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Abstract 

We present a theory of debugging applicable for 
planning and interpretation problems. The de- 
bugger analyzes causal explanations for why a 
bug arises to locate the underlying assumptions 
upon which the bug depends. A bug is re- 
paired by replacing assumptions, using a small set 
of domain-independent debugging strategies that 
reason about the causal explanations and domain 
models that encode the effects of events. Our 
analysis of the planning and interpretation tasks 
indicates that only a small set of assumptions and 
associated repair strategies are needed to handle 
a wide range of bugs over a large class of domains. 
Our debugging approach extends previous work 
in both debugging and domain-independent plan- 
ning. The approach, however, is computationally 
expensive and so is used in the context of the 
Generate, Test and Debug paradigm, in which 
the debugger is used only if the heuristic genera- 
tor produces an incorrect hypothesis. 

1 Introduction 
Employing heuristic rules to generate an initial hypothe- 
sis and then debugging if the hypothesis is incorrect has 
proven to be a useful problem solving strategy (e.g., [Mar- 
cus], [Hammond], [S ussman], [Simmons]). The efficacy of 
this strategy depends on the presumptions that, for most 
problems. the heuristics can be used to efficiently generate 
hypotheses that are correct or nearly so and that debug- 
ging hypotheses, while not necessarily efficient, is robust 
enough to solve the problems handled incorrectly by the 
heuristics. 

We present a theory of debugging applicable for plan- 
ning and interpretation problems. The theory is robust, 
handling a wide range of bugs that arise in a large variety 
of domains. Debugging is accomplished using four general 
reasoning techniques: 1) assumptions underlying bugs are 
located by tracing through causal dependency structures 
that explain why bugs arise; 2) the directions in which to 
change assumptions are indicated by regressing values back 
through the dependencies; 3) bugs are repaired by using 
domain-independent repair strategies that replace faulty 
assumptions; and I) the goodness of proposed repairs is 
estimated by determining its effect on the overall prob- 
lem - whether it introduces new bugs or serendipitously 
repairs other existing bugs. 

‘Current address: Computer Science Department, CMU, 
Pittsburgh, PA. 
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1. Deposit sandstone, 
creating SS1 

2. Tilt by 7” 
3. Deposit shale, 

creating SHl 
4. Tilt by 5” 

A. The Goal State B. One Plausible Solution 

Figure 1: A Geologic Interpretation Problem. 

We are exploring these ideas within the Generate, Test 
and Debug problem solving paradigm [Simmons]. The 
GTD paradigm was developed for interpretation and plan- 
ning tasks, both of which are of the form “given initial 
and goal states, find a sequence of events that could trans- 
form the initial state into the goal state” GORDIUS, our 
implementation of GTD, has been used to solve problems 
in several domains, including our primary domain of geo- 
logic interpretation, blocks-world planning, and the Tower 
of Hanoi problem. 

In geologic interpretation, the task is to find a sequence 
of events that plausibly explains how a vertical cross- 
section of a geologic region (the goal state) was formed 
starting from the initial state of bedrock under sea-level 
(see Figure 1). The goal state describes the compositional, 
topological and geometric aspects of the region. For exam- 
pie, the goals in Figure la are to explain whv formations 
SHl and SS1 are composed of shale and sandstone, re- 
spectively; why SHI is over SS1; why SHl and boundary 
Bl are oriented at 5”: and why SSl and B2 are oriented 
at 12”. 

In GTD, the generator constructs an initial hypothe- 
sis by matching a library of heuristic (associational) rules 
against the initial and goal states and by composing the 
partial sets of events suggested by each rule. The initial 
hypothesis is then tested. If the test succeeds, the hypoth- 
esis is accepted as a solution. If it fails, the tester passes 
to the debugger causal explanations for the bugs detected. 

The debugger uses the four reasoning techniques enu- 
merated above to locate and replace faulty assumptions 
underlying the bug. When the debugger estimates that 
all bugs have been repaired. the modified hvpothesis is 
submitted to the tester for verification. This debug/test 
loop continues until the test succeeds. Alternatively, if the 
debugger appears to be moving far from a solution, the 
generator may be invoked to produce a new hypothesis. 

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved. 



1. 
2. 
3. 
4. 

Deposition1 of sandstone, creating SSl 
Tilt1 of 12” 
Deposition2 of shale, creating SHl 
Tilt2 of 5” 

Figure 2: Initial, Buggy Interpretation of Figure la. 

For the problem in Figure la, the generator interprets 
that the deposition of SHl occurs after the deposition of 
SS1, using the heuristic that an overlaying sedimentary 
formation is younger since deposition occurs from above. 
To interpret the orientation of SSl and B2, the generator 
uses the heuristic that a sedimentary formation oriented 
at a non-zero angle 8 was formed by deposition followed 
by a tilt of 8. This rule derives from the fact that, in our 
model of geology, deposition occurs horizontally and tilt 
acts to change orientations. Another application of this 
rule is used to interpret the orientations of SHl and IBl. 
Combining all the constraints (and linearizing the events), 
the generator produces the initial hypothesis in Figure 2. 

In testing this hypothesis, two bugs are detected - in 
Figure 1 the orientation of both SSl and 
the orientation predicted by simulating the hypothesis of 
Figure 2 is 17”. Causal explanations for why the bugs arise 
are passed to the debugger. For example, the orientation of 
SSl is not 12” because it was zero when deposited, Wtl 
incremented it by 12”, and then Tilt2 incremented it by 
an additional 5”. The debugger analyzes whether replacing 
any of the assumptions underlying the bug will repair it. 
Several modifications to the hypothesis are proposed, in- 
cluding replacing the assumption that the parameter value 
of Tilt1 is 12” with the assumption that the value is 7”, 
producing the solution of Figure lb. 

Our theory of debugging-and general debugging algo- 
rithms are presented in Section 2, while Section 3 illus- 
trates the debugging of the hypothesis in Figure 2 in more 
detail. In Section 4, we analyze the completeness, cov- 
erage and efficiency of our theory of debugging. Section 
5 presents a comparison with other debuggers and with 
domain-independent planners. 

2 %gi~g 
Our theory of debugging is based on the simple observation 
that the manifestation of a bug is only a surface indication 
of some deeper failure. In particular, bugs ultimately de- 
pend on the assumptions made during the construction 
and testing of hypotheses. 

A bug, for our purposes, is an inconsistency between the 
desired value of some expression and its value as predicted 
by the tester. If the predicted value does not match the de- 
sired value. it must be that one (or more) of the underlying 
assumptions is faulty and needs. The debugger proposes 
changes that either make the predicted value match the 
desired value, or make the desired value no longer needed 
to solve the problem. 

The debugger uses several reasoning techniques to lo- 
cate and replace assumptions underlying bugs. The de- 
bugger locates the assumptions underly&g a bug by an- 
alyzing causal dependency structures, which are acyclic 
graphs that represent justifications for the predicted (and 

desired) states of the world. The dependency structures 
capture an intuitive notion of causality in which time, per- 
sistence, and the effects of events are represented explic- 
itly. In GORDIUS, the dependencies are produced as a 
by-product of the tester’s causal simulation algorithm and 
are represented and maintained using a TMS [McAllester]. 

Each bug actually has two dependency structures - one 
explains how events cause the predicted value to arise; the 
other is an explanation for why the desired value is needed 
(the latter often consists of only a single assumption). For 
example, Figure 3 illustrates the dependency structures for 
why the orientation of SSl is predicted to be 17”, while it 
is desired to be 12”, as measured in Figure la. 

In Figure 3, SSl.orientation@Plan-end refers to the 
orientation of the SSl formation at Plan-end, the time 
associated with the goal diagram in Figure la. Persis- 
tence(SSl.orientation, Tilt2.end, Plan-end) means 
that the orientation of SSl did not change from the end 
of the Tilt2 event through Plan-end. The statement 
Change( +, SSl.orientation, 5”, Tilt2) means that 
during Tilt2 the orientation of SS1 increased by 5”. The 
dependency structure indicates that this change happens 
because the Tilt2 event is predicted to occur, the param- 
eter value of Tilt2 is 5”, and the SSl formation exists at 
the time Tilt2 occurs. 

The assumptions underlying a bug are located by trac- 
ing back through the dependency structures to their 
leaves (the boxed statements in Figure 3). To indi- 
cate the direction in which to change underlying as- 
sumptions, the debugger regresses values and/or sym- 
bolic constraints back through the dependency struc- 
tures. For example, regressing 12”, the desired value of 
SSl.orientation@Plan-end, through the dependencies 
of Figure 3 indicates that SSl.orientation@Tilt2.end 
+ Theta2 should also be 12”. Symbolically solving for 
SSl.orientation@Tilt2.end indicates that it should be 
12 - Thetaa, which the debugger simplifies to 7O, since 
Theta2 is known to be 5”. 

Regressing further indicates that the desired value of 
SSl.orientation@Tiltl.end + Theta1 is 7”; solving 
yields : 
Theta1 = 7”- SSl.orientation@Tiltl.end. Since the 
predicted orientation of SSl.orikntation@Tiltl.end is 
zero, the regression indicates that the bug can be repaired 
by changing Theta1 to 7”. 

The search for underlying assumptions is pruned if 
the regression indicates that some expression cannot be 
changed in any wav to repair the bug. For example, 
if we desire SSl.orientation@Plan-end to be greater 
than SSl.orientation@Tillt2.start, regression yields the 
constraint SSl.orientationCQTilt2.start + Theta2 > 
SSl.orientationQTilt2.start, which is simplified to 
Theta2 _’ 0. Since this constraint does not mention 
SSl.orientationBTilt2.start, implying there is no way 
to change its value to repair the bug, the debugger does 
not try to locate its underlving assumptions. 

Bugs are repaired bv using domain-independent repair 
strategies that reason about the dependency structures, 
the regressed values, and causal domain models that ex- 
plicitly detail the preconditions and effects of events. For 
example, if a bug depends on an assumption about the 
value of an event’s parameter, the repair strategy is to 
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change the parameter value to its regressed value. 
We have developed repair strategies for six types of as- 

sumptions that account for most of the bugs that appear 
in the domains we explored: 

1. Bccursf type, event) is the assumption that 
an event of type occurs from eventl.start to 
eventl.end. One debugging strategy associated with 
this type of assumption is to delete the event alto- 
gether. This strategy is applicable if removing the 
event will achieve the desired value of the bug. An- 
other strategy is to replace the event with a similar 
event, where “similar” means that the event has the 
same desirable effects (i.e., achieves the same goals) 
as the original event but avoids the bug. If the bug 
stems from the fact that not all of the event’s precon- 
ditions hold, the strategy is to find another event that 
achieves the same goals but does not have the offend- 
ing preconditions. If some effect of the event helps to 
cause the bug, the strategy is to find an event with- 
out the offending effect that still achieves all the goals. 
For example, the debugger tries to repair the bug in 
Figure 3 by looking for an event similar to Deposi- 
tionl that can create a sandstone formation oriented 
at -5”, rather than horizontally. 

2. Parameter-of(event, formal, actual) is the as- 
sumption that the formal parameter of event is 
bound to the actual value. The repair strategy is 
to change the value of the parameter, where the new 
parameter value is indicated by the regression. For 
example. as described above, regression through Fig- 

Cre 

Predicted Value 

SSl .orientation@Plan-end = 17 

t 

ure 3 indicates that changing Thetal, the parameter 
of Tilt 1, from 12” to 7” will repair the bug. 

eventl.end < event2.start is the assumption that 
event1 precedes event2. In our models, temporal- 
ordering assumptions typically support assertions that 
the attribute of some object persists in value from 
eventl.end to event2.start. The debugger reorders 
the two events if the regressed value of the attribute 
is achieved at the start of eventl. In Figure 3, for in- 
stance, Tiltl.end ,C Tilt2.start cannot be reordered 
to repair the bug since at the start of Tilt 1 the orien- 
tation of SSl does not equal 7”. the value desired at 
Tilt2.start. 

CWA(attribute.object, tl, t2) is a closed-world 
assumption that no known event affects the attribute 
(it persists) between times tl and t2. The repair 
stratesy is to insert an event occurring between tl and 
t2 that can affect the attribute in such a way as to 
achieve the desired (regressed) value of the attribute 
at time t2. For example, the debugger proposes 
replacing the assumption CWA( SSl.orientation, 
Tilt2.end. Plan-end) with assumptions that a new 
tilt event with tilt parameter -5” occurs. where the 
new event is constrained to occur between Tilt:!.end 
and Plan-end. The parameter value of -.jO is deter- 
mined analogously to that in $2 above. The repair 
strategy also determines whether existing events can 
affect the attribute to achieve its desired value. If so. 
temporal orderings are changed to make the event fall 
within the persistence interval (between tl and t2). 

Desired Value 

SSl .orfentation@Plan-end = 12 

tfon@TiU.start + Theta2 

Parameter-of(Tllt2, Theta, Theta2) 

CWA(SSl.orientation, Tiltl.end. TlftP.start) 

CWA(SS1 .orfentation, Deposition1 .end, Tilt1 .start) 

Finurr 2: C’ausal Drpenclencv Structure for Bu, 0 that the Orientation of SSl at time Plan-end is tlot 12”. 
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5. CWA-Exists(object, tl) is a similar closed-world 
assumption indicating that the object continues to 
exist at time tl since no event is known to have de- 
stroyed it. The repair strategy is to insert an event 
before tl that can destroy the object. For example, 
one way to repair the bug of Figure 3 is to prevent 
Tilt2 from affecting SSl. Since tilting applies only 
to formations that exist at the time of the tilt, we can 
accomplish this by assuming that some erosion event 
totally erodes away SSl before Tilt2.start. Overall, 
however, this is a rather poor repair since it ends up 
destroying the complete geologic region. 

6. CWA-Object(type, Objectl, . . . , Objectn) in- 
dicates that Objectl-Objectn are the only known 
objects of type. The assumption is used in reasoning 
about quantified goals - a goal of the form (forall (x 
: type) P(x)) is expanded to P( 0 1) and . . . and 
P(On) and CWA-Object(type, 01, . . . , On); 
similarly for existential statements. The repair strat- 
egy for CWA-Object replaces the assumption by in- 
serting an event that creates a new object of type 
that satisfies the constraints of the quantified state- 
ment. For example, adding the goal (Exists (ru : 
rock-unit) Is-Limestone( indicates that some 
limestone formation existed at one time in the region 
of Figure 1. The debugger can achieve this goal by 
introducing an event that deposits a limestone forma- 
tion, followed by an event that erodes the formation 
away since limestone does not appear in Figure la. 

Typically, bugs depend on a large number of assump- 
tions: so many repairs are suggested for each bug. Best- 
first search is used to help control the debugger. The de- 
bugger evaluates the global effects of each repair to focus 
on the most promising hypothesis. The primary compo- 
nent of the evaluation heuristic is the number of remaining 
bugs. including any unachieved top-level goals. The sec- 
ondary component, used to differentiate hypotheses with 
the same number of remaining bugs, is the number of 
events, the idea being to prefer simpler hypotheses. This is 
a reasonable metric since our planning/interpretation task 
involves finding one plausible solution and the number of 
remaining bugs is often a good measure of the closeness to 
solving the problem. 

The evaluation heuristic uses a technique that finds and 
incrementally updates the closed-world assumptions that 
change as a result of a bug repair. The technique is similar 
to the causal simulation technique used by the GTD tester, 
but is extended to handle non-linear hypotheses. 

3 ebugging an Interpretation 
‘This section describes the compiete behavior of our de- 
bugging algorithm for the buggy hypothesis of Figure 2. 
The hypothesis has two bugs - the orientations of SSI 
and B2 are both 17”, not 12”. Starting first with the bug 
that the orientation of SSI is l’i”, the debugger locates 
the 17 underlying assumptions in the dependency struc- 
tures of Figure 3 and regresses the desired value of 12” 
back through the dependencies. Of these assumptions, six 
are ignored by the debugger because they are considered 
to be unchangeable - SSl.orientation@Plan-end=12’ 
because it is a goal, the values 13”. so and 0 because they 

are constants, and the ordering Tilt2.end < Plan-end 
because hypothesized events must occur before Plan-end. 

For the three CWA assumptions, the debugger pro- 
poses the same basic repair of adding a new tilt event of 
-5” between the start and end of the persistence interval. 
The repairs, however, are rated differently. The evalua- 
tion heuristic determines that adding the new tilt between 
Tilt2.end and Plan-end repairs both bugs in the initial 
hypothesis but also introduces two new bugs - the ori- 
entations of SNl and BI are now zero, not 5’. Adding 
the tilt between Depositionl.end and Tiltl.start is con- 
sidered a solution since it repairs both bugs without intro- 
ducing new ones. Adding the tilt between Tilt1 and Tilt2 
produces a non-linear hypothesis where the new tilt and 
Deposition2 are unordered. This repair is also regarded 
as a solution since one of the possible linearizations (where 
the new tilt precedes Deposition2) interprets the region 
correctly. 

For the Occurs(tilt, Tilt2) assumption, deleting the 
tilt event fixes the bug, since without ‘Tilt2 the orienta- 
tion of SS1 is 12”. This repair does not solve the whole 
problem, however, since it introduces the same two new 
bugs as above. For the other two Occurs assumptions, 
deleting the events does not fix the bug. For all three as- 
sumptions, replacing events is not an applicable strategy 
since our geologic models do not contain events that are 
similar enough to tilting or deposition. 

The two CWA-Exists assumptions yield the same basic 
repair - an erosion event is proposed to destroy the SSI 
formation. The evaluation heuristic rates these repairs 
poorly, however, since they undo all the goals of the prob- 
lem by destroying all existing formations and boundaries. 
The reordering strategy does not succeed for the assump- 
tion Tiltl.end < Tilt2.start because the desired value 
of SSl.orientation@Tilt2.start (12”) is not achieved at 
the start of Tiltl: similarly for the assumption Deposi- 
tionl.end < Tiltl.start. 

The debugger proposes replacing Parameter-of( Tilt I, 
Theta, 12’) by the assumption that Theta is equal 
to 7”, the difference between the desired value of 
SSl.orientation at the end of Tilt1 and its predicted 
value of zero at the start of the event. The eval- 
uation heuristic determines that this repair is a solu- 
tion. Similarly, for the assumption Parameter-of( Tilt2, 
Theta, 12”). the debugger considers changing the param- 
eter value to the difference between the desired value of 
SSl.orientationQTilt2.end (12”) and its predicted ori- 
entation at Tilt2.start (also 12O). This repair is rejected, 
however, since the debugger determines that it is inconsis- 
tent with a constraint, in our domain models that Theta 
must be non-zero. 

Thus. the debugger suggests seven potential repairs for 
this problem, of which three are considered solutions. The 
evaluation heuristic prefers the repair in which the param- 
eter of Tilt 1 is altered, since this produces an hypothesis 
with fewer events than the other two solutions, both of 
which add new tilt events. The preferred solution is the 
same as in Figure lb. 
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4 Completeness, Coverage and 
Efficiency 

monly at fault) in our domains. Practical experience has 
not shown the need for handling others, although it is 
a fairly simple matter to extend the debugger to handle 

By “completeness” we mean can the debugger fix all bugs other closed-world assumptions by making them explicit 

describable within its representation language? For the as- in the dependency structures and adding repair strategies 

sumptions made explicit in our causal models, the depen- for them. 

dencg tracing and repair strategies are complete, in that Not so simple to handle are the assumptions that the 

they can find all ways to replace assumptions to achieve a domain models are correct. Handling them is somewhat 

desired value. tricky because any bug can be fixed by changing the models 

One caveat is that the strategies cannot in general find in an appropriate way. For example, we could debug the 

repairs that involve replacing multiple assumptions, where example in Section 3 by changing the definition of tilt so 

changing any one of the assumptions separately has no that its effect was not uniform for all rock-units. Clearly 

discernible effect on repairing the bug (it can handle situ- any reasonable repair strategy that changes domain models 

ations where more than one assumption is faulty, as long must constrain the problem, for instance, by reference to a 

as replacing at least one assumption moves the hypothesis meta-theory of the domain or by induction using multiple 

closer to achieving the desired value). For example, the examples, subjects well beyond the current scope of our 

debugger cannot handle situations where a bug depends research. 

on two parameters being above a certain threshold, but One downside of our debugging algorithm is its high 

changing either parameter alone moves the hypothesis fur- computational cost. Although each individual repair strat- 

ther from repairing the bug. One area for future research egy is fairly efficient, the number of assumptions underly- 

is to develop general repair strategies that can handle such ing bugs tends to grow exponentially in domains, such as 

combinations of assumptions. geology, with many potential interactions among events. 

Another problem is that the regression technique, while In addition, the evaluation heuristic is very expensive since 

sufficient for the problems we explored, is not theoretically determining the number of remaining bugs is, in general, 

complete due to the difficulty of inverting general func- exponential for the types of non-linear hypotheses pro- 

tions. If the constraints produced by the regression are duced by our debugger (see [Chapman]). It is these compu- 

not sufficient to determine parameter values precisely, the tational reasons that led us to develop the GTD paradigm 

debugger must choose and test different values until one in which the robust, but slow, debugger is used only to 

is found that solves the problem. Incompleteness arises focus on the problems handled incorrectly by the heuristic 

when only a finite number of values out of an infinite set generator. 

(e.g., the reals) can solve the problem. For example, if 
a solution depends on a parameter value being exactly a, 5 Relations to ther ebuggess 
in general it will take infinite time to test each choice be- 
fore hitting on the correct solution. This observation also 

and Planners 
shows that even the simple technique of enumerating and 
testing all hypotheses is incomplete, since it is not possible 
to enumerate all hypotheses (in particular, the parameter 
bindings of events) in finite time. 

“Coverage” refers to how well the assumptions handled 
by our repair strategies cover the range of possible bugs. 
We note that to provide complete coverage, the debug- 
ger must handle all the assumptions needed by the tester 
to predict effects and detect bugs: the assumptions made 
in specifying hypotheses, the assumptions about the ini- 
tial and goal states, closed-world assumptions made by the 
tester, and assumptions about the correctness of domain 
models. We argue that our debugger has wide coverage. 
since it currently handles all but the latter assumption 
and some types of closed-world assumptions implicit in the 
tester’s algorithms. 

For the planning/interpretation task, hypotheses are 
completely specified by the events that occur, their param- 
eter bindings, and the temporal orderings between events. 
Thus, pragmatically. these are the only types of assump- 
tions made in constructing hypotheses that need to be 
handled. Our current debugger has repair strategies to 
rover each of them. Assumptions about the initial and 
goal states do not need to be handled - our task specifies 
that they are unchangeable, since changing the initial and 
goal states constitutes solving a different problem. 

The debugger currently handles three types of closed- 
world assumptions that are commonly made (and are com- 
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The approach of tracing faults to underlying assump- 
tions has roots in work on dependency-directed search 
(e.g., [Stallman]), model-based diagnosis (e.g., [Hamscher], 
[deKIeer]), and algorithmic debugging [Shapiro]. Our con- 
tribution to the dependency tracing approach is in provid- 
ing principled strategies that determine how to replace the 
underlying assumptions once they have been located. 

Our assumption-orzented debugging approach stands in 
contrast to other approaches in which repair heuristics 
are associated either with bug manifestations (e.g., :X1- 
terman], [Marcus]) or with certain stereotypical patterns 
of causal explanations (e.g., [Hammond], [Sussman]). Our 
approach handles the large number of possible ways bugs 
can arise by decomposing them into combinations of a 
small set of underlying assumptions. This approach tends 
to give greater coverage and also tends to suggest more 
alternative repairs than other approaches since we do not 
have to anticipate all possible patterns of assumptions that 
can lead to bug manifestations. 

For example. consider the “Prerequisite Clobbers 
Brother Goal” bug type in [Sussman] that occurs when an 
event X, in attempting to achieve the preconditions of an 
event Y, undoes a goal that had been achieved by event 2. 
The only repair for this bug type given in iSussman! is to 
reorder events X and Z. [Hammond] presents a similar bug 
type that has an additional strategy of replacing Y with 
an event that does not have the offending precondition. 
Our debugger would suggest even more repairs, including 



inserting an event to reachieve the goal, replacing event X, 
and changing X’s parameters so as to make the goal and 
precondition true simultaneously. 

Our basic debugging strategy - repair one bug at a time 
by analyzing domain models and then evaluating how the 
local repair affects the hypothesis as a whole - is simi- 
lar to the approach used by domain-independent planners 
(e.g., [Sacerdoti], [Wilkins], [Chapman]). In fact, we can 
use our debugger as a planner by starting with the null hy- 
pothesis and treating all the unachieved, top-level goals as 
bugs. A major difference, however, is that most domain- 
independent planners use hypothesis refinement, in which 
the system can only add information to its current hypoth- 
esis, making plans increasingly more detailed. Our debug- 
ger uses a transformatzonaZ approach, in which information 
may be deleted as well to change previous decisions made 
in solving the problem. 

The transformational approach is particularly beneficial 
in complex, relatively underconstrained domains, since the 
problem solver can make simplifying assumptions and com- 
mitments in order to increase problem solving efficiency, 
with the understanding that erroneous choices can be sub- 
sequently debugged. In such domains, refinement and its 
concomitant strategy of least-commitment are often very 
inefficient due to the expense of evaluating partially spec- 
ified hypotheses. 

6 Summary 
Our theory of debugging involves tracing bug manifes- 
tations back to the underlying assumptions, made dur- 
ing hypothesis construction and testing, upon which the 
bugs depend. The direction in which to change assump- 
tions is indicated by regressing values and constraints back 
through dependencies. Bugs are repaired by replacing as- 
sumptions using a small set of domain-independent repair 
strategies that reason about the dependency structures, 
regressed values, and domain models that encode the ef- 
fects of events. The proposed repairs are then evaluated 
to determine their overall goodness. 

Our theory of debugging provides a very robust frame- 
work for repairing bugs in plans and interpretations. The 
debugging algorithm is nearly complete and the six imple- 
mented repair strategies provide good coverage of the com- 
mon types of faulty assumptions. In addition, the frame- 
work is easily extended to handle assumptions currently 
not made explicitly. -4 subject for future work is to ex- 
atnine how well the theory extends to debugging in other 
tasks. such as design or diagnosis, that use different causal 
models and have different task specifications. 

Our approach subsumes earlier work in debugqing by 
using principled assumption-oriented repair strategies to 
cover more bug manifestations and to suggest more poten- 
tial repairs for each bug. The transformational approach 
used by our debugger also extends the refinement approach 
used by tnost domain-independent planners. The transfor- 
tnational approach can increase problem solving efficiencv 
by enabling the problem solver to make simplifying as- 
sumptions that the debugger can replace if incorrect. 

The assumption-oriented debugging approach is still 
quite computationally expensive, due to the large num- 
ber of assumptions underlying each bug and the expense 

of evaluating each proposed repair. We achieve overall ef- 
ficiency using the Generate, Test and Debug paradigm in 
which heuristic rules are used to generate an initial hy- 
pothesis that is debugged if it turns out to be incorrect. 
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