
A Theory of Debugging Plans and Interpretations

Reid G. Simmons
MIT Artificial Intelligence Laboratory

545 Technology Square
Cambridge, MA 02139

REID@OZ.AI.MIT.EDU

Abstract

We present a theory of debugging applicable for
planning and interpretation problems. The de-
bugger analyzes causal explanations for why a
bug arises to locate the underlying assumptions
upon which the bug depends. A bug is re-
paired by replacing assumptions, using a small set
of domain-independent debugging strategies that
reason about the causal explanations and domain
models that encode the effects of events. Our
analysis of the planning and interpretation tasks
indicates that only a small set of assumptions and
associated repair strategies are needed to handle
a wide range of bugs over a large class of domains.
Our debugging approach extends previous work
in both debugging and domain-independent plan-
ning. The approach, however, is computationally
expensive and so is used in the context of the
Generate, Test and Debug paradigm, in which
the debugger is used only if the heuristic genera-
tor produces an incorrect hypothesis.

1 Introduction
Employing heuristic rules to generate an initial hypothe-
sis and then debugging if the hypothesis is incorrect has
proven to be a useful problem solving strategy (e.g., [Mar-
cus], [Hammond], [S ussman], [Simmons]). The efficacy of
this strategy depends on the presumptions that, for most
problems. the heuristics can be used to efficiently generate
hypotheses that are correct or nearly so and that debug-
ging hypotheses, while not necessarily efficient, is robust
enough to solve the problems handled incorrectly by the
heuristics.

We present a theory of debugging applicable for plan-
ning and interpretation problems. The theory is robust,
handling a wide range of bugs that arise in a large variety
of domains. Debugging is accomplished using four general
reasoning techniques: 1) assumptions underlying bugs are
located by tracing through causal dependency structures
that explain why bugs arise; 2) the directions in which to
change assumptions are indicated by regressing values back
through the dependencies; 3) bugs are repaired by using
domain-independent repair strategies that replace faulty
assumptions; and I) the goodness of proposed repairs is
estimated by determining its effect on the overall prob-
lem - whether it introduces new bugs or serendipitously
repairs other existing bugs.

‘Current address: Computer Science Department, CMU,
Pittsburgh, PA.

94 Automated Reasoning

1. Deposit sandstone,
creating SS1

2. Tilt by 7”
3. Deposit shale,

creating SHl
4. Tilt by 5”

A. The Goal State B. One Plausible Solution

Figure 1: A Geologic Interpretation Problem.

We are exploring these ideas within the Generate, Test
and Debug problem solving paradigm [Simmons]. The
GTD paradigm was developed for interpretation and plan-
ning tasks, both of which are of the form “given initial
and goal states, find a sequence of events that could trans-
form the initial state into the goal state” GORDIUS, our
implementation of GTD, has been used to solve problems
in several domains, including our primary domain of geo-
logic interpretation, blocks-world planning, and the Tower
of Hanoi problem.

In geologic interpretation, the task is to find a sequence
of events that plausibly explains how a vertical cross-
section of a geologic region (the goal state) was formed
starting from the initial state of bedrock under sea-level
(see Figure 1). The goal state describes the compositional,
topological and geometric aspects of the region. For exam-
pie, the goals in Figure la are to explain whv formations
SHl and SS1 are composed of shale and sandstone, re-
spectively; why SHI is over SS1; why SHl and boundary
Bl are oriented at 5”: and why SSl and B2 are oriented
at 12”.

In GTD, the generator constructs an initial hypothe-
sis by matching a library of heuristic (associational) rules
against the initial and goal states and by composing the
partial sets of events suggested by each rule. The initial
hypothesis is then tested. If the test succeeds, the hypoth-
esis is accepted as a solution. If it fails, the tester passes
to the debugger causal explanations for the bugs detected.

The debugger uses the four reasoning techniques enu-
merated above to locate and replace faulty assumptions
underlying the bug. When the debugger estimates that
all bugs have been repaired. the modified hvpothesis is
submitted to the tester for verification. This debug/test
loop continues until the test succeeds. Alternatively, if the
debugger appears to be moving far from a solution, the
generator may be invoked to produce a new hypothesis.

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

1.
2.
3.
4.

Deposition1 of sandstone, creating SSl
Tilt1 of 12”
Deposition2 of shale, creating SHl
Tilt2 of 5”

Figure 2: Initial, Buggy Interpretation of Figure la.

For the problem in Figure la, the generator interprets
that the deposition of SHl occurs after the deposition of
SS1, using the heuristic that an overlaying sedimentary
formation is younger since deposition occurs from above.
To interpret the orientation of SSl and B2, the generator
uses the heuristic that a sedimentary formation oriented
at a non-zero angle 8 was formed by deposition followed
by a tilt of 8. This rule derives from the fact that, in our
model of geology, deposition occurs horizontally and tilt
acts to change orientations. Another application of this
rule is used to interpret the orientations of SHl and IBl.
Combining all the constraints (and linearizing the events),
the generator produces the initial hypothesis in Figure 2.

In testing this hypothesis, two bugs are detected - in
Figure 1 the orientation of both SSl and
the orientation predicted by simulating the hypothesis of
Figure 2 is 17”. Causal explanations for why the bugs arise
are passed to the debugger. For example, the orientation of
SSl is not 12” because it was zero when deposited, Wtl
incremented it by 12”, and then Tilt2 incremented it by
an additional 5”. The debugger analyzes whether replacing
any of the assumptions underlying the bug will repair it.
Several modifications to the hypothesis are proposed, in-
cluding replacing the assumption that the parameter value
of Tilt1 is 12” with the assumption that the value is 7”,
producing the solution of Figure lb.

Our theory of debugging-and general debugging algo-
rithms are presented in Section 2, while Section 3 illus-
trates the debugging of the hypothesis in Figure 2 in more
detail. In Section 4, we analyze the completeness, cov-
erage and efficiency of our theory of debugging. Section
5 presents a comparison with other debuggers and with
domain-independent planners.

2 %gi~g
Our theory of debugging is based on the simple observation
that the manifestation of a bug is only a surface indication
of some deeper failure. In particular, bugs ultimately de-
pend on the assumptions made during the construction
and testing of hypotheses.

A bug, for our purposes, is an inconsistency between the
desired value of some expression and its value as predicted
by the tester. If the predicted value does not match the de-
sired value. it must be that one (or more) of the underlying
assumptions is faulty and needs. The debugger proposes
changes that either make the predicted value match the
desired value, or make the desired value no longer needed
to solve the problem.

The debugger uses several reasoning techniques to lo-
cate and replace assumptions underlying bugs. The de-
bugger locates the assumptions underly&g a bug by an-
alyzing causal dependency structures, which are acyclic
graphs that represent justifications for the predicted (and

desired) states of the world. The dependency structures
capture an intuitive notion of causality in which time, per-
sistence, and the effects of events are represented explic-
itly. In GORDIUS, the dependencies are produced as a
by-product of the tester’s causal simulation algorithm and
are represented and maintained using a TMS [McAllester].

Each bug actually has two dependency structures - one
explains how events cause the predicted value to arise; the
other is an explanation for why the desired value is needed
(the latter often consists of only a single assumption). For
example, Figure 3 illustrates the dependency structures for
why the orientation of SSl is predicted to be 17”, while it
is desired to be 12”, as measured in Figure la.

In Figure 3, SSl.orientation@Plan-end refers to the
orientation of the SSl formation at Plan-end, the time
associated with the goal diagram in Figure la. Persis-
tence(SSl.orientation, Tilt2.end, Plan-end) means
that the orientation of SSl did not change from the end
of the Tilt2 event through Plan-end. The statement
Change(+, SSl.orientation, 5”, Tilt2) means that
during Tilt2 the orientation of SS1 increased by 5”. The
dependency structure indicates that this change happens
because the Tilt2 event is predicted to occur, the param-
eter value of Tilt2 is 5”, and the SSl formation exists at
the time Tilt2 occurs.

The assumptions underlying a bug are located by trac-
ing back through the dependency structures to their
leaves (the boxed statements in Figure 3). To indi-
cate the direction in which to change underlying as-
sumptions, the debugger regresses values and/or sym-
bolic constraints back through the dependency struc-
tures. For example, regressing 12”, the desired value of
SSl.orientation@Plan-end, through the dependencies
of Figure 3 indicates that SSl.orientation@Tilt2.end
+ Theta2 should also be 12”. Symbolically solving for
SSl.orientation@Tilt2.end indicates that it should be
12 - Thetaa, which the debugger simplifies to 7O, since
Theta2 is known to be 5”.

Regressing further indicates that the desired value of
SSl.orientation@Tiltl.end + Theta1 is 7”; solving
yields :
Theta1 = 7”- SSl.orientation@Tiltl.end. Since the
predicted orientation of SSl.orikntation@Tiltl.end is
zero, the regression indicates that the bug can be repaired
by changing Theta1 to 7”.

The search for underlying assumptions is pruned if
the regression indicates that some expression cannot be
changed in any wav to repair the bug. For example,
if we desire SSl.orientation@Plan-end to be greater
than SSl.orientation@Tillt2.start, regression yields the
constraint SSl.orientationCQTilt2.start + Theta2 >
SSl.orientationQTilt2.start, which is simplified to
Theta2 _’ 0. Since this constraint does not mention
SSl.orientationBTilt2.start, implying there is no way
to change its value to repair the bug, the debugger does
not try to locate its underlving assumptions.

Bugs are repaired bv using domain-independent repair
strategies that reason about the dependency structures,
the regressed values, and causal domain models that ex-
plicitly detail the preconditions and effects of events. For
example, if a bug depends on an assumption about the
value of an event’s parameter, the repair strategy is to

Simmons 95

change the parameter value to its regressed value.
We have developed repair strategies for six types of as-

sumptions that account for most of the bugs that appear
in the domains we explored:

1. Bccursf type, event) is the assumption that
an event of type occurs from eventl.start to
eventl.end. One debugging strategy associated with
this type of assumption is to delete the event alto-
gether. This strategy is applicable if removing the
event will achieve the desired value of the bug. An-
other strategy is to replace the event with a similar
event, where “similar” means that the event has the
same desirable effects (i.e., achieves the same goals)
as the original event but avoids the bug. If the bug
stems from the fact that not all of the event’s precon-
ditions hold, the strategy is to find another event that
achieves the same goals but does not have the offend-
ing preconditions. If some effect of the event helps to
cause the bug, the strategy is to find an event with-
out the offending effect that still achieves all the goals.
For example, the debugger tries to repair the bug in
Figure 3 by looking for an event similar to Deposi-
tionl that can create a sandstone formation oriented
at -5”, rather than horizontally.

2. Parameter-of(event, formal, actual) is the as-
sumption that the formal parameter of event is
bound to the actual value. The repair strategy is
to change the value of the parameter, where the new
parameter value is indicated by the regression. For
example. as described above, regression through Fig-

Cre

Predicted Value

SSl .orientation@Plan-end = 17

t

ure 3 indicates that changing Thetal, the parameter
of Tilt 1, from 12” to 7” will repair the bug.

eventl.end < event2.start is the assumption that
event1 precedes event2. In our models, temporal-
ordering assumptions typically support assertions that
the attribute of some object persists in value from
eventl.end to event2.start. The debugger reorders
the two events if the regressed value of the attribute
is achieved at the start of eventl. In Figure 3, for in-
stance, Tiltl.end ,C Tilt2.start cannot be reordered
to repair the bug since at the start of Tilt 1 the orien-
tation of SSl does not equal 7”. the value desired at
Tilt2.start.

CWA(attribute.object, tl, t2) is a closed-world
assumption that no known event affects the attribute
(it persists) between times tl and t2. The repair
stratesy is to insert an event occurring between tl and
t2 that can affect the attribute in such a way as to
achieve the desired (regressed) value of the attribute
at time t2. For example, the debugger proposes
replacing the assumption CWA(SSl.orientation,
Tilt2.end. Plan-end) with assumptions that a new
tilt event with tilt parameter -5” occurs. where the
new event is constrained to occur between Tilt:!.end
and Plan-end. The parameter value of -.jO is deter-
mined analogously to that in $2 above. The repair
strategy also determines whether existing events can
affect the attribute to achieve its desired value. If so.
temporal orderings are changed to make the event fall
within the persistence interval (between tl and t2).

Desired Value

SSl .orfentation@Plan-end = 12

tfon@TiU.start + Theta2

Parameter-of(Tllt2, Theta, Theta2)

CWA(SSl.orientation, Tiltl.end. TlftP.start)

CWA(SS1 .orfentation, Deposition1 .end, Tilt1 .start)

Finurr 2: C’ausal Drpenclencv Structure for Bu, 0 that the Orientation of SSl at time Plan-end is tlot 12”.

96 Automated Reasoning

5. CWA-Exists(object, tl) is a similar closed-world
assumption indicating that the object continues to
exist at time tl since no event is known to have de-
stroyed it. The repair strategy is to insert an event
before tl that can destroy the object. For example,
one way to repair the bug of Figure 3 is to prevent
Tilt2 from affecting SSl. Since tilting applies only
to formations that exist at the time of the tilt, we can
accomplish this by assuming that some erosion event
totally erodes away SSl before Tilt2.start. Overall,
however, this is a rather poor repair since it ends up
destroying the complete geologic region.

6. CWA-Object(type, Objectl, . . . , Objectn) in-
dicates that Objectl-Objectn are the only known
objects of type. The assumption is used in reasoning
about quantified goals - a goal of the form (forall (x
: type) P(x)) is expanded to P(0 1) and . . . and
P(On) and CWA-Object(type, 01, . . . , On);
similarly for existential statements. The repair strat-
egy for CWA-Object replaces the assumption by in-
serting an event that creates a new object of type
that satisfies the constraints of the quantified state-
ment. For example, adding the goal (Exists (ru :
rock-unit) Is-Limestone(indicates that some
limestone formation existed at one time in the region
of Figure 1. The debugger can achieve this goal by
introducing an event that deposits a limestone forma-
tion, followed by an event that erodes the formation
away since limestone does not appear in Figure la.

Typically, bugs depend on a large number of assump-
tions: so many repairs are suggested for each bug. Best-
first search is used to help control the debugger. The de-
bugger evaluates the global effects of each repair to focus
on the most promising hypothesis. The primary compo-
nent of the evaluation heuristic is the number of remaining
bugs. including any unachieved top-level goals. The sec-
ondary component, used to differentiate hypotheses with
the same number of remaining bugs, is the number of
events, the idea being to prefer simpler hypotheses. This is
a reasonable metric since our planning/interpretation task
involves finding one plausible solution and the number of
remaining bugs is often a good measure of the closeness to
solving the problem.

The evaluation heuristic uses a technique that finds and
incrementally updates the closed-world assumptions that
change as a result of a bug repair. The technique is similar
to the causal simulation technique used by the GTD tester,
but is extended to handle non-linear hypotheses.

3 ebugging an Interpretation
‘This section describes the compiete behavior of our de-
bugging algorithm for the buggy hypothesis of Figure 2.
The hypothesis has two bugs - the orientations of SSI
and B2 are both 17”, not 12”. Starting first with the bug
that the orientation of SSI is l’i”, the debugger locates
the 17 underlying assumptions in the dependency struc-
tures of Figure 3 and regresses the desired value of 12”
back through the dependencies. Of these assumptions, six
are ignored by the debugger because they are considered
to be unchangeable - SSl.orientation@Plan-end=12’
because it is a goal, the values 13”. so and 0 because they

are constants, and the ordering Tilt2.end < Plan-end
because hypothesized events must occur before Plan-end.

For the three CWA assumptions, the debugger pro-
poses the same basic repair of adding a new tilt event of
-5” between the start and end of the persistence interval.
The repairs, however, are rated differently. The evalua-
tion heuristic determines that adding the new tilt between
Tilt2.end and Plan-end repairs both bugs in the initial
hypothesis but also introduces two new bugs - the ori-
entations of SNl and BI are now zero, not 5’. Adding
the tilt between Depositionl.end and Tiltl.start is con-
sidered a solution since it repairs both bugs without intro-
ducing new ones. Adding the tilt between Tilt1 and Tilt2
produces a non-linear hypothesis where the new tilt and
Deposition2 are unordered. This repair is also regarded
as a solution since one of the possible linearizations (where
the new tilt precedes Deposition2) interprets the region
correctly.

For the Occurs(tilt, Tilt2) assumption, deleting the
tilt event fixes the bug, since without ‘Tilt2 the orienta-
tion of SS1 is 12”. This repair does not solve the whole
problem, however, since it introduces the same two new
bugs as above. For the other two Occurs assumptions,
deleting the events does not fix the bug. For all three as-
sumptions, replacing events is not an applicable strategy
since our geologic models do not contain events that are
similar enough to tilting or deposition.

The two CWA-Exists assumptions yield the same basic
repair - an erosion event is proposed to destroy the SSI
formation. The evaluation heuristic rates these repairs
poorly, however, since they undo all the goals of the prob-
lem by destroying all existing formations and boundaries.
The reordering strategy does not succeed for the assump-
tion Tiltl.end < Tilt2.start because the desired value
of SSl.orientation@Tilt2.start (12”) is not achieved at
the start of Tiltl: similarly for the assumption Deposi-
tionl.end < Tiltl.start.

The debugger proposes replacing Parameter-of(Tilt I,
Theta, 12’) by the assumption that Theta is equal
to 7”, the difference between the desired value of
SSl.orientation at the end of Tilt1 and its predicted
value of zero at the start of the event. The eval-
uation heuristic determines that this repair is a solu-
tion. Similarly, for the assumption Parameter-of(Tilt2,
Theta, 12”). the debugger considers changing the param-
eter value to the difference between the desired value of
SSl.orientationQTilt2.end (12”) and its predicted ori-
entation at Tilt2.start (also 12O). This repair is rejected,
however, since the debugger determines that it is inconsis-
tent with a constraint, in our domain models that Theta
must be non-zero.

Thus. the debugger suggests seven potential repairs for
this problem, of which three are considered solutions. The
evaluation heuristic prefers the repair in which the param-
eter of Tilt 1 is altered, since this produces an hypothesis
with fewer events than the other two solutions, both of
which add new tilt events. The preferred solution is the
same as in Figure lb.

Simmons 97

4 Completeness, Coverage and
Efficiency

monly at fault) in our domains. Practical experience has
not shown the need for handling others, although it is
a fairly simple matter to extend the debugger to handle

By “completeness” we mean can the debugger fix all bugs other closed-world assumptions by making them explicit

describable within its representation language? For the as- in the dependency structures and adding repair strategies

sumptions made explicit in our causal models, the depen- for them.

dencg tracing and repair strategies are complete, in that Not so simple to handle are the assumptions that the

they can find all ways to replace assumptions to achieve a domain models are correct. Handling them is somewhat

desired value. tricky because any bug can be fixed by changing the models

One caveat is that the strategies cannot in general find in an appropriate way. For example, we could debug the

repairs that involve replacing multiple assumptions, where example in Section 3 by changing the definition of tilt so

changing any one of the assumptions separately has no that its effect was not uniform for all rock-units. Clearly

discernible effect on repairing the bug (it can handle situ- any reasonable repair strategy that changes domain models

ations where more than one assumption is faulty, as long must constrain the problem, for instance, by reference to a

as replacing at least one assumption moves the hypothesis meta-theory of the domain or by induction using multiple

closer to achieving the desired value). For example, the examples, subjects well beyond the current scope of our

debugger cannot handle situations where a bug depends research.

on two parameters being above a certain threshold, but One downside of our debugging algorithm is its high

changing either parameter alone moves the hypothesis fur- computational cost. Although each individual repair strat-

ther from repairing the bug. One area for future research egy is fairly efficient, the number of assumptions underly-

is to develop general repair strategies that can handle such ing bugs tends to grow exponentially in domains, such as

combinations of assumptions. geology, with many potential interactions among events.

Another problem is that the regression technique, while In addition, the evaluation heuristic is very expensive since

sufficient for the problems we explored, is not theoretically determining the number of remaining bugs is, in general,

complete due to the difficulty of inverting general func- exponential for the types of non-linear hypotheses pro-

tions. If the constraints produced by the regression are duced by our debugger (see [Chapman]). It is these compu-

not sufficient to determine parameter values precisely, the tational reasons that led us to develop the GTD paradigm

debugger must choose and test different values until one in which the robust, but slow, debugger is used only to

is found that solves the problem. Incompleteness arises focus on the problems handled incorrectly by the heuristic

when only a finite number of values out of an infinite set generator.

(e.g., the reals) can solve the problem. For example, if
a solution depends on a parameter value being exactly a, 5 Relations to ther ebuggess
in general it will take infinite time to test each choice be-
fore hitting on the correct solution. This observation also

and Planners
shows that even the simple technique of enumerating and
testing all hypotheses is incomplete, since it is not possible
to enumerate all hypotheses (in particular, the parameter
bindings of events) in finite time.

“Coverage” refers to how well the assumptions handled
by our repair strategies cover the range of possible bugs.
We note that to provide complete coverage, the debug-
ger must handle all the assumptions needed by the tester
to predict effects and detect bugs: the assumptions made
in specifying hypotheses, the assumptions about the ini-
tial and goal states, closed-world assumptions made by the
tester, and assumptions about the correctness of domain
models. We argue that our debugger has wide coverage.
since it currently handles all but the latter assumption
and some types of closed-world assumptions implicit in the
tester’s algorithms.

For the planning/interpretation task, hypotheses are
completely specified by the events that occur, their param-
eter bindings, and the temporal orderings between events.
Thus, pragmatically. these are the only types of assump-
tions made in constructing hypotheses that need to be
handled. Our current debugger has repair strategies to
rover each of them. Assumptions about the initial and
goal states do not need to be handled - our task specifies
that they are unchangeable, since changing the initial and
goal states constitutes solving a different problem.

The debugger currently handles three types of closed-
world assumptions that are commonly made (and are com-

98 Automated Reasoning

The approach of tracing faults to underlying assump-
tions has roots in work on dependency-directed search
(e.g., [Stallman]), model-based diagnosis (e.g., [Hamscher],
[deKIeer]), and algorithmic debugging [Shapiro]. Our con-
tribution to the dependency tracing approach is in provid-
ing principled strategies that determine how to replace the
underlying assumptions once they have been located.

Our assumption-orzented debugging approach stands in
contrast to other approaches in which repair heuristics
are associated either with bug manifestations (e.g., :X1-
terman], [Marcus]) or with certain stereotypical patterns
of causal explanations (e.g., [Hammond], [Sussman]). Our
approach handles the large number of possible ways bugs
can arise by decomposing them into combinations of a
small set of underlying assumptions. This approach tends
to give greater coverage and also tends to suggest more
alternative repairs than other approaches since we do not
have to anticipate all possible patterns of assumptions that
can lead to bug manifestations.

For example. consider the “Prerequisite Clobbers
Brother Goal” bug type in [Sussman] that occurs when an
event X, in attempting to achieve the preconditions of an
event Y, undoes a goal that had been achieved by event 2.
The only repair for this bug type given in iSussman! is to
reorder events X and Z. [Hammond] presents a similar bug
type that has an additional strategy of replacing Y with
an event that does not have the offending precondition.
Our debugger would suggest even more repairs, including

inserting an event to reachieve the goal, replacing event X,
and changing X’s parameters so as to make the goal and
precondition true simultaneously.

Our basic debugging strategy - repair one bug at a time
by analyzing domain models and then evaluating how the
local repair affects the hypothesis as a whole - is simi-
lar to the approach used by domain-independent planners
(e.g., [Sacerdoti], [Wilkins], [Chapman]). In fact, we can
use our debugger as a planner by starting with the null hy-
pothesis and treating all the unachieved, top-level goals as
bugs. A major difference, however, is that most domain-
independent planners use hypothesis refinement, in which
the system can only add information to its current hypoth-
esis, making plans increasingly more detailed. Our debug-
ger uses a transformatzonaZ approach, in which information
may be deleted as well to change previous decisions made
in solving the problem.

The transformational approach is particularly beneficial
in complex, relatively underconstrained domains, since the
problem solver can make simplifying assumptions and com-
mitments in order to increase problem solving efficiency,
with the understanding that erroneous choices can be sub-
sequently debugged. In such domains, refinement and its
concomitant strategy of least-commitment are often very
inefficient due to the expense of evaluating partially spec-
ified hypotheses.

6 Summary
Our theory of debugging involves tracing bug manifes-
tations back to the underlying assumptions, made dur-
ing hypothesis construction and testing, upon which the
bugs depend. The direction in which to change assump-
tions is indicated by regressing values and constraints back
through dependencies. Bugs are repaired by replacing as-
sumptions using a small set of domain-independent repair
strategies that reason about the dependency structures,
regressed values, and domain models that encode the ef-
fects of events. The proposed repairs are then evaluated
to determine their overall goodness.

Our theory of debugging provides a very robust frame-
work for repairing bugs in plans and interpretations. The
debugging algorithm is nearly complete and the six imple-
mented repair strategies provide good coverage of the com-
mon types of faulty assumptions. In addition, the frame-
work is easily extended to handle assumptions currently
not made explicitly. -4 subject for future work is to ex-
atnine how well the theory extends to debugging in other
tasks. such as design or diagnosis, that use different causal
models and have different task specifications.

Our approach subsumes earlier work in debugqing by
using principled assumption-oriented repair strategies to
cover more bug manifestations and to suggest more poten-
tial repairs for each bug. The transformational approach
used by our debugger also extends the refinement approach
used by tnost domain-independent planners. The transfor-
tnational approach can increase problem solving efficiencv
by enabling the problem solver to make simplifying as-
sumptions that the debugger can replace if incorrect.

The assumption-oriented debugging approach is still
quite computationally expensive, due to the large num-
ber of assumptions underlying each bug and the expense

of evaluating each proposed repair. We achieve overall ef-
ficiency using the Generate, Test and Debug paradigm in
which heuristic rules are used to generate an initial hy-
pothesis that is debugged if it turns out to be incorrect.

Acknowledgments
Helpful contributions to this paper were made by Randy

Davis, Walter Hamscher, Drew McDermott, Howie Shrobe,
and Reid Smith. This work was supported by Schlum-
berger and the Advanced Research Projects Agency of the
Department of Defense under Office of Naval Research con-
tract N00014-85-K-0124.

efesences
[Alterman]

[Chapman]

[deKleer]

[Hammond]

[Hamscher]

[Marcus]

[McAllester]

[Sacerdoti]

[Shapiro]

[Simmons]

[Stallman!

3 ussman]

[Wilkins]

R. Alterman, An Adaptive Planner, AAAI-
86, Philadephia, PA.

D. Chapman, Planning for Conjunctive
Goals, Artificial Intellzgence, vol. 32. pp 333-
377, 1987.

J. deKleer, B. Williams, Diagnosing Multiple
Faults, Artzficial Intellzgence, vol. 32, pp 97-
130, 1987.

K. Hammond, Explaining and Repairing
Plans That Fail, IJCAI-87, Milan, Italy.

W. Hamscher, R. Davis, Issues in Model
Based Troubleshooting, AI-Memo 893, MIT,
1987.

S. Marcus, J. Stout, J. McDermott, VT: An
Expert Elevator Designer, AI Magazine, vol.
9, no. 1, Spring 1988.

D. McAllester, An Outlook on Truth Main-
tenance, AI Memo 551, MIT, 1980.

E. Sacerdoti, A Structure for Plans and Be-
havior, American Elsevier, 1977.

E. Shapiro, Algorithmic Program Debuggzng,
MIT Press, 1982.

R. Simmons, Combining Associational and
Causal Reasoning to Solve Interpretation and
Planning Problems. PhD dissertation. AI-
TR-1048, MIT, 1988.

R. Stallman, G. Sussman. Forward Rea-
soning and Dependency-Directed Backtrack-
ing in a System for Computer-Aided Circuit
Analysis. ~4rtificzal Intelligence, vol. 9, 1977.

G. Sussman. A Computer Model of Sk111 .4c-
quzsztion. American Elsevier, 1977.

D. Wilkins. Domain-Independent Planning:
Representation and Plan Generation, =Irtzfi-
c2aE Intellzgence, vol. 22(3), pp 269-301. 1984.

Simmons 99

