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Abstract 

We describe a planning system which automatically 
creates abstract operators while organizing a given 
set of primitive operators into a taxonomic hierarchy. 
At the same time, the system creates categories of 
abstract object types which allow abstract operators 
to apply to broad classes of functionally similar ob- 
jects. After the system has found a plan to achieve a 
particular goal, it replaces each primitive operator in 
the plan with one of its ancestors from the operator 
taxonomy. The resulting abstract plan is incorpo- 
rated into the operator hierarchy as a new abstract 
operator, an abstract-macro. The next time the plan- 
ner is faced with a similar task, it can specialize the 
abstract-macro into a suitable plan by again using the 
operator taxonomy, this time replacing the abstract 
operators with appropriate descendants. 

I. Introduction 

The time complexity of search using weak methods is expo- 
nential, which limits its use to relatively restricted problem 
domains. Searching in a hierarchy of abstraction spaces 
has been shown to significantly reduce the time complexity 
of problem solving [Korf, 87’1. The classic abstract planner 
is ABSTRIPS [S acerdoti, 741. In ABSTRIPS, abstract op- 
erators are created by dropping certain preconditions from 
the primitive operators. The relative importance of each 
precondition is determined in advance by the programmer. 
By ignoring minor details while the major steps of the so- 
lution are being determined, only a few steps need to be 
found at each level of abstraction. The total search time 
is the sum rather than the product of these small searches 
[Minsky, 631. 

A second approach to reducing search is to store plans. 
If a problem is encountered more than once, recording 
and storing the solution as a macro-operator eliminates 
the need to re-derive it. The oldest system for generat- 
ing macro-operators is STRIPS with MACROPS [Fikes 
et al., 721. In that system, triangle tables are used to 
store sequences of steps. Every sub-sequence of a plan 
is available to be used as a macro-operator. More recent 
research projects involving the discovery and use of macro- 
operators include Korf’s work [Korf, 851 and Soar [Laird 
et al., 861. Unfortunately, macro-operators built from se- 
quences of primitive steps can only be used in a limited 
number of situations. 

Hierarchical planners take advantage of both of these 
kinds of search reduction. Our approach is most similar 
to that of Friedland, whose MOLGEN planner [Friedland 
and Iwasaki, 851 uses sheIetal plans which are like abstract 
macro-operators. For a skeletal plan to be executed, each 
abstract step must be replaced by a primitive operator. 
This is accomplished by traversing downward in an opera- 
tor taxonomy from the abstract operator to a descendant 
which is executable, given some set of initial conditions or 
constraints. In MOLGEN, the operator taxonomy and the 
skeletal plans are provided by the programmer rather than 
being generated by the planning system. 

Tenenberg [86] proposes using an operator taxonomy to 
guide the creation of plan graphs, which are abstract ver- 
sions of triangle tables. A plan graph consists of a sequence 
of primitive operators and a portion of each operator’s fam- 
ily tree. A plan graph might be viewed as a skeletal plan 
together with one of its specializations and all of the ab- 
stract operators in between. As Tenenberg’s system was 
not implemented, we do not know how a plan graph would 
actually be used in planning. 

This paper describes PLANEREUS, a planning system 
which builds up its own hierachically-structured knowledge 
base. The goal is to create abstract macro-operators to be 
used by a hierarchical planner. The major contributions 
of our work are the definitions of automatic means for cre- 
ating abstract operators, forming operator and object tax- 
onomies, and generating abstract plans. 

The next section of the paper describes two techniques 
used in generating abstract operators. One requires creat- 
ing abstract object types, each specifying a class of objects 
which may fill a particular role in an abstract operation. 
The formation of the operator and object hierarchies is 
discussed in Section 3. Once the operator hierarchy has 
been formed, hierarchical planning techniques are used to 
find a sequence of primitive steps to achieve a particular 
goal. Section 4 explains how the operator hierarchy is used 
to create abstrac&macros from primitive plans. The final 
section discusses future work, including the use of plan 
abstraction in analogical problem solving. 

The terminology used in this paper is generally consis- 
tent with previous descriptions of STRIPS-style planners 
[Nilsson, 801. An operator contains an add list, delete list, 
and precondition list. We will refer to these three lists to- 
gether as the relation lists of the operator. In addition, 
we include a fourth list, the object list, which specifies the 
types of the objects that participate in the operation. 
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2. Operator Generalization 

The first step in our approach to abstract planning is cre- 
ating abstract operators from a given set of primitive op- 
erators. This is accomplished by organizing operators into 
classes, where a class consists of operators that share one or 
more literals on their respective relation lists. An abstract 
operator is created which embodies the common aspects of 
members of the class. This operator becomes the parent of 
the members of the class. The result is a taxonomic hier- 
archy, with primitive operators as the leaves and abstract 
operators as the internal nodes. 

We use two forms of generalization, which may occur 
separately or together during the construction of an op- 
erator taxonomy (see Section 3). The first occurs when 
two operators have equivalent relations but different ob- 
ject types. For example, the operators GRASP-BLOCK 
and GRASP-PENCIL both require the relation NEAR(ROBOT, 
?x) and add the relation HOLDS(ROBOT, ?x). However, in 
one case the object type of ?x is BLOCK and in the other 
case it is PENCIL. PLANEREUS generalizes the operators 
by forming both an abstract operator and an abstract ob- 
ject type. 

Figure la presents an example of generalization over ob- 
ject types. The operators are depicted by the larger boxes. 
An arc between two operators indicates a parent-child re- 
lationship. Inside the operators, circles signify the object 
variables. The small rectangles represent relations, with 
arcs drawn to their arguments.l The relations above the 
circles indicate the preconditions of the operator; those 
under the circles are produced by the operator. Below the 
operator hierarchy is the object hierarchy. The ovals repre- 
sent object types. Each object variable from the operator 
hierarchy is listed in the oval corresponding to its type. 

Like its children, AB-0~1 requires NEAR(ROBOT, ?x) 
and produces HOLDS(ROBOT, ?x). However, AB-0~1 has 
neither PENCIL(?X) nor BLOCK(?X) on its object list. In- 
stead, it has AB-OBJ~(?X), an abstract object type which 
includes, at this point, pencils and blocks. If another 
GRASP operator, such as GRASP-BALL, were added to the 
operator set, the new operator would be made a child of 
AB-0~1 and the object type BALL would become a child of 
AB-0~~1. Thus, AB-0~1 is an operator for “grasping” and 
AB-0~31 represents “grasp-able” objects. 

The second type of operator generalization occurs when 
two operators share only some of their relations. For 
example, consider the operators PICKUP-BLOCK, for get- 
ting a block from the table, and LIFT-OUT, for get- 
ting a block from a box (Figure lb). Both add the 
relation CARRY(ROBOT, ?x) and have the precondition 
HOLDS(ROBOT, ?x). However, PICKUP-BLOCK deletes the 
literal ON (?X, ?Y), while LIFT-OUT deletes IN (?x, ?Y). 
Generalizing these two operators gives us AB-OP:! which 
cant ains their common relations. 

lTo simplify the diagrams,the ROBOT object is not shown and 
the relations involving ROBOT are drawn with only one argument. 

GRASP BLOK GRASP PENCI 

?12 ?15 ?18 
J cBox?pG) 

Figure 1: Generalizing on a) object types and b) relation lists. 

3. erator and bject Tmonomies 

In planning by means-ends analysis (MEA), an operator is 
selected for consideration if a literal from the goal descrip- 
tion matches a literal on the operator’s add list. For an 
abstract operator to be useful to an MEA planner, it must 
add at least one literal. Therefore, PLANEREUS gener- 
ates sub-hierarchies consisting of operators that share one 
or more literals on their add lists. The algorithm for adding 
new operators to the hierarchy is given below. The major 
points are illustrated in the following example of how one 
sub-hierarchy, shown in Figure 2a, is constructed. 

For each operator NEW in the input set: 
Let set S be those leaf operators of the hierarchy 

which share at least one add relation with NEW, 
INSERT (NEW, S). 

Define INSERT (parameters MEW, S) 
For each operator OP in S, GENERALIZE (NEW, OP). 

Define GENERALIZE (parameters NEW, OP) 
If NEW is a specialization of OP, 
Then LINK-PARENT-CHILD COP, NEW). 
ElseIf NEW is a generalization of OP, 
Then LINK-PARENT-CHILD (NEW, OP) and 

INSERT (NEW, parents of OP). 
ElseIf NEW and OP share relations, 
Then create TRP with their common relations, 
If TMP matches existing abstract operator AB, 
Then LINK-PARENT-CHILD (AB, NEW), discard TMP. 
Else LINK-PARENT-CHILD (TMP, NEW), 

LINK-PARENT-CHILD (T&K', OP), and 
INSERT (TMP, parents of OP). 

Else {New and OP have no shared relations>. 

Suppose the operator PUT-BLOCK, for placing a block 
into a box, is the first operator in the hierarchy. Next, sup- 
pose POUR-WINE, which transfers wine from a wine bottle 
to a glass, is added. The new operator is compared to 
the old, and the common literals are extracted to form 
the abstract operator AB-OP3. In addition, AB-OBJ2 and 
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KEY: 
C = CARRY 
H = HOLD 
N = NEAR 

Figure 2: a) The “put in” sub-hierarchy. b) The “pick up” sub-hierarchy.2 

“destination” AB-OBJS ?41 

AB-OBJ3 ?25 ROOM ?39 

c 

GLASS ?23 AB-OBJ5 ?29 

BOX ?20 ?31 DRAWER ?27 

AB-OBJQ are formed to represent “put-in-able” and “des- 
tination” object types, respectively. 

The next operator to be added is PUT-PENCIL, for 
putting a pencil into a drawer. The new operator is 
compared to each of the primitive operators of the sub- 
hierarchy in turn. It is first compared to PUT-BLOCI<. The 
two operators have equivalent relation lists but different 
object types. A new abstract operator, AB-OP4, and two 
abstract object types are formed. PUT-BLOCK and PUT- 
PENCIL are made children of AB-OP4. 

AB-OP3 AB-OP4 

/ \. / 1’ 

POUR WINE PUT BLOCK PUT PENCIL 

Now AB-OP4 must be added to the hierarchy. Because 
it is an abstraction of PUT-BLOCK, it belongs somewhere 
above PUT-BLOCK in the hierarchy. Therefore, AB-OP4 is 
compared to AB-OP3, the parent of PUT-BLOCI<. Since 
AB-OP4 contains all of the relations found in AB-OP3, plus 
others, it is a specialization of AB-OP3 and is placed be- 
tween AB-OP?, and PUT-BLOCK. The direct link between 
AB-OP3 and PUT-BLOCK is deleted, since the indirect link 
through AB-OP4 replaces it. The LINK-PARENT-CHILD pro- 
cedure checks for and eliminates redundant links of this 
type. As a result, the order in which the primitive oper- 
ators are added does not affect the final structure of the 
operator hierarchy. 

We resume consideration of PUT-PENCIL, which is now 
compared to POUR-WINE. AB-OP3 generalizes PUT-PENCIL 
and POUR-WINE. Siiice AB-OP3 is already an ancestor of 
PUT-PENCIL no changes are made. 

Next PUT-BOX, for putting one box into another, is made 

c) Related object sub-hierarchies. 

a child of AB-OP$. This single link reflects the generaliza- 
tion of PUT-BOX with POUR-WINE as well as with PUT- 
BLOCI< and PUT-PENCIL. The last operator to be added 
to this sub-hierarchy is PUSH-TRUNK, for moving a trunk 
into a room. When it is compared to PUT-BLOCI<, AB-OP5 
is formed. AB-OP5 is more general than either AB-OP4 or 
AB-OP3 so it is moved to the top of the sub-hierarchy. 

The sub-hierarchy shown in Figure 2b illustrates an ad- 
ditional point .2 An operator which contains two instances 
of the same literal can be matched with an operator con- 
taining one instance of the literal in two ways. For exam- 
ple, picking up a wine bottle causes both the bottle and 
the wine to be carried. In comparing PICKUP-BLOCK to 
PICKUP-W-B, the block can correspond to either the bottle 
or the wine. In the former case, the common ancestor is 
AB-OPT, since both block and bottle are initially on the 
table and held. In the latter case, the common ancestor 
is AB-0~8. To avoid ambiguity, PLANEREUS explicitly 
records the mappings between corresponding variables on 
each parent-child link. 

The object sub-hierarchies group object types into cat- 
egories based on functional similarity. For example, AB- 
oBJ7 represents “put-in-able” objects and AB-OBJ8 repre- 
sents containers which are “destinations” (see Figure 2~). 
Since the same object type may appear in several sub- 
hierarchies, we are defining the functional semantics of the 
object types, based upon the roles they play in operators. 
For example, from Figures 1 and 2 a box is understood 
to be a pick-up-able, put-in-able object which can serve as 
a source or destination container for other objects. (Note 
that while there are four ovals labeled BOX in the figures, 
they all correspond to the same node in the hierarchy.) 

2More of the “pick-up” sub-hierarchy appears in Figure lb. 
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The size of the operator hierarchy depends on both the 
number of input operators and on the number of liter- 
als in the relation lists of the operators. For n opera- 
tors with m relations per operator, the largest hierarchy 
is O(fi2 

1 
rrs+l), which is linear over the number of op- 

erators ut exponential over the complexity of the opera- 
tors. This worst case exists if the hierarchy is composed 
of non-overlapping power sets, each generated from m + 1 
relations. Our empirical results are much better than the 
worst case figures. With an average m of 4, with n = 57, 
114, and 185, the hierarchy contained 107, 195, and 296 
operators, respectively, or about 2n. With an average m 
of 8, with n = 18, 32, and 47, there were 47, 94, and 130 
operators, respectively, or under 3n. 

In building the operator hierarchy, GENERALIZE is called 
at most O(n2) times with primitive operators and O(n2”) 
times with abstract operators. The time complexity for 
finding the common relations for two operators is O(m!), 
in the worst case.3 Determining whether or not an abstract 
operator already exists in the hierarchy requires examining 
at most O(m2) other operators, where each comparison has 
O(m2) complexity. Thus, the worst case time complexity 
for building the hierarchy is O(n2 + n2”)(m! + m4)). If 
m has a small, fixed, maximum value, the complexity is 
O(n2). 

4. Plan Abstraction 

Establishing an operator hierarchy is a major step to- 
wards our goal of automatically generating abstract plans. 
PLANEREUS forms an abstract plan by replacing each 
operator in a primitive plan with one of the operator’s an- 
cestors from the taxonomic hierarchy. It then saves the 
sequence of abstract operations as an abstract-macro. The 
primitive plan is discarded, since it can be recreated by 
specializing the steps in the abstract-macro. 

A key issue is determining which one of a primitive op- 
erator’s ancestors should be used in the abstract plan. Our 
approach is to find the most general plan that retains the 
same producer-user structure as the original plan. An op- 
erator with a particular literal on its add list is said to 
be a producer of that literal, while an operator with the 
literal on its delete list is a consumer of the literal. An 
operator with the literal on its precondition list is a user 
of the literal, and is said to require the literal. In addition, 
a literal from the goal description is required (used) by the 
goal. Thus, each literal that is produced by an operator 
and later used by either an operator or the goal can be 
seen as a link between the producer and the user. These 
links determine the producer-user structure of the plan. 
The producer-user links reflect the purpose of each step of 
the plan, since an operator is included in the plan only if it 
produces a literal required by the goal or another operator. 

We generate an abstract plan from the primitive plan as 
follows. First, we mark those literals in the add and pre- 

3When neither operator contains multiple instances of a relation, 
the time complexity is O(m2). This is the normal case. 

KEY: 1 AB-OP8 1 1 AB-OP5 

C = CARRY 
H = HOLD 
N = NEAR 
BLOCK ?98 
BOX ?99 

i I J 
Figure 3: Abstracting a plan. 

condition lists of the primitive operators that contribute 
to the producer-user structure of the plan. Then, for each 
primitive operator, we move upward in the taxonomy, ex- 
amining the precondition and add lists of each ancestor in 
turn. Finally, we select the highest operator in the sub- 
hierarchy which contains all of the marked literals in its 
respective relation lists. 

In Figure 3, the bottom row of primitive operators are 
the steps in a plan for putting a block into a box. At 
the right is the goal of the plan: IN(?BLOCK, ?BOX). The 
producer-user structure of the primitive plan is indicated 
by lines connecting the place a literal is produced with the 
place it is used. Above each primitive step are its ancestors 
from the operator hierarchy. According to our scheme, the 
operators selected for inclusion in the abstract plan are 
AB-0~1, AB-OP2 and AB-OP4, shown in bold outline. 

Note that the operator selected is not always the most 
abstract ancestor of a primitive step. Selecting a more 
general operator can lead to a plan in which some steps 
serve no purpose. For example, if AB-OP9 and AB-OP3 
were used instead of AB-OP2 and AB-0~4, HOLD(ROBOT, 
?x) would no longer be required by the plan and the first 
step would be unnecessary. If AB-OP5 were used, neither of 
the first two steps would be necessary. We would then be 
losing the knowledge gained during the planning process. 

Once the abstract operators have been selected, they are 
put together into an abstract-macro which has relation and 
object lists like the other operators. Figure 4a presents AB- 
MACH, the abstract-macro created from the plan in Figure 
3. The preconditions of each step are regressed to the front 
of the sequence; those not produced in the plan become the 
preconditions of the abstract-macro. Similarly, the adds 
not consumed and deletes not produced in the plan become 
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AB- MAC1 KEY: 
N = NEAR 

AB-OPl AB-OP2 AB-OP4 

AB-OP5 

/ \, 

AB-OP3 AB-OPlO 

/ /\ 

AB-OP4 A&MAC1 
, 

Figure 4: a) An abstract-macro, b) placed in the hierarchy 

the adds and deletes of the abstract-macro. 
Forming the object list of the abstract-macro may re- 

quire forming new abstract objects which span several 
sub-hierarchies. For example, AB-MACH involves an object 
which must be grasp-able, pick-up-able and put-in-able. 

Finally, the abstract-macro is added to the operator hi- 
erarchy using the same process that was used for the prim- 
itive operators. AB-MACH would be added to the “put in” 
sub-hierarchy as shown in Figure 4b. Note that the part- 
whole relationship between AB-OP4 and AB-MACH does not 
affect their relative positions in the hierarchy. 

New operators are automatically incorporated into exist- 
ing abstract plans. An operator that becomes a descendant 
of AB-OP2, for instance, automatically becomes a potential 
step in a specialization of AB-MAC1. 

1 

5. Conclusion and Future Wcbrk 

All aspects of PLANEREUS described in this paper have 
been implemented. PLANEREUS can form operator and 
object hierarchies, generating the necessary abstract oper- 
ators and object types. It can also form abstract-macros 
from primitive plans. The planner module has been de- 
signed and partially implemented. Future work will in- 
clude running benchmark tests to compare the perfor- 
mance of the planner given different amounts of knowledge 
(i.e., primitive operators alone; operator taxonomy alone; 
operator taxonomy with abstract-macros). 

Like triangle tables [Fikes et al., 721, abstract-macros 
contain enough information to use any sub-sequence of 
steps as a macro. Unfortunately, increasing the number 
of macros also increases the amount of search required to 
find the right one. One solution would be to store ab- 
stract plans for only certain types of problems. For ex- 
ample, [Korf, 851 d iscusses problems with non-serializable 
sub-goals as one class for which macros are useful. Another 
approach is used in Soar [Laird et al., 861, which improves 
the efficiency of its macro-operator representations by not- 
ing common sub-sequences. 

The purpose of forming abstract-macros is to allow a so- 
lution for one task to guide the construction of a solution 
for a similar task. Thus, PLANEREUS can be considered 
an analogical problem solver [Carbonell, 861. Because of 
the methods we employ for generalizing operators, simi- 
larity between tasks is a function of relations in common 
rather than objects in common [Gentner, 831. A limita- 
tion of the current system is that it only matches relations 

with identical predicate names when generalizing opera- 
tors. Thus, OVER(?X, ?Y) does not match ABOVE(?X, 
?Y). It would be useful to build up a relation hierarchy 
in the same way we are building the operator and object 
hierarchies. 

An important next step is to determine to what ex- 
tent the methods described here can be used to transfer 
planning knowledge between what would usually be con- 
sidered separate task domains. Note that a single opera- 
tor sub-hierarchy can span several domains. For instance, 
the “put-in” sub-hierarchy might span blocks-world, pro- 
gramming (assignment), and cooking domains. We will 
investigate the formation, selection, and specialization of 
abstract-macros that cross task domain boundaries. These 
processes constitute the derivation of the new plan [Car- 
bonell, 861, and are a critical part of plan reuse and analog- 
ical problem solving. We are working towards an approach 
to problem solving that is predominantly top-down refine- 
ment rather than backward-directed search. 
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