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Abstract 
IPEM, for Integrated Planning, Execution and 
Monitoring, provides a simple, clear and well 
defined framework to integrate these processes. 
Representation integration is achieved by natu- 
rally incorporating execution and monitoring in- 
formation into [Chapman, 19871 TWEAK'S partial 
plan representation. Control integration is ob- 
tained by using a production system architecture 
where IF-THEN rules, referred to as flaws and 
fixes, specify partial plan transformations. Con- 
flict resolution is done using a scheduler that em- 
bodies the current problem solving strategy. 
Since execution and plan elaboration operations 
have been designed to be independently applica- 
ble, and execution of an action is a scheduling 
decision like any other, the framework effectively 
supports interleaving of planning and execution 
(IPE). This renders a local ability to replan after 
both unexpected events and execution failure. 
The framework has served as the basis for an im- 
plemented hierarchical, nonlinear planning and 
execution system that has been tested on numer- 
ous examples, on various domains, and has shown 
to be reliable and robust. 

1 Pntroduction 
As early as 1974, [S acerdoti, 19741 writes “[Flor a sys- 
tem that deals with complex problems in a real world, as 
opposed to a simulated one, it is undesirable to solve an 
entire problem with an epistemologically adequate plan. 
There are too many reasonably likely outcomes for each 
real-world operation.” (133) Further on he suggests that 
this can be achieved in a hierarchy of abstraction spaces 
where “[Tlhe process of alternatively adding detailed steps 
to the plan and then actually executing some steps can 
continue until the goal is achieved.” (134) 

This problem solving strategy needs a framework that 
allows interleaving planning and execution, and further- 
more, a control policy to indicate when to plan and when 
to execute. 
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IPEM is an attempt to provide such framework, not only 
to support Interleaving of Planning and Execution (IPE) 
but also to support replanning in dynamic environments 
where unexpected events can occur, and where actions can 
fail to bring about their intended effects. 

We should note that IPE is present in replanning, plan- 
ning in dynamic environments, plan repair, etc. If a system 
is to execute its plans, IPE will be the norm and not the 
exception . 

The present document presents an overview of the IPEM 
framework and system. For a detailed description please 
see [Ambros-Ingerson, 19871. 

2 elated Work 

IPEM relates to other 
tant dimensions: 

work in the field along three impor- 

l.The representation used for actions and plans. This 
relates it to planning systems like STRIPS [Fikes and Nils- 
son, 19711, NOAH [Sacerdoti, 19741, NONLIN [Tate, 19771, 
and more recently, TWEAK [Chapman, 19871. 

2.The control mechanism used in the elaboration of the 
plan. The great majority of systems use fixed control 
strategies. Alternatives explored have been MOLGEN [Ste- 
fik, 19811, Bartle’s Cross-Level Planning [Bartle, 19861 and, 
in Blackboard Architectures, the use of a task scheduler as 
in HEARSAY-II [Lesser and Erman, 19771, which is the ap- 
proach taken by IPEM and in Tate’s O-Plan system [Currie 
and Tate, 19851. 

3.The execution monitoring and replanning capabilities. 
Very few planning systems execute their plans (either con- 
trolling some robot or in a simulated environment) and 
consequently aren’t faced with this problem. Of those that 
do the most relevant are PLANEX [Fikes, 19711 (the execu- 
tion module for STRIPS), NASL [McDermott, 19781, ELMER- 
a taxi driver in a simulated city- [McCalla and Reid, 19821, 
Phil Hayes’s work on replanning using dependency records 
[Hayes, 19751, and [Wilkins, 19851 addressing the issue of 
recovering from execution errors in SIPE. More recently 
attention has been devoted to reactive planning; e.g., the 
work of [Georgeff and Lansky, 19871 on procedural logic 
and [Schoppers, 19871 on universal plans. 

3 HPEM: Framework and 
plernentation 

The IPEM system was designed with the goal of support- 
ing interleaving planning and execution. An integrative 
approach requires that both execution and planning de- 
cisions be based upon and recorded on a common repre- 
sentation. We use a partial plan representation similar to 
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the one used in other systems (e.g., TWEAK), extended to 
include the current world description, the actions in the 
process of being executed, etc. We also maintain a deci- 
sion list that records the history of the problem solving 
process (e.g., for backtracking). 

A problem solving strategy that interleaves planning and 
execution should not be constrained by dependencies be- 
tween planning and execution operations. Thus, all our 
transformations - the flaws and fixes that are used to elab- 
orate and execute a plan - were designed to preserve the 
well-formedness and semantics of partial plans and can be 
applied independently of each other. 

Our bias has been to design plan transformations that 
are clean, simple and composable, instead of powerful ones, 
that are often complex and ad-hoc. Complex powerful 
transformations are obtained by the application of a se- 
quence of simple ones. 

We use a production system architecture since it pro- 
vides the flexibility in control that we need [Lesser and Er- 
man, 19771. IF-THEN rules map to flaws and fixes in our 
framework. A flaw is .a property or condition in a partial 
plan that corresponds to the IF part of an IF-THEN rule; 
each fix - there is usually more than one - corresponds to 
the THEN part, and specifies a plan transformation to get 
rid of (i.e., fix) the flaw. Conflict resolution is done us- 
ing a scheduler that embodies the current problem solving 
strategy along with weak and domain specific heuristics. 
Alternative options at a choice point are retained so that 
full backtracking is supported whenever possible. 

IPEM has been implemented in C-Prolog at Essex 
(Sun3/50 and GEC-63) as the core of a multi-actor plan- 
ning and execution system [Doran, 19871. It allows the 
user to input unexpected events at any stage of execu- 
tion and plan development. The examples presented here, 
and others that involve interactions in a multi-actor setting 
[Doran, 19861, run satisfactorily. The system is currently 
being used at Essex for research in plan delegation and 
organization emergence [Doran, 19881. 

3.1 Assumptions 
Our action representation is - by historical accident, since 
it was developed independently - almost identical to Chap- 
man’s TWEAK, so all his assumptions are our assumptions 
(e.g., STRIPS assumption). 

We further assume a continuously updated Current 
World Description (CWD), in the form of a set of ground 
( i.e., variable free) propositions. We do not assume the 
description is complete but we do assume it contains no 
errors of commission. We don’t make the closed world as- 
sumption. Note however, that: 

we do not assume a static world - the CWD can 
change while the plan is being elaborated, possibly 
making the current partial plan inapplicable; 
actions can fail to achieve its intended effects; partial 
success is exploited; 
actions are not assumed to achieve their effects imme- 
diately - in fact, different effects of the same action 
can have different delays without preventing the ex- 
ecution of those parts of the plan that can be safely 
executed, and; 
we don’t assume the CWD holds all the information 

needed to elaborate a complete, detailed plan at plan- 
ning onset - so the problem may be unsolvable with- 
out interleaving planning and execution. 

We say that an incomplete (partial) plan P necessarily 
satisfies property S if S holds in every possible completion 
(elaboration) of P. It p ossibZy satisfies S if there is at least 
one completion that satisfies S. See [Chapman, 19871 for 
more details. 

3.2 Plan Elaboration . 
The plan transformations used to elaborate the plan are 
very similar to those used in other systems (e.g., NONLIN, 
TWEAK). We will only give a brief description here. 

A (well-formed) partial plan’ consists of: 
1. a partially ordered set of actions including two special 

ones, BE&N (the minimum) and END (the maximum) 
- the postconditions (effects) of BEGIN are the propo- 
sitions in the CWD and the goals to be achieved are 
the preconditions of END. 

2 a set of (protection) ranges - each range connects 
a postcondition (supplier) with a precondition (con- 
sumer) indicating the (sub)goal dependency and re- 
quiring both propositions to necessarily codesignate 
(necessary codesignation is equivalent to unification). 
Note that the supplier has to be necessarily before the 
consumer. 

The initial partial plan has of two actions, BEGIN and 
END, to which the following transformations are applied. 

3.2.1 Unsupported Precondition; Reduce 
An action A in the plan with a precondition with no 

range (i.e., it has no assigned producer) has an unsup- 
ported precondition flaw. The postcondition to be used as 
producer for the new range can be assigned in any of three 
ways: 

1. by simple establishment on an action already in the 
plan which is necessarily before A (reduction prior), 
or 

2. by simple establishment on an action B already in the 
plan which is possibly before A (reduction parallel). B 
is now constrained to be necessarily before A; or 

3. on a new step (action) now added to the plan (reduc- 
tion new). 

3.2.2 Unresolved Conflict; Linearize 

A plan with a range R that protects proposition p and an 
action A, possibly after the producer and possibly before 
the consumer of R that asserts the negation of Q, where 
p and q necessarily codesignate, has an unresolved con- 
flict flaw (clobbering). This is fixed by promotion (A is 
constrained to be necessarily after the consumer of R) or 
demotion (A is constrained to be necessarily before the 
producer of R). In both cases the plan is partially lin- 
earized. 

3.2.3 Unexpanded Action; Expand 

A plan with an action which is expandable (i.e., not 
primitive) has an unexpanded action flaw. Actions and 
their expansions up and down the hierarchy are linked 

‘See [Ambros-Ingerson, 19851 for a detailed definition of 
well-formed partial plan. 
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by their pattern - an action based description (e.g., 
‘dance style’) - and codesignation of patterns constrain 
variable bindings in the same way as with ranges. Expan- 
sion consists of replacing such action (together with the 
ranges attached to it) with an appropriate expansion in- 
stance - a partial plan in itself (e.g., a sequence of foot 
moves that realize the dance). 

This contrasts with the state based description expressed 
through pre and post-conditions that reduction uses (e.g., 
an action that takes ‘foot@locl’ to ‘foot@loc2’). 

3.2.4 Completeness and Correctness 

A comparison between IPEM'S and TWEAK'S plan trans- 
formations shows that IPEM has no fixes equivalent to sep- 
aration and white night while TWEAK has no action ex- 
pansions. Can we claim IPEM complete and- correct? 

Correctness follows from the fact that both IPEM and 
TWEAK detect the same set of flaws. Provided expansion 
schemas are correct, their inclusion in the plan can’t gener- 
ate incorrect plans (although they can certainly introduce 
new flaws). In fact, action expansions can be defined in 
terms of a sequence of reductions and linearizations. 

Although our clobbering (unresolved conflict) definition 
is narrower than TWEAK's (it requires necessary instead of 
possible codesignation), we can show that they only yield 
different results on plans that are complete except for un- 
bound variables in the post-conditions of some action(s). 
There is more than one way to define the semantics of exe- 
cuting such an action. We return to this issue in Section 5. 

Completeness follows from noticing that a white knight 
fix is equivalent to replacing a range with a far producer for 
one with a closer one. This transformation can be avoided 
by selecting the final producer correctly in the first place. 
The same argument holds for separation; it can be avoided 
by selecting bindings right in the first place. Note that the 
completeness claim has to be dropped if unexpected events 
or execution failure is allowed, since the notion is ill defined 
in this case. 

What can be affected is the efficiency of plan generation. 
If used with the same search regime, IPEM will probably 
backtrack more often because it posts more stringent con- 
straints than it needs to. Our selection of few fixes how- 
ever, matches our bias for simplicity referred to previously. 

3.3 Plan Monitoring and Execution 
We extend the action representation to accommodate the 
necessities of execution and monitoring. We associate a 
procedure and a time-out with every primitive action as 
explained below. 

3.3.1 Unsupported Range; Excise Range 

A plan with a range R produced by BEGIN, protecting 
a proposition no longer in the CWD, has an unsupported 
range flaw. Note that ranges produced by BEGIN are pre- 
cisely those propositions in the CWD that are currently 
relied upon (assumed) by the partial plan. 

Excising R fixes this flaw but automatically creates an 
unsupported precondition on R’s consumer. On the other 
hand, since the codesignation constraint is also removed (it 
is part of the range) new bindings might be permissible. 

The effect of the REINSTANTIATE operator in SIPE 
[Wilkins, 19851 is analogous to the application of an ex- 

cise range followed by a reduction prior 
return to this relationship in Section 4. 

on BEGIN. We 

3.3.2 Unexecuted Action; Execute 
A plan with an action ready for execution has an un- 

executed action flaw. We consider an action A ready for 
execution if 

A is primitive and not END; 
all its preconditions have ranges produced by BEGIN, 
none of which is unsupported; 
it is immediately after an executed action (BEGIN is 
considered executed); 
it is not involved in an unresolved conflict flaw; and 
there is no “live” action B (i.e., not timed-out) before 
A that expects a post-condition that can clobber any 
of A’s post-conditions. 

Executing the action consists of : 
e adding order constraints so that all parallel actions 

are made necessarily after A; 
8 calling the associated procedure (after substitution of 

the appropriate bindings) which in turn should in- 
struct some effector to carry out a movement, a mea- 
surement, etc.; 

B) if active monitoring by a lower level system is desired, 
posting the action’s postconditions as expected; and 

e recording that the action has been executed. 
Note that the action is kept in the plan (see time-out be- 
low). 

Although this execution model does not allow simulta- 
neous execution initiation, it does allow the execution ini- 
tiation of actions before their predecessors have finished 
(timed-out). Thus, if the planner’s cycle is fast with re- 
spect to execution completion times, actions executing in 
parallel can be present. 

3.3.3 Timed Out Action; Excise Action 
An executed action times out when no further effects are 

expected to come about as consequence of its execution. 
Note that time-out is not defined in terms of success or 
failure; every action must time-out, whether it achieved 
its intended effects or not. 

Fixing this flaw entails removing the action - together 
with all the ranges for which some postcondition is a pro- 
ducer or some precondition a consumer - from the plan. 

We previously pointed out that actions are kept in the 
plan when executed. It’s important to note that this is con- 
sistent with the semantics of an action in a partial plan. 
In fact, since incorporating the expected effects into the 
postconditions of BEGIN would violate the semantics of the 
CWD, deleting the action from the partial plan would ne- 
cessitate the creation of new structures to record the ex- 
pected effects and their interaction with other parts of the 
plan. Wowever, this is what planning is all about and is 
done for every action in the plan. So why duplicate this 
effort in another structure? An unexecuted action and an 
executed one that hasn’t timed-out are both predicting a 
future state of affairs over which the same kind of planning 
reasoning applies. 

3.3.4 Unextended Range; Extend Range 
If, in a plan, we can remove a range R and replace it 

with a range R’ where 
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o R and R’ have the same consumer; choice points with open alternatives. Note however that 
o the Droducer of R’ is before the Droducer of R: and completeness is compromised; e.g., it is possible that the 

x L 

e the new range R’ does not create an unresolved con- 
flict flaw (clobber); 

we have an unextended range flaw. The fix is to replace R 
with R’, which can be seen as extending range R on the 
producer side to the location of the producer of R’; hence 

very same option currently being backtracked over is now 
viable thanks to a just occurred unexpected event. 

Alternatively, we can scrap the old plan and start afresh 
on a new plan with the same goals. Simplicity makes this 
approach more appealing. 

its name: range extension. 
We distinguish the special case where the producer of the 4 Unexpected Events and Replanning 

new range is BEGIN and the consumer is a post-condition 
of an executed action A. In this case the appearance of 
the proposition at BEGIN that makes the extension possi- 
ble can be correlated with a (partially, at least) successful 
execution’ of A. 

The general case where no execution has taken place can 
be considered to be a serendipitous occurrence, especially 
if the extension is to some postcondition of BEGIN. Range 
extensions have to be done with care in the general case 
(only) since there is a tradeoff between having long ranges, 
that are more likely to generate interactions, and short 
ones, that take no advantage of serendipitous occurrences 
to remove redundant actions. 

3.3.5 Redundant Action; Excise Action 

A plan with an action A not producing for any range 
(i.e., no range has A as producer) has a redundant action 
flaw. Excising the action - its fix - can result in further 
action redundancies since ranges are removed along with 
the action. 

3.4 Control: The Scheduler 
Conflict resolution for the application of a given fix at a 
given moment is done through a scheduler similar to the 
one used in HEARSAY-II [Lesser and Erman, 19771. It main- 
tains an agenda (priority queue) of tasks. Each task con- 
sists of a flaw, along with its possible fixes. Tasks and fixes 
for a flaw are ordered using weak and user supplied domain 
heuristics. 

Although the search space is not a strict AND-OR 
graph, we use some of the heuristics that work well there. 
Since all flaws have to be fixed, we select the one that is 
“harder” to fix, and select the fix that introduces less con- 
straints into the partial plan (e.g., in the case of reductions, 
the preference order we use is prior, parallel and new). 

In our runs we have set to fix flaws in the following 
order: unsupported range, unextended range, timed-out 
action, unresolved conflict, unsupported precondition, un- 
expanded action, unexecuted action. Within a flaw class, 
the flaw which appears harder to fix (e.g., has only one fix) 
is preferred. If some flaw has no fixes, then backtracking 
is attempted when possible. 

3.4.1 Backtracking 
The system uses full chronological backtracking up to 

decision points that involve non-backtrackable fixes (e.g., 
excision of an unsupported range caused by an unexpected 
event, action execution, etc.). Beyond this point two gen- 
era1 approaches can be taken, where the choice is domain 
and case dependent. Note however, that all replanning 
options will be attempted before backtracking is chosen. 

The first is to ignore such decision points (they have 
only one fix anyway) and carry on up the tree to other 

This section will illustrate IPEM’S replanning adaptabil- 
ity to both a dynamic world and to execution failure. This 
example is very similar to the one presented by Wilkins 
[Wilkins, 19851 and fits the scenario proposed by Schop- 
pers [Schoppers, 19871, where a mischievous baby makes 
the state of the world all but static. 

The goal is to achieve ((a on c) A (u.x on r.y)) from the 
blocks configuration presented in Figure 1:i. The initial 
plan (move a from b to c) in parallel to (move u.z from t.5 
to r.1) is at the top left labeled ‘i’. 

Before execution of this plan can commence, our baby 
(moves d from t.3 to r.1). This causes the addition of 
((clear t.3) A (d on 1.1) A -(d on t.3) A -(clear r.l)) to the 
CWD creating an unsupported range flaw on (clear r.1). 
The range is excised, creating an unsupported precondition 
on (clear z), which is fixed by reduction prior on (clear r.2) 
(see ii). The overall effect is very similar to the REINSTAN- 
TIATE operator described by Wilkins [Wilkins, 19851. 

At this point our baby interferes again, (moving a from b 
to u.2). This interferes with both actions in the plan. Two 
unsupported ranges result; for (clear u.2) and for (a on b). 
The ranges are excised, generating the corresponding un- 
supported preconditions for (clear u.2) and (a on y). The 
first one is fixed by reduction parallel to the effect (clear y) 
of the action moving block a (now necessarily before as a 
consequence of the constraint that for a given range, the 
producer is necessarily before the consumer). The second 
one is fixed with a reduction prior to (a on u.2) at BEGIN. 
The resulting plan is shown at ‘iii’: (move a from u.2 to c) 
followed by (move u.2 from t.5 to r.2). 

There is an unexecuted action flaw on the first action, 
now fixed by execution. The effector starts by picking 
block a up. (clear u.2) is added to the CWD, generating 
an unextended range flaw, fixed by extension. Now the 
effector screws up and bumps into d and r.1 producing 
the state shown in ‘iv’. Now the action times-out (say 
the manipulator sends a signal indicating it bumped into 
something and that it is no longer attempting to carry out 
the procedure) and must be excised. This generates an 
unsupported precondition at (a on c) of END. Note that 
execution of (move a from u.2 to c) was partly successful 
and that IPEM took notice; execution of (move u.2 from t.5 
to r.2) could have proceeded if another manipulator were 
available even though the other action hadn’t timed-out 
yet. 

A number of other propositions are added to the CWD 
as a consequence of the bumping (e.g., (clear r.l), (d on c), - 
(a on u.2), etc.). The unsupported precondition for (a on c) 
is now fixed with two reduction new fixes and a number of 
reduction priors. The resulting plan is shown in ‘iv’. 

It is important to point out the adaptability displayed by 
IPEM under unexpected events and execution failure. This 
it shares with reactive planners (e.g., [Schoppers, 19871, 
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clear 2 clear y 

t.1 t.2 t.3 t.4 t.5 t.6 t.1 t.2 t.3 t.4 t.5 t.6 t.1 t.2 t.3 t.4 t.5 t.6 t.1 t.2 t.3 t.4 t.5 t.6 

Figure 1: Replanning after unexpected events and execution failure. 

[Firby, 19871). On th e other hand it retains the flexibility 
and power of a hierarchical nonlinear planner. It is capable 
of dealing with action interactions where reactive planners 
are incapable of doing so. 

5 Interleaving Planning and Execution. 

We are having dinner with Sandy. When hav- 
ing dinner with somebody we want that some- 
body to like the food and we also need to have 
the food. We don’t know what Sandy likes but 
it does make a difference since the choice deter- 
mines the restaurant, the way to dress, whether 
to make a reservation, etc. Asking is a way of 
finding what a person likes. 

This example illustrates a class of problems that can 
hardly be solved without interleaving planning and exe- 
cution. A conditional plan is a poor option since it must 
plan for a potentially large number of alternatives, most of 
which won’t be used. On the other hand, replanning after 
execution failure can be harmful to our relationship with 
Sandy. 

To solve this problem using IPEM we need to make an 
extension to the action representation to cope with infor- 
mation acquiring actions (IAA’s). TWEAK'S semantics de- 
fine an otherwise complete plan with an unbound variable 
on the postconditions of an action to be completed to any 
constant. This is unsatisfactory for an action which yields 
a particular - yet unknown - value when executed. 

We introduce a new set of variables, Ivan to handle such 
actions. The variable in the postcondition intended to pro- 
vide information in an IAA is defined as an Ivar. We al- 
low Ivar’s to codesignate with variables, but not with con- 
stants. The scheduler is slightly modified to put on hold 
those flaws whose fixes would bind an Ivar to a constant. 
This results in plan elaboration up to the point where all 
flaws are on hold with the exception of unexecuted actions, 
then chosen for execution by the scheduler. 

For example, consider Figure 2. The top presents a plan 
to solve our dining example problem, where thing is an 
Ivar at ASK, our IAA action. At this point every expan- 
sion for GET meal in the action schema repertoire known 
to the system would bind meal to some constant. Since 
meal codesignates with thing its expansion is placed on 
hold. Note that this is the maximally elaborated plan that 
doesn’t commit the binding of meal. 

Unexecuted action at ASK is the only remaining flaw 
not on hold. ASK is executed and made necessarily before 
GET meal (see bottom of Figure 2). “Sandy likes fondue” 
is eventually added to the CWD creating an unextended 
range from DINE to BEGIN. The range is extended (the solid 
range added, the dotted one removed) so that meal now 
codesignates with a constant (fondue) and not with thing. 
Planning can proceed now that it has been established that 
the correct expansion for GET meal is GET fondue. 

Note that an action has been executed before the plan 
was fully elaborated and the outcome of its execution was 
used to decide the expansion to use (i.e., for a planning 
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ASK 
meal 

DINE - END 

GET 
meal dinner dinner 

I / 

have with- with 

have 
meal guest Sandy 

I meal 

fondue thing meal 

X 
BEGIN 3 ASK - GET __fi DINE > END 

meal 

I . . . dinner dinner 
have- have with W-O with 
meal meal guest Sandy 

Figure 2: Interleaving Planning and Execution 

decision). 

Gsnclusions 
IPEM successfully integrates the processes of planning, ex- 
ecution and monitoring. Control integration was obtained 
by using a production-system architecture where the IF- 
THEN rules operate as transformations between partial 
plans. In IPEM’S context IF-THEN rules are referred to as 
flaws and fixes. Representation integration was achieved 
bY using a common partial plan representation extended 
to include monitoring and execution information. 

The primary goal of providing a system to support in- 
terleaving of planning and execution in a principled and 
clear way has been attained. 

Furthermore, the system exhibits a robust capacity to 
replan either after execution failure or after the o&urrence 
of unexpected effects. One must caution however, that this 
capability is seriously limited by its locality. 

A planning and execution system embodying the frame- 
work has been successfully implemented. It has been tested 
on numerous examples from various domains, including the 
ones in this document. It is currently being used at Essex 
in research concerning Multi-Actor systems [Doran, 19881. 
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