
Intelligent Real-Time Monitoring* 

T. Laffey, S. Weitzenkamp, J. Read, S. Kao, J. Schmidt 

Lockheed Artificial Intelligence Center 
2710 Sand Hill Road 

Menlo Park, CA 94025 
(4X)-354-5208 

Abstract 

This paper describes a multi-tasking architecture 
for performing real-time monitoring and analy- 
sis using knowledge-based problem solving tech- 
niques. To handle asynchronous inputs and per- 
form in real-time, the system consists of three 
or more distributed processes which run concur- 
rently and communicate via a message passing 
scheme. The Data Management Process acquires, 
compresses, and routes the incoming sensor data 
to other processes. The Inference Process consists 
of a high performance inference engine that per- 
forms a real-time analysis on the state and health 
of the physical system. The I/O Process receives 
sensor data from the Data Management Process 
and status messages and recommendations from 
the Inference Process, updates its graphical dis- 
plays in real time, and acts as the interface to 
the console operator. The distributed architec- 
ture has been interfaced to an actual spacecraft 
(NASA’s Bubble Space Telescope) and is able 
to process the incoming telemetry in “real-time” 
(i.e., several hundred data changes per second). 

As the application of knowledge-based systems evolves 
from an art to an engineering discipline, we can expect 
more challenging applications to be addressed. Some of the 
most challenging and interesting environments are found 
in real-time domains. 

Before going any further we should define precisely what 
we mean by the term real-time. O’Reilly and Cromarty [2] 
give a detailed discussion on the meaning of real-time and 
offer a formal definition: “There is a strict time limit by 
which the system must have produced a response, regard- 
less of the algorithm employed”. 

We find it useful to categorize tasks of real-time systems 
into hard and soft real-time as discussed by Stankovic and 
Zhao [3]. We define a hard real-time task as one for which 
the correctness of the system depends not only on the re- 
sult of computation, but also on the time at which the re- 
sults are produced. Furthermore, if these strict timing con- 
straints are not met, there may potentially be disastrous 
consequences. For such tasks, it is necessary to guarantee 
that timing constraints are met. In contrast, while soft 
real-time tasks have timing constraints, there may still be 
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some value for completing the task after its deadline, and 
disastrous consequences do not result if these tasks miss 
their deadline. Many applications have both hard and soft 
real-time requirements. To meet all such deadlines in a sys- 
tem requires sophisticated scheduling algorithms and care- 
ful implementation. We will not discuss this topic since it 
is beyond the scope of this paper. 

A knowledge-based system operating in a real-time sit- 
uation (e.g., satellite telemetry monitoring) will typically 
need to respond to a changing task environment involving 
an asynchronous flow of events and dynamically chang- 
ing requirements with limitations on time, hardware, and 
other resources. A flexible software architecture is required 
to provide the necessary reasoning on rapidly changing 
data within strict time requirements while accommodating 
temporal reasoning, non-monotonicity, interrupt handling, 
and methods for handling noisy input data. Laffey et. al. 
[l] give a detailed discussion on the state-of-the-art in us- 
ing knowledge-based techniques for real-time problems. 

eal-Time 

Lockheed Missiles and Space Company (LMSC) is the 
prime contractor for the Support Systems Module (SSM) 
and Integration Systems Engineering for NASA’s Edwin 
P. Hubble Space Telescope (HST). LMSC has assembled 
the basic spacecraft structure and integrated the optics and 
scientific instruments made by contractors from around the 
world. Additionally, LMSC is the HST Mission Operations 
Contractor, responsible for the safe and efficient operations 
of the vehicle. 

The telescope, whose electronic sensors could detect a 
flashlight beam directed at the Earth from the moon, will 
orbit three hundred miles above the earth’s surface after 
its launch in 1989. The HST will let astronomers peer, 
unimpeded by the atmosphere, at the edges of the known 
universe, 14 billion light years away (compared with two 
billion light years for the best earth-based telescopes). 

The HST is a complex, state-of-the-art satellite, a pre- 
cursor to satellites of the future that will have sensitive 
missions with precise guidance requirements. With the in- 
creasing complexity of the satellites being sent into orbit, 
it has become clear that a substantial amount of sophisti- 
cated expertise is needed at the various ground stations. 

Like other existing satellites, the HST has not been de- 
signed to to be an autonomous spacecraft. Its engineering 
telemetry will be monitored for vehicle health and safety 
24 hours a day by three shifts of operators. The space- 
craft operations will take place in the ST Operations Con- 
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trol Center (STOCC) at the NASA/Goddard Space Flight 
Center in Greenbelt, Maryland. 

Six operator workstations (four to monitor the major 
subsystems and two for command and supervision) will be 
used to monitor the incoming telemetry data. Each work- 
station consists of two color)CRTs which display numeric 
values, updated in real time. 

On one CRT the operator can bring up a page of 
formatted telemetry data (where a page consists of 
about 50 different monitor mnemonics and its asso- 
ciated value) or a page consisting of a chronological 
history of events that have occurred (e.g., a monitor 
out of limits) 

The other CRT is a slave to any other console and 
can be used to display what is being shown at another 
workstation 

For the HST there are close to 5,000 different telemetry 
monitors in 11 different formats available for interpreta- 
tion. In normal operating mode, each monitor is sampled 
at least once every two minutes, with some being sam- 
pled many times during that interval. The telemetry for- 
mat may be changed manually by ground operations or 
autonomously by the HST under certain situations. The 
telemetry data is subject to a variety of problems including 
loss of signal, noise in the transmission channel, or miscon- 
figuration of the system. 

As in any large system, the job of the console opera- 
tor is difficult because of the complexity of the HST and 
because it is hard to determine the exact state of the satel- 
lite at any time due to the massive amounts of data arriv- 
ing at such short intervals and the ever present possibility 
of non-nominal behavior. A system that would make the 
monitoring task easier might be one with a better, more 
visually oriented interface for the operator to monitor; one 
with some preprocessing of the data to screen out less im- 
portant information, and one that knew what trends and 
combinations of data meant non-nominal spacecraft be- 
havior. This paper describes the development of such a 
system. 

uate 
Real-time domains present complex, dynamic problems be- 
cause of the occurrence of asynchronous events and de- 
manding timing constraints. A real-time expert system 
must satisfy demands that do not exist in conventional 
domains. Current shells do not generally offer support for 
real-time applications for the following reasons: 

1. The shells are not fast enough 

2. The shells have few or no capabilities for temporal 
reasoning 

3. The shells are difficult to integrate in an ejSFicient man- 
ner with conventional software 

4. The shells have few or no facilities for focusing atten- 
tion on important events 

5. The shells offer no integration with a real-time clock 

6. The shells have 
events/inputs 

no facilities for handling asynchronous 

7. 

8. 

9. 

10. 

11. 

12. 

The shells have no way of handling software/hardware 
interrupts 

The shells cannot efficiently take inputs from external 
stimuli other than a human 

The shells cannot guarantee response times 

The shells are not built to run continuously 

The shells lack features to support multi-tasking (e.g., 
signals and semaphores) 

Methods do not exist for verifying and validating the 
shells and the knowledge bases they execute 

In the rest of this paper, we describe a monitoring system 
called L *STAR (for Lockheed Satellite Telemetry Analysis 
in Real Time). It is being built to aid the HST console 
operator in performing the real-time monitoring, checkout, 
and analysis of telemetry data from the HST. 

L *STAR consists of a set of distributed processes which are 
used in performing real-time analysis of rapidly changing 
satellite telemetry data. Each of the processes operates 
independently and communicates information via message 
passing. The different processes are shown in Figure 1: 

INFERENCE PROCESS - used to analyze the dy- 
namic data by means of frames and time-triggered, 
forward-chaining, and backward chaining rules 

DATA MANAGEMENT PROCESS - used to 
gather, scale, compress, and route the incoming 
telemetry data to the appropriate processes 

BP I/0 PROCESS - used to provide an operator in- 
terface (consisting of a hierarchy of schematics with 
real-time plots) 

By having these three independent processes, we can 
exploit the inherent asynchrony in the overall system to 
maximize throughput and response. We further gain the 
advantage of being able to use multiple CPUs if perfor- 
mance requirements call for it. For a typical application, 
many data inference and I/O modules may exist and be 
distributed across different processors. For the HST appli- 
cation, analysis and display modules exist for the electrical 
power system, pointing control system, and others. The 
various modules pass data/messages to one another over 
Ethernet. 

In the current implementation, there is only a single 
layer of communicating processes. In the future, we may 
wish to have a series of ranks or layers, organizing the pro 
cesses into a lattice of parallel processes. 

In the paragraphs which follow, we describe a typical 
scenario: At initialization, the various Inference Processes 
examine their knowledge bases and send a set of messages 
to the Data Management Process indicating which teleme- 
try monitors they need to perform their analysis. They 
also send messages indicating other information the Data 
Management Process needs to know about each telemetry 
monitor such as: 

6 to which datasets it belongs, 

B how often to send it, 
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Figure 1: L*STAR Process Structure 

whether it should be smoothed, 

aperture setting (the minimum amount it must change 
before it is reported), 

who to send it to, and 

alternate names. 

Incoming telemetry data streams are captured from the 
flight hardware and after initial preprocessing of the raw 
data by ground computers are fed to the Data Management 
Process. After some scaling and data compression, it sends 
the data of interest to the Inference and I/O processes. 
The Inference Processes infer, using their knowledge base, 
if the data corresponds to nominal vehicle behavior. These 
messages are then sent to the I/O Process. The I/O Pro- 
cess consists of interactive displays consisting of schematics 
from the electrical power system, pointing control system, 
and the flight software with special windows for interaction 
with the Inference Process. 

In the sections which follow we describe each of the dif- 
ferent types of processes in detail. 

4.1 Data Management Process 
The Data Management Process (DMP) is used to acquire, 
convert, and compress the incoming telemetry data, and 
selectively send it to the other modules. It also calculates 
new measurands from the original telemetry. At initializa- 
tion, the DMP receives messages from the Inference and 
I/O processes indicating which datasets they are interested 
in. As events unfold during the analysis, the Inference Pro- 
cess may command that a new dataset be sent to it or to 
an I/O Process. An operator may also manually intervene 

and request a change in datasets. As the system is run- 
ning, an Inference Process can send a message to the DMP 
and change characteristics of the data it is analyzing. 

For the Space Telescope application, there is a single 
Data Management Process sending data to multiple I/O 
and Inference Processes on different processors. All data 
sent is tagged with the spacecraft’s time. 

4.2 Inference Process 
The Inference Process analyzes the dynamic data by means 
of frames, rules, and statistical procedures. Rules and pro- 
cedures can be tested/invoked in three different manners: 

1. by a test clock at fixed time intervals (temporalIy- 
driven), 

2. when specified data changes (data-driven), and 

3. when needed to achieve a goal (goal-driven). 

The Inference Process performs mission monitoring, 
anomaly detection, anomaly resolution, and command val- 
idation. We now show an actual L*STAR rule used in the 
HST application to check the status of the RGA System: 

RULE : "RGA not in high mode” 
CONTEXT : ( Maneuver 3; 
PRIORITY : 100; 

IF 

and 
and 
and 
THEN 

(decreasingc [value\monitor\QDSTDCPI , 
10 seconds) > 

([value\monitor\QDSTDCP] > 0.000043) 
( [value\monitor\QDFHILO] = I) 
([status\system\RGA] <> abnormal) 
[status\system\RGAl : = abnormal ; 
send(I0, ALERT, “RGA”, “RGA not in high 

mode”) ; 

The SEND function in the second THEN clause results 
in a message being sent to the I/O Process which indicates 
there is an alert for object RGA. 

Note that the first IF clause checks if the trend of mon- 
itor QDSTDCP is decreasing over the last 10 seconds. All 
data in L*STAR, either input from the DMP or inferred 
from the Inference Process, is archived and time-tagged 
into a ring buffer. The ring buffer consists of a compressed 
format which keeps track of the last time the datum was 
updated and each time it changed over a user-specified 
time period. From the compressed format, the entire sig- 
nal can be reconstructed, if necessary. 

Maintaining a history of selected sensor data allows 
LVTAR to reason about both historical and current data. 
A number of primitive functions have been written to use 
this buffered data to calculate trends, correlations, aver- 
age values, minimums, maximums and standard deviations 
over varying time periods. Functions also exist to compare 
current data to historic data (e.g., “if the current value is 
greater than the value five minutes ago”). 

It should be noted that not all the rules are continually 
checked. Some of the rules are triggered by the test clock 
at regular time intervals. Other rules are checked only 
when data changes that is used in one of its IF clauses, 
or when they are needed to achieve a goal. This allows a 
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single Inference Process to analyze several hundred data 
changes each second. 

Below, we show the actual L*STAR syntax of such a 
temporally driven rule (taken from the electrical power sys- 
tem for the HST). The TEST INTER.VBL slot specifies 
that this rule should be tested every 10 seconds. 

thus saving time. Datasets provide a similar mechanism for 
speedup. The inference engine does not necessarily need 
to analyze all the incoming sensor data. Only when some 
“significant” event has been detected might I;*SZ’.‘.R look 
at other input data or change the characteristics (e.g., rate) 
of the data it is currently using. This important capability 
is shown in the following L*STAR rule: 

RULE : “Recharge ratio warning” 
CONTEXT : ( eclipse 1; 
PRIORITY : 1000; 
TEST INTERVAL : IO seconds; 

IF ([value\sensor\csfrratll < 0) 
THEN [recharge-ratio\battery\bll := failed; 

send(IO, INFO, “Battery I recharge ratio 
has failed lower limit”) ; 

RULE : “Change to Science mode” ; 
CONTEXT : ( Inertial-Hold, 

FGS-Acq, 
FHST-Acq 3 ; 

PRIORITY : 100; 

IF ( [value\sensor\QSITAKE] = I) 
THEN [context\control\ie] := Science; 

send(DMP, DATASET-CHANGE, “Science”) ; 

Note that the SEND function in the conclusion of the rule 
is used to send an INFO message to the I/O Process. 

In order to achieve maximum efficiency, rules are com- 
piled into a efficient intermediate postfix format (and then 
optionally into C) which does not require any pattern 
matching to occur while the system is running. All vari- 
ables used in rules are resolved at compile time by a prepro- 
cessor which generate multiple rules from a single rule de- 
pending on how many objects the variable binds to. Mul- 
tiple variables in a single rule can result in a combinatoric 
increase in the number of rules which are generated. Al- 
though this seems theoretically poor, it works quite well 
in practice. The restriction this puts on the developer, 
is that any object created during runtime cannot be ref- 
erenced from a rule with a variable We have found that 
for real-time monitoring applications, we have not needed 
this capability. Such may not be the case in a planning 
or scheduling application where many objects are dynam- 
ically created and deleted. 

Performance has been further increased by allowing the 
developer to control how much and which information is 
collected via selective event recording. During runtime, 
L*STAR has the capability for rules to dynamically turn 
on/off event recordings such as data assertions and retrac- 
tions, rule firings, and procedure calls. 

Finally, a compact run-time version of the Inference Pro- 
cess was developed which does not carry all the “excess 
baggage” of the development version. Many of the check- 
ing and debugging aids used during development are ex- 
cluded resulting in increased performance. (Although this 
practice is certainly not novel, it has seldom been followed 
by AI systems). The overall result of all these speedup 
techniques is a system which runs close to 1,000 rules per 
second on a VAX 8650. 

L*STAR has the ability to partition the ruleset using 
a context mechanism and to focus its resources on speci- 
fied sets of incoming sensor data. Both these abilities free 
the Inference Process from examining extraneous rules and 
data that are not relevant to its current task. The CON- 
TEXT mechanism increases the speed of the Inference 
Process by partitioning the ruleset into smaller sets which 
are valid only in certain contexts. This way, the Inference 
Process does not always have to examine the entire ruleset, 

This rule would only be examined if the current context 
were one of the three listed (i.e., InertialHold, FGS_Acq, or 
FHST4cq). If this rule is executed, the context is changed 
via the first THEN clause and the inference engine would 
look at only rules with SCIENCE as their context. Addi- 
tionally, a message would be sent to the Data Management 
Process to command it to change the dataset to a prede- 
fined set containing only science monitors. 

4.3 I/ recess 
The I/O Process displays the information pertinent to the 
monitoring task. The objective is to provide visual feed- 
back to focus the attention of the console operator on pos- 
sible problems and areas of interest for the Space Tele- 
scope. The current version of this interface consists of 
a large number of drawings and schematics of the HST 
and its related telemetry monitors. There is a hierarchI- 
cal tree of displays which the user may traverse using a 
mouse. Each node in the tree corresponds to a system or 
subsystem of the HST. All nodes contain a schematic of 
their system/subsystem and an inference process interac- 
tion window. The schematic can contain either permanent 
graphs (i.e. part of the schematic itself) or pop-up graphs 
brought up by mousing pickable items. 

The Inference Process interaction window consists of 
display windows for messages (i.e., information, alert, 
warning, cancel-alert, cancel-warning) and various 
message queue interaction icons. A typical scenario of in- 
teraction between an Inference Process and an I/O Process 
might involve an ALERT message being sent from the In- 
ference Process to the I/O Process. The I/O Process would 
then put this message in a priority queue for pending alert 
messages and inform the operator that a new message has 
been received. The operator can then display the message 
by mousing the ALERT icon. The GOT0 option allows 
the operator to automatically be sent to the correct display 
and bring up and highlight the subsystem and any graph(s) 
pertaining to the ALERT message. After the operator has 
acted upon the new message it is removed from the pend- 
ing queue and put in the acknowledged queue where it 
can be recalled if needed. All messages are time-tagged 
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and facilities exist which allow the operator to scroll back 
through the messages as desired. 

5 Discussion 
The actual utility of the L*STAR architecture has been 
shown through its use since March, 1988 at the HST Test 
Control Center in Sunnyvale, California. It is being used 
in the monitoring, checkout, and analysis of telemetry data 
from the Pointing Control System and Flight Software of 
the Space Telescope. The actual flow of data from the 
spacecraft into L%TAR is shown in Figure 2. The sys- 
tem runs on a network of DEC VAX computers connected 
via ethernet, with the I/O Process residing on microVAX 
II/GPX color workstation. The monitoring and checkout 
system comfortably handles the ,200 data changes which 
OCCUT each second. A larger version of the system is cur- 
rently being developed for the Space Telescope Operations 
Control Center at NASA Goddard in Greenbelt, Maryland. 

The current system can be described as a soft real-time 
system. It runs under the “illusion” of being fast enough to 
handle any combination of incoming data values. However, 
we cannot currently guarantee that it could handle a series 
of catastrophic events. Many of the difficult issues such 
as guaranteed response times and what to do if a system 
cannot meet its timing constraints are targets of future 
research. 
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