
Intelligent Real-Time Monitoring*

T. Laffey, S. Weitzenkamp, J. Read, S. Kao, J. Schmidt

Lockheed Artificial Intelligence Center
2710 Sand Hill Road

Menlo Park, CA 94025
(4X)-354-5208

Abstract

This paper describes a multi-tasking architecture
for performing real-time monitoring and analy-
sis using knowledge-based problem solving tech-
niques. To handle asynchronous inputs and per-
form in real-time, the system consists of three
or more distributed processes which run concur-
rently and communicate via a message passing
scheme. The Data Management Process acquires,
compresses, and routes the incoming sensor data
to other processes. The Inference Process consists
of a high performance inference engine that per-
forms a real-time analysis on the state and health
of the physical system. The I/O Process receives
sensor data from the Data Management Process
and status messages and recommendations from
the Inference Process, updates its graphical dis-
plays in real time, and acts as the interface to
the console operator. The distributed architec-
ture has been interfaced to an actual spacecraft
(NASA’s Bubble Space Telescope) and is able
to process the incoming telemetry in “real-time”
(i.e., several hundred data changes per second).

As the application of knowledge-based systems evolves
from an art to an engineering discipline, we can expect
more challenging applications to be addressed. Some of the
most challenging and interesting environments are found
in real-time domains.

Before going any further we should define precisely what
we mean by the term real-time. O’Reilly and Cromarty [2]
give a detailed discussion on the meaning of real-time and
offer a formal definition: “There is a strict time limit by
which the system must have produced a response, regard-
less of the algorithm employed”.

We find it useful to categorize tasks of real-time systems
into hard and soft real-time as discussed by Stankovic and
Zhao [3]. We define a hard real-time task as one for which
the correctness of the system depends not only on the re-
sult of computation, but also on the time at which the re-
sults are produced. Furthermore, if these strict timing con-
straints are not met, there may potentially be disastrous
consequences. For such tasks, it is necessary to guarantee
that timing constraints are met. In contrast, while soft
real-time tasks have timing constraints, there may still be

*This work was supported under Lockheed Independent Re-
search and Development funds

some value for completing the task after its deadline, and
disastrous consequences do not result if these tasks miss
their deadline. Many applications have both hard and soft
real-time requirements. To meet all such deadlines in a sys-
tem requires sophisticated scheduling algorithms and care-
ful implementation. We will not discuss this topic since it
is beyond the scope of this paper.

A knowledge-based system operating in a real-time sit-
uation (e.g., satellite telemetry monitoring) will typically
need to respond to a changing task environment involving
an asynchronous flow of events and dynamically chang-
ing requirements with limitations on time, hardware, and
other resources. A flexible software architecture is required
to provide the necessary reasoning on rapidly changing
data within strict time requirements while accommodating
temporal reasoning, non-monotonicity, interrupt handling,
and methods for handling noisy input data. Laffey et. al.
[l] give a detailed discussion on the state-of-the-art in us-
ing knowledge-based techniques for real-time problems.

eal-Time

Lockheed Missiles and Space Company (LMSC) is the
prime contractor for the Support Systems Module (SSM)
and Integration Systems Engineering for NASA’s Edwin
P. Hubble Space Telescope (HST). LMSC has assembled
the basic spacecraft structure and integrated the optics and
scientific instruments made by contractors from around the
world. Additionally, LMSC is the HST Mission Operations
Contractor, responsible for the safe and efficient operations
of the vehicle.

The telescope, whose electronic sensors could detect a
flashlight beam directed at the Earth from the moon, will
orbit three hundred miles above the earth’s surface after
its launch in 1989. The HST will let astronomers peer,
unimpeded by the atmosphere, at the edges of the known
universe, 14 billion light years away (compared with two
billion light years for the best earth-based telescopes).

The HST is a complex, state-of-the-art satellite, a pre-
cursor to satellites of the future that will have sensitive
missions with precise guidance requirements. With the in-
creasing complexity of the satellites being sent into orbit,
it has become clear that a substantial amount of sophisti-
cated expertise is needed at the various ground stations.

Like other existing satellites, the HST has not been de-
signed to to be an autonomous spacecraft. Its engineering
telemetry will be monitored for vehicle health and safety
24 hours a day by three shifts of operators. The space-
craft operations will take place in the ST Operations Con-

72 Automated Reasoning

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

trol Center (STOCC) at the NASA/Goddard Space Flight
Center in Greenbelt, Maryland.

Six operator workstations (four to monitor the major
subsystems and two for command and supervision) will be
used to monitor the incoming telemetry data. Each work-
station consists of two color)CRTs which display numeric
values, updated in real time.

On one CRT the operator can bring up a page of
formatted telemetry data (where a page consists of
about 50 different monitor mnemonics and its asso-
ciated value) or a page consisting of a chronological
history of events that have occurred (e.g., a monitor
out of limits)

The other CRT is a slave to any other console and
can be used to display what is being shown at another
workstation

For the HST there are close to 5,000 different telemetry
monitors in 11 different formats available for interpreta-
tion. In normal operating mode, each monitor is sampled
at least once every two minutes, with some being sam-
pled many times during that interval. The telemetry for-
mat may be changed manually by ground operations or
autonomously by the HST under certain situations. The
telemetry data is subject to a variety of problems including
loss of signal, noise in the transmission channel, or miscon-
figuration of the system.

As in any large system, the job of the console opera-
tor is difficult because of the complexity of the HST and
because it is hard to determine the exact state of the satel-
lite at any time due to the massive amounts of data arriv-
ing at such short intervals and the ever present possibility
of non-nominal behavior. A system that would make the
monitoring task easier might be one with a better, more
visually oriented interface for the operator to monitor; one
with some preprocessing of the data to screen out less im-
portant information, and one that knew what trends and
combinations of data meant non-nominal spacecraft be-
havior. This paper describes the development of such a
system.

uate
Real-time domains present complex, dynamic problems be-
cause of the occurrence of asynchronous events and de-
manding timing constraints. A real-time expert system
must satisfy demands that do not exist in conventional
domains. Current shells do not generally offer support for
real-time applications for the following reasons:

1. The shells are not fast enough

2. The shells have few or no capabilities for temporal
reasoning

3. The shells are difficult to integrate in an ejSFicient man-
ner with conventional software

4. The shells have few or no facilities for focusing atten-
tion on important events

5. The shells offer no integration with a real-time clock

6. The shells have
events/inputs

no facilities for handling asynchronous

7.

8.

9.

10.

11.

12.

The shells have no way of handling software/hardware
interrupts

The shells cannot efficiently take inputs from external
stimuli other than a human

The shells cannot guarantee response times

The shells are not built to run continuously

The shells lack features to support multi-tasking (e.g.,
signals and semaphores)

Methods do not exist for verifying and validating the
shells and the knowledge bases they execute

In the rest of this paper, we describe a monitoring system
called L *STAR (for Lockheed Satellite Telemetry Analysis
in Real Time). It is being built to aid the HST console
operator in performing the real-time monitoring, checkout,
and analysis of telemetry data from the HST.

L *STAR consists of a set of distributed processes which are
used in performing real-time analysis of rapidly changing
satellite telemetry data. Each of the processes operates
independently and communicates information via message
passing. The different processes are shown in Figure 1:

INFERENCE PROCESS - used to analyze the dy-
namic data by means of frames and time-triggered,
forward-chaining, and backward chaining rules

DATA MANAGEMENT PROCESS - used to
gather, scale, compress, and route the incoming
telemetry data to the appropriate processes

BP I/0 PROCESS - used to provide an operator in-
terface (consisting of a hierarchy of schematics with
real-time plots)

By having these three independent processes, we can
exploit the inherent asynchrony in the overall system to
maximize throughput and response. We further gain the
advantage of being able to use multiple CPUs if perfor-
mance requirements call for it. For a typical application,
many data inference and I/O modules may exist and be
distributed across different processors. For the HST appli-
cation, analysis and display modules exist for the electrical
power system, pointing control system, and others. The
various modules pass data/messages to one another over
Ethernet.

In the current implementation, there is only a single
layer of communicating processes. In the future, we may
wish to have a series of ranks or layers, organizing the pro
cesses into a lattice of parallel processes.

In the paragraphs which follow, we describe a typical
scenario: At initialization, the various Inference Processes
examine their knowledge bases and send a set of messages
to the Data Management Process indicating which teleme-
try monitors they need to perform their analysis. They
also send messages indicating other information the Data
Management Process needs to know about each telemetry
monitor such as:

6 to which datasets it belongs,

B how often to send it,

Lafiy, Weitzenlamp, Rad, Kao and Schmidt 73

INITIALIZATION , UPDATES ON FILTERS

I I

QUERIES

1

FILTERED DATA 1 MESSAGES 1

UNFILTERED DATA

Figure 1: L*STAR Process Structure

whether it should be smoothed,

aperture setting (the minimum amount it must change
before it is reported),

who to send it to, and

alternate names.

Incoming telemetry data streams are captured from the
flight hardware and after initial preprocessing of the raw
data by ground computers are fed to the Data Management
Process. After some scaling and data compression, it sends
the data of interest to the Inference and I/O processes.
The Inference Processes infer, using their knowledge base,
if the data corresponds to nominal vehicle behavior. These
messages are then sent to the I/O Process. The I/O Pro-
cess consists of interactive displays consisting of schematics
from the electrical power system, pointing control system,
and the flight software with special windows for interaction
with the Inference Process.

In the sections which follow we describe each of the dif-
ferent types of processes in detail.

4.1 Data Management Process
The Data Management Process (DMP) is used to acquire,
convert, and compress the incoming telemetry data, and
selectively send it to the other modules. It also calculates
new measurands from the original telemetry. At initializa-
tion, the DMP receives messages from the Inference and
I/O processes indicating which datasets they are interested
in. As events unfold during the analysis, the Inference Pro-
cess may command that a new dataset be sent to it or to
an I/O Process. An operator may also manually intervene

and request a change in datasets. As the system is run-
ning, an Inference Process can send a message to the DMP
and change characteristics of the data it is analyzing.

For the Space Telescope application, there is a single
Data Management Process sending data to multiple I/O
and Inference Processes on different processors. All data
sent is tagged with the spacecraft’s time.

4.2 Inference Process
The Inference Process analyzes the dynamic data by means
of frames, rules, and statistical procedures. Rules and pro-
cedures can be tested/invoked in three different manners:

1. by a test clock at fixed time intervals (temporalIy-
driven),

2. when specified data changes (data-driven), and

3. when needed to achieve a goal (goal-driven).

The Inference Process performs mission monitoring,
anomaly detection, anomaly resolution, and command val-
idation. We now show an actual L*STAR rule used in the
HST application to check the status of the RGA System:

RULE : "RGA not in high mode”
CONTEXT : (Maneuver 3;
PRIORITY : 100;

IF

and
and
and
THEN

(decreasingc [value\monitor\QDSTDCPI ,
10 seconds) >

([value\monitor\QDSTDCP] > 0.000043)
([value\monitor\QDFHILO] = I)
([status\system\RGA] <> abnormal)
[status\system\RGAl : = abnormal ;
send(I0, ALERT, “RGA”, “RGA not in high

mode”) ;

The SEND function in the second THEN clause results
in a message being sent to the I/O Process which indicates
there is an alert for object RGA.

Note that the first IF clause checks if the trend of mon-
itor QDSTDCP is decreasing over the last 10 seconds. All
data in L*STAR, either input from the DMP or inferred
from the Inference Process, is archived and time-tagged
into a ring buffer. The ring buffer consists of a compressed
format which keeps track of the last time the datum was
updated and each time it changed over a user-specified
time period. From the compressed format, the entire sig-
nal can be reconstructed, if necessary.

Maintaining a history of selected sensor data allows
LVTAR to reason about both historical and current data.
A number of primitive functions have been written to use
this buffered data to calculate trends, correlations, aver-
age values, minimums, maximums and standard deviations
over varying time periods. Functions also exist to compare
current data to historic data (e.g., “if the current value is
greater than the value five minutes ago”).

It should be noted that not all the rules are continually
checked. Some of the rules are triggered by the test clock
at regular time intervals. Other rules are checked only
when data changes that is used in one of its IF clauses,
or when they are needed to achieve a goal. This allows a

74 Automated Reasoning

single Inference Process to analyze several hundred data
changes each second.

Below, we show the actual L*STAR syntax of such a
temporally driven rule (taken from the electrical power sys-
tem for the HST). The TEST INTER.VBL slot specifies
that this rule should be tested every 10 seconds.

thus saving time. Datasets provide a similar mechanism for
speedup. The inference engine does not necessarily need
to analyze all the incoming sensor data. Only when some
“significant” event has been detected might I;*SZ’.‘.R look
at other input data or change the characteristics (e.g., rate)
of the data it is currently using. This important capability
is shown in the following L*STAR rule:

RULE : “Recharge ratio warning”
CONTEXT : (eclipse 1;
PRIORITY : 1000;
TEST INTERVAL : IO seconds;

IF ([value\sensor\csfrratll < 0)
THEN [recharge-ratio\battery\bll := failed;

send(IO, INFO, “Battery I recharge ratio
has failed lower limit”) ;

RULE : “Change to Science mode” ;
CONTEXT : (Inertial-Hold,

FGS-Acq,
FHST-Acq 3 ;

PRIORITY : 100;

IF ([value\sensor\QSITAKE] = I)
THEN [context\control\ie] := Science;

send(DMP, DATASET-CHANGE, “Science”) ;

Note that the SEND function in the conclusion of the rule
is used to send an INFO message to the I/O Process.

In order to achieve maximum efficiency, rules are com-
piled into a efficient intermediate postfix format (and then
optionally into C) which does not require any pattern
matching to occur while the system is running. All vari-
ables used in rules are resolved at compile time by a prepro-
cessor which generate multiple rules from a single rule de-
pending on how many objects the variable binds to. Mul-
tiple variables in a single rule can result in a combinatoric
increase in the number of rules which are generated. Al-
though this seems theoretically poor, it works quite well
in practice. The restriction this puts on the developer,
is that any object created during runtime cannot be ref-
erenced from a rule with a variable We have found that
for real-time monitoring applications, we have not needed
this capability. Such may not be the case in a planning
or scheduling application where many objects are dynam-
ically created and deleted.

Performance has been further increased by allowing the
developer to control how much and which information is
collected via selective event recording. During runtime,
L*STAR has the capability for rules to dynamically turn
on/off event recordings such as data assertions and retrac-
tions, rule firings, and procedure calls.

Finally, a compact run-time version of the Inference Pro-
cess was developed which does not carry all the “excess
baggage” of the development version. Many of the check-
ing and debugging aids used during development are ex-
cluded resulting in increased performance. (Although this
practice is certainly not novel, it has seldom been followed
by AI systems). The overall result of all these speedup
techniques is a system which runs close to 1,000 rules per
second on a VAX 8650.

L*STAR has the ability to partition the ruleset using
a context mechanism and to focus its resources on speci-
fied sets of incoming sensor data. Both these abilities free
the Inference Process from examining extraneous rules and
data that are not relevant to its current task. The CON-
TEXT mechanism increases the speed of the Inference
Process by partitioning the ruleset into smaller sets which
are valid only in certain contexts. This way, the Inference
Process does not always have to examine the entire ruleset,

This rule would only be examined if the current context
were one of the three listed (i.e., InertialHold, FGS_Acq, or
FHST4cq). If this rule is executed, the context is changed
via the first THEN clause and the inference engine would
look at only rules with SCIENCE as their context. Addi-
tionally, a message would be sent to the Data Management
Process to command it to change the dataset to a prede-
fined set containing only science monitors.

4.3 I/ recess
The I/O Process displays the information pertinent to the
monitoring task. The objective is to provide visual feed-
back to focus the attention of the console operator on pos-
sible problems and areas of interest for the Space Tele-
scope. The current version of this interface consists of
a large number of drawings and schematics of the HST
and its related telemetry monitors. There is a hierarchI-
cal tree of displays which the user may traverse using a
mouse. Each node in the tree corresponds to a system or
subsystem of the HST. All nodes contain a schematic of
their system/subsystem and an inference process interac-
tion window. The schematic can contain either permanent
graphs (i.e. part of the schematic itself) or pop-up graphs
brought up by mousing pickable items.

The Inference Process interaction window consists of
display windows for messages (i.e., information, alert,
warning, cancel-alert, cancel-warning) and various
message queue interaction icons. A typical scenario of in-
teraction between an Inference Process and an I/O Process
might involve an ALERT message being sent from the In-
ference Process to the I/O Process. The I/O Process would
then put this message in a priority queue for pending alert
messages and inform the operator that a new message has
been received. The operator can then display the message
by mousing the ALERT icon. The GOT0 option allows
the operator to automatically be sent to the correct display
and bring up and highlight the subsystem and any graph(s)
pertaining to the ALERT message. After the operator has
acted upon the new message it is removed from the pend-
ing queue and put in the acknowledged queue where it
can be recalled if needed. All messages are time-tagged

La&y, Weitzenkamp, Read, Kao and Schmidt 75

and facilities exist which allow the operator to scroll back
through the messages as desired.

5 Discussion
The actual utility of the L*STAR architecture has been
shown through its use since March, 1988 at the HST Test
Control Center in Sunnyvale, California. It is being used
in the monitoring, checkout, and analysis of telemetry data
from the Pointing Control System and Flight Software of
the Space Telescope. The actual flow of data from the
spacecraft into L%TAR is shown in Figure 2. The sys-
tem runs on a network of DEC VAX computers connected
via ethernet, with the I/O Process residing on microVAX
II/GPX color workstation. The monitoring and checkout
system comfortably handles the ,200 data changes which
OCCUT each second. A larger version of the system is cur-
rently being developed for the Space Telescope Operations
Control Center at NASA Goddard in Greenbelt, Maryland.

The current system can be described as a soft real-time
system. It runs under the “illusion” of being fast enough to
handle any combination of incoming data values. However,
we cannot currently guarantee that it could handle a series
of catastrophic events. Many of the difficult issues such
as guaranteed response times and what to do if a system
cannot meet its timing constraints are targets of future
research.

6 Acknowledgements
The authors wish to acknowledge the encouragement and
support received from Larry Dunham, Joe Rickers, and
Wally Whittier.

efesences
T.J. Laffey, P.A. Cox, J.Y. Read, S.M. Kao, and J.L.
Schmidt. Real-time knowledge-based systems. The AI
Magazine, 9(1):27-45, Spring 1988.

C. A. O’Reilly and A. S. Cromarty. ‘Fast’ is not ‘Real-
time’ in designing effective real-time AI systems. In
Proceedings of SPIE International Society of Optical
Engineering, pages 249-257, 1985.

J.A. Stankovic and W. Zhao. On real-time transac-
tions. SIGMOD RECORD, 1’7(1):4-18, March 1988.

Bit
-

Stream

b-
VAX 11/785

o Callbratlon
0 Convewon

I
I

I

Engineermg Umts
(sent at 1 sec. mrervals)

Inference Proces
o Data Manager
0 I/O Process

Figure 2: L*STAR Implementation at Test Control Center

76 Automated Reasoning

