 
sults show the importance of reasoning about deviations 
to balance predictability and responsiveness, and based 
on this experience and the possibilities that partial global 
planning provides us, we expect our future research to lead 
to even more sophisticated techniques for nodes to reason 
about the more global ramifications of their local responses 
in dynamic domains. 

[Davis and Smith, 19831 Randall Davis and Reid G. Smith. 
Negotiation as a metaphor for distributed problem 
solving. Artificial Intelligence, 20:63-109, 1983. 

[Durfee, 19881 Ed mund H. Durfee. Coordination of 
Distributed Problem Solvers. Kluwer Academic 

5 Conclusions 
Our experimental results show that partial global planning 
improves network coordination, but it also introduces over- 
head in computation, communication, and storage. Partial 
global planning also allows us to strike different balances 
between predictability and responsiveness in the network, 
but as we have seen the balance chosen results in both ben- 
efits and costs. By increasing responsiveness by lowering 
the network’s view of “negligible” time, we were sometimes 
able to improve coordination so that the network works 
as the most coherent team possible. This comes at the 
cost, however, of more communication and computation 
as nodes must reformulate their PGPs. In addition, some- 
times nodes can be too responsive, so that they jump from 
one view of coordination to another and end up working 
less effectively. 

We have observed that there is no correct balance be- 
tween responsiveness and predictability that is indepen- 
dent of the problem situation. Consequently, planning 
mechanisms for coordinating agents in dynamic domains 
must have the flexibility to strike different balances, and 
our partial global planning approach has such flexibility. 
By allowing nodes to plan their activities incrementally, 
the approach permits sufficient predictions about node ac- 
tivities without stifling a node’s ability to respond to un- 
expected events. By reasoning about the more gross as- 
pects of node behavior and by flexibly ignoring deviations 
in plans, the partial global planning approach coordinates 
nodes without incurring excessive overhead by appropri- 

Publishers, 1988. 
[Durfee and Lesser, 19861 Edmund H. Durfee and Victor R. 

Lesser. Incremental planning to control a 
blackboard-based problem solver. In Proceedings of 
the Fifth National Conference on Artificial 
Intelligence, pages 58-64, August 1986. 

[Durfee and Lesser, 19871 Edmund H. Durfee and Victor R. 
Lesser. Using partial global plans to coordinate 
distributed problem solvers. In Proceedings of the 
Tenth International Joint Conference on Artificial 
Intelligence, pages 875-883, August 1987. 

[Durfee and Lesser, 1988a] Edmund H. Durfee and Victor R. 
Lesser. Incremental planning to control a 
time-constrained, blackboard-based problem solver. 
IEEE Transactions on Aerospace and Electronics 
Systems, September 1988. 

[Durfee and Lesser, 1988b] Edmund H. Durfee and Victor R. 
Lesser. Negotiation through partial global planning. 
In Proceedings of the 1988 Distributed AI Workshop, 
May 1988. 

[Lesser and Corkill, 19831 Victor R. Lesser and Daniel D. 
Corkill. The distributed vehicle monitoring testbed: 
A tool for investigating distributed problem solving 
networks. AI Magazine, 4(3):15-33, Fall 1983. 

Durfee and Lesser 71 


