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Abstract

Forward-chaining productions have been used to
implement some of the most significant expert
systems. However, most forward chaining pro-
duction languages make no provision for deal-
ing with lexical imprecision. This paper briefly
presents a language which supports fuzzy match-
ing between condition patterns and facts in work-
ing memory. Then discussion is focussed on what
part should be played in conflict resolution by
the relative truth-values of fuzzily matched pro-
duction instantiations.

1 Introduction

Forward-chaining productions have been used to imple-
ment some of the most significant expert systems [McDer-
mott, 1980]. However, most forward-chaining production
languages make no provision for handling lexical impreci-
sion. Thus, for example, there is no notion of fuzziness in
such languages as OPS5 [Brownston et al., 1985], OPS83
[Forgy, 1983], ART [Inference Corporation, 1986}, YAPS
[Allen, 1983], YES/L1 [Milliken et &l., 1985], or YES/OPS
[Schor et al., 1986].

The fuzzy reasoning literature contains many references
to fuzzy production systems [Togai and Watanabe, 1986].
Since these systems are data-driven, they may be viewed
as forward-chaining. However, they are different from the
classical type of forward-chaining production system.

On each cycle in the classical type of forward-chaining
system, only a subset of the productions have satisfied con-
dition parts, and of these, only a subset, typically one, is
fired. A conflict resolution algorithm is used to determine
which of the satisfied productions should be fired. On the
other hand, in a fuzzy production system [Whalen and
Schott, 1983}, all productions can be considered as firing
during each cycle (but with strengths ranging along a con-
tinuum from “not at all” to “completely”), rather than a
subset of productions firing in the all or nothing fashion
characteristic of classical forward-chaining production sys-
tems. The theme of this paper is bridging the gap between
classical forward-chaining production languages and fuzzy
production systems, by extending classical production lan-
guages to handie lexical imprecision.

The main purpose of this paper is to discuss the relation-
ship between fuzzy reasoning and a key aspect of forward-
chaining productions, namely conflict resolution. All ex-
amples are couched in an experimental forward-chaining
production language, called FMUFL, which supports the
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use of lexical imprecision. In Section 2, the handling of lex-
ical imprecision in FMUFL is briefly described. In Section
3, some issues involved in conflict resolution in general are
presented; then attention is focussed on issues particular
to doing conflict resolution in fuzzy production languages.
The strategy used in FMUFL is described and contrasted
with the approach used in FLOPS [Buckley et al., 1986;
Siler et al., 1987), the only other fuzzy forward-chaining
production system language known. Some conclusions are
presented in Section 4.

2 Lexical Imprecision in FMUFL

FMUFL was derived by adding provision for lexical impre-
cision to an earlier language called MUFL [Bowen, 1986;
Bowen, 1987; Bowen, 1988]. Fuzzy reasoning in FMUFL
is based on both finite and infinite fuzzy sets. Finite sets
are described by exhaustively listing those elements of the
universe of discourse which have non-zero degrees of mem-
bership. Infinite fuzzy sets are represented as I-type sets
[Baldwin and Zhou, 1984].

I-type sets are used to represent concepts involving an
underlying variable which is amenable to interpolation.
For example, the following declaration defines the fuzzy
concept ezpensive:

table(expensive,food,[0,200],
[[20,0],[50,0.5],[70,0.8],[100,1]]) (1)

Here, the universe of discourse, [0,200], is a segment of
the real number line representing prices of food, and ez-
pensive is the label for a fuzzy subset of this universe. The
fugzy set is defined by giving an ordered list of points from
the universe of discourse and associating with each point
its membership grade in the set, in the interval [0,1]. If the
membership degree in the fuzzy set of two prices is known,
the membership degree of some intervening price can be
interpolated.

Finite sets are used to represent concepts such as kun-
gry which do not involve an underlying variable amenable
to interpolation. These sets are declared by exhaustively
listing their members, giving the degree to which each is a
member of the set. For example, the following defines the
fuzzy set hungry which is a fuzzy subset of some discourse
universe of people:

hungry(mary) with truth 0.8 (2)
hungry(tom) with truth 0.5  (3)
hungry(johkn) (4)

'Bold face indicates an FMUFL reserved word.
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FMUFL also provides a mechanism, called a semantic
relationship, which can be used to ease the burden of defin-
ing fuzzy sets. If a fuzzy set, be it an I-type set or a finite
set, has been explicitly defined to represent some concept,
other fuzzy sets which represent related concepts can be
defined by declaring semantic relationships which specify
how the concepts are related. FMUFL supports several
types of semantic relationships, including antonyms and
synonyms. Suppose, for example, that the concept ezpen-
sive is defined as in (1) above. If cheap is defined as an
antonym of ezpensive, as follows

ensive, cheap) (5)

FMUFL will treat the concept cheap as equivalent to not
ezpensive. That is, it will treat cheap as if it were defined
by the following table:

table(cheap,food, [0,200],
([20,1],[50,0.5],(70,0.2],(100,0]])  (6)

Similarly, defining
modified synonym( [ravenous, very hungry] ) (7)

means that FMUFL will treat ravenous as synonymous
with the hedged linguistic value very hungry; that is, as if
it were defined by the following;:

ravenous(mary) with truth 0.64 (8)
ravenous(tom) with truth 0.25 (9) 3
ravenous(john) (10)

Fuzzy propositions involving concepts, such as kungry,
which must be specified through exemplification rather
than interpolated, are represented in working memory as
members of finite fuzzy sets. Thus, for example, the work-
ing memory entry (2) which might represent the descrip-
tive proposition

Mary is quite hungry

is treated as specifying the membership degree of mary in
the finite fuzzy set hungry. Similarly, the entry

likes(mary, bread) with truth 0.7 (11)

which could be used to represent the relational proposi-
tion

Mary rather likes bread

is treated as specifying the membership degree of the pair
(mary, bread) in the finite fuzzy set likes. These working
memory facts can be used, with semantic relationship def-

initions, to match production condition patterns such as
(12) and (13)

ravenous(Who) (12)
likes(mary,What) (13)

2The effect of the not modifier is to complement member-
ship grades.

3The effect of the very hedge is to square membership
grades.

*Tokens, like Who and What, which start with upper case
letters are variables.
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Condition patterns involving a variable, such as price,
whose values are amenable to interpolation, are handled
using I-type fuzzy sets. Thus the working memory fact

price(bread, food, 35) (14)

can be used, in conjunction with the I-type sets defined
by (1) and (5), to match, with different truth values, pro-
duction condition patterns such as (15) and (16).

price(bread, food, expensive) 15
price(What, food, very cheap) (16

Just as the LHS of a production can contain fuzzy
queries and/or match fuzzy propositions in working mem-
ory, so its RHS can assert/retract fuzzy propositions
to/from the working memory. Consider production (17).

when ravenous(P) and likes(P,F) and
price(F,food, fairly cheap) (17)
then store should_buy(P,F) qualified

This states that whenever it is possible to find a pair of
entities which satisfy the composite fuzzy query

ravenous(P) and likes(P,F)
and price(F,food, fairly cheap) (18)

then it should be asserted in the working memory that
the pair of entities belong to the finite fuzzy relation

_should_buy, the membership degree being equal to the

truth value of the composite fuzzy query in the LHS of
the rule. Based on working memory facts (2), (11) and
(14), the following instantiation of production (17) would
enter the conflict set:

when ravenous(mary) and likes(mary,bread) (19)
and price(bread,food fairly cheap)
then store

should_buy(mary,bread) qualified

The me'mbership degree of (19) in the conflict set is the
same as the truth value of the LHS, that is 0.64, which is
calculated as follows.

The truth value of ravenous(mary) is 0.64, based on the
following: the truth value of hungry(mary) is 0.8, from
(2); ravenous is very hungry from (7); very 0.8 is 0.64.
The truth value of likes(mary, bread)is 0.7, from (11).
The truth value of price(bread, food, fairly cheap)is 0.87,
based on the following: the price of bread is 35 from (14);
the membership of 35 in ezpensive is 0.25, based on inter-
polation between the membership grades given in (1) for
20 and 50; cheap is not ezpensive; fairly cheap is fairly not
ezpensive; fairly not 0.25'is (1 — 0.25)%% = 0.87. 5 The
overall truth value of the LHS of the instantiation is de-
rived from these constituent truth values, by interpreting
logical and as min; that is 0.64A0.7A0.87 = 0.64.

5The fairly hedge returns the square root of a membership
grade.



3 Conflict Resolution in Forward
chaining Production Systems

Usually, more than one production is satisfied on any one
cycle of a forward-chaining production system and fre-
quently some of these productions may have several instan-
tiations. A conflict-resolution strategy is a coordinated set
of principles for selecting, among competing production
instantiations, a subset to be executed. In most systems,
only one production instantiation is executed on each cy-
cle, although there are some systems {Siler et al., 1987]
which may execute several instantiations per cycle.

Conflict resolution is of vital importance in a forward-
chaining production system because it influences two cru-
cial aspects of the system [Brownston et al., 1985; Mec-
Dermott and Forgy, 1978] : its sensitivily and its stabil-
ity. A system that is responsive to the demands of its
environment is said to display semsitivity. One that is
able to maintain continuity in its behaviour is said to dis-
play stability. Of these two characteristics, sensitivity is
the more important; it is what distinguishes the forward-
chaining production paradigm from other computational
models. There are several kinds of sensitivity. A system
should be sensitive not just to the contents of, but also to
changes in, its working memory. Even more importantly,
a forward-chaining interpreter should also be sensitive to
its own state; if there is some state information available
which indicates that the system is about to enter an infi-
nite loop, the interpreter should immediately take account
of this information, to avoid looping.

A conflict resolution strategy may be viewed as a series
of seives. Production instantiations are “poured” into the
topmost seive, those that filter through being passed on to
the next seive, and so on, until an acceptable set of firable
instantiations (typically of cardinality 1) is produced. The
interpreters for different production system languages use
different seives. The choice of seives to be used in a con-
flict resolution strategy, and the order in which they are
to be applied, depends on the class of problem for which
the production system language is intended. Some lan-
guages [Forgy, 1983] allow the programmer to design his
own conflict resolution strategy.

Though OPS5 is now a relatively old forward-chaining
language, as a default strategy for general purpose pro-
gramming, its conflict resolution strategy (or strategies,
since two variants are provided) is still the most valid. The
MEA variant of this strategy is particularly useful, since
it supports task-oriented programming [Brownston et al.,
1985]. Consequently, when designing the conflict resolu-
tion strategy for FMUFL the OPS5 strategy was chosen as
a basis. The FMUFL strategy was to be upwardly compat-
ible with the OPS5 strategy: when no lexical imprecision
was present, the FMUFL strategy was to be the same as
that for OPS5.

The OPS5 strategy consists of the following five seives,
applied in the order given: refraction; relative recency; rel-
ative element specificity; relative test specificity; arbitrary
choice. (However, recency and element specificity are not
really separated; they are implemented by the same code.)
Refraction means that an instantiation should be removed
from the conflict set if it has fired on a previous cycle and
if it has been present in the conflict set on each cycle since

it last fired. Relative recency specifies that, of the instanti-
ations remaining in the conflict set, all should be removed
except those which match the most recently asserted of all
those facts which are matched by any instantiation in the
conflict set. Relative element specificity means that, when
comparing two instantiations, preference should be given
to the one which is based on a larger subset of the facts
(elements) in working memory. Relative test specificity
dictates that, of the remaining instantiations, preference
should be given to those with the greatest number of tests
in the LHS. Arbitrary choice is only used if the previous
seives have failed to reduce the conflict set down to one
instantiation: an instantiation is chosen at random from
among those remaining.

The conflict resolution strategy in a fuzzy language must
also consider the absolute and relative truth-values of in-
stantiations. An absolute truth-value seive would prevent,
from entering the conflict set, any instantiations which
have a truth-value below some threshold. A relative truth-
value seive would allow only those instantiations which
have the highest membership grade, of all those remaining
in the conflict set, to pass through to the next seive. So,
in designing the conflict resolution strategy for FMUFL, it
was necessary to determine where to place these truth-
value seives in the sequence. In FMUFL, the default
threshold applied to absolute truth-values is 0.5, but this
can be altered by the programmer; the appropriate posi-
tion for this seive is obvious: it should be applied first,
even before refraction, since its function is to prevent in-
stantiations from entering the conflict set at all.

However, the correct position for the relative truth-
value seive is less obvious. There seems to be only one
other fuzzy forward-chaining production system language,
namely FLOPS [Buckley et al., 1986, Siler et al., 1987].
There are two versions of FLOPS, a serial version [Buck-
ley et al., 1986] in which only one instantiation fires per
cycle, and a parallel version [Siler et al., 1987] in which
several instantiations may fire per cycle. In the serial ver-
sion of FLOPS, which is also based on OPS5, the relative
truth-value seive is the first seive applied in conflict res-
olution. However, based on our perception of the need
to support the task-oriented programming methodology
commonly advocated [Brownston et al., 1985) for forward-
chaining productions, the relative truth-value seive should
be applied much later in conflict resolution.

There were six possible positions for this seive, marked
(a) through (f) below.

(a) =
refractoriness
(b) =
recency
(c) =
element specificity
(d) =>
test specificity
{e) =
arbitrary choice.
{f) =
Position (c) does not really exist in languages with an
OPS5-like conflict resolution strategy where both recency
and element specificity are implemented by the same code.
However, the position is identified here, to make the point
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that recency supports a second order sensitivity, (it is sen-
sitive to changes in the state of working memory), whereas
element specificity provides only first order sensitivity (to
the contents of working memory). It turns out, however,
that position (c) is not appropriate for the relative truth-
value seive anyhow, as will be seen below.

Position (a) was rejected since the refractoriness crite-
rion ought to be first because it protects the system from
infinite loops. Arbitrary choice should be the principle of
last resort, so position (f) would be pointless.

Position (b) was rejected, based on the following reason-
ing. The truth-value of an instantiation reflects the com-
patibility between the state description in working memory
and the (possibly abstract) state description in the LHS of
the production on which the instantiation is based. In this
respect, truth-value is similar to test specificity and con-
tributes to the stability of the system rather than to its
sensitivity, although like element specificity it could also
be regarded as contributing to first oxrder sensiiivity. Since
the recency seive contributes to the second order sensitiv-
ity of the system, recency ought to precede truth-value in
conflict resolution.

Position {c) had to be eliminated in order to meet a
primary aim in the design of FMUFL: to ensure that
methodologies which have evolved for programming in
crisp forward-chaining languages should also be usable in
FMUFL. The most important such methodology is the
idea of task oriented programming [Brownston et al., 1985;
Bowen, 1987), in which each productxon is associated with
a particular task in a hierarchy and has, as its first condi-
tion pattern, a test for the presence in working memory ofa
flag which indicates that the task is active. Task-activation
flags are asserted into and removed from working memory
in much the same way as activation records are pushed
onto and popped from a stack during the execution of a
program written in a traditional block-structured proce-
dural language.

In order to support the task-oriented programming
mc»hudmogy, element specificity must be applied before
truth-value in conflict resolution. This can be seen by
considering a fragment from a program that implements
an extended version of the grocery configuration problem
[Winston, 1984] which is commonly used to expla.in task-
oriented progra.mmmg The grocery problem is extended
to include lexical 1mprec1smn by specifying that items,
which complement groceries already selected, should only
be added to the selection if they are cheep, where cheap is
fuzzily defined, as in (1) and (5). The task of adding com-
plementary items is implemented as a collection of produc-
tions like (20),

when doing(add_cheap_extras) and

selected(List) and potato_chips in List

and untrue(pepsi in List)

and price(pepsi,food,cheap)

make NewList = pepsi plus List and  (20)
replace selected (List)

by selected(NewList)

each of which checks for a situation in which an item should

De auaea Aacuuona.uy, a prouucu()ﬁ hke (41} 15 neeaeu,

then
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when doing(add_cheap_extras)
then remove doing(add_cheap_extras) (21)

to terminate the task by removing from working memory
the flag which indicates that the task is active; this pro-
duction should fire only after all satisfied productions like
(20) have been executed.

Consider the point where some other production has just
stored in working memory a flag to activate this task. The
relevant working memory elements, with their associated
time-tags might look like this:

price(pepsi, food, 35)
selected([bread,jam,potato_chips]) time tag 30 (23
doing(add_cheap_extras) time tag 31 (24

The instantiation of (20) would only have a truth-value
of 0.75, based on the membership of 35 in the fuzzy set
cheap, while the instantiation of (21) would have a truth-
value of 1; basing a choice between these iwoinstantiations
on relative truth-values would, therefore, prevent the ad-
dition of pepsi to the grocery selection. Indeed, the only
items that could ever be added to the selection are those
with prices having a membership grade of 1 in the fuzzy set
cheap. By contrast, if relative element specificity were ap-
plied before relative truth-value, the instantiation of (20)
would dominate, giving the desired behaviour. Relative
element specificity must, therefore, be used before relative
truth-value. Otherwise, the facility for handling lexical
imprecision is eliminated; tasks will be terminated before
fuzzily satisfied productions for performing the tasks have
a chance to act. Position (c), therefore, is not appropriate
for the truth-value seive.

There remains the choice between positions (d) and (e).
Arguments can be advanced in favour of both positions.
An argument in favour of (d) could be as follows. The
truth-value of an instantiation depends on the working
memory items matched, so using it contributes to the first-
order sensitivity of a forward-chaining system. The test
specificity of an instantiation depends on the underlying
production, not on the data in working memory, so it does
not contribute to semsitivity, but to stability. Semsitivily
is more important than stability, so truth-value should be
considered before test specificity. But a sensitivity-based
argument could also be made against (d). For the sake of
brevity, however, this will not be presented here.

Instead, noting that the choice between positions (d)
and (e) is not clear cut, we chose position (e) for the fol-
lowing pragmatic reason. The conflict resolution strategy
provided by a language is a tool to be used by program-
mers. Apart from arbitrary choice, which is a conflict reso-
lution principle of last resort, the strategy should produce
program behaviour which is easz!u predictable by both the
author and the reader of a program. Furthermore, a con-
flict resolution strategy should enable the programmer to
achieve a particular flow of control if he has a specific one
in mind. The programmer can utilize the test specificity
seive to fine-tune his program by adding extra tests to a
particular production so as to enable one of its instantia-
tions to fire ahead of those of some other production. The
truth-value seive, however, cannot be exploited in the same
way. It i is usua.lly very dlﬂicult to predict the overa.ll truth
VaJ.ul: Ul a I.ull'l)l.lllc wabulluauuu whx}c a pxusl.cuu La bc-
ing written, especially when truth values may depend on

time tag 4  (22)



ungar innnt Thue haced the need to support

- an nrooram_
user 1ir lyuv 2 11uS, UaSTa On the need Supp OIY pLrogiaii=

mer determmatlon of execution flow, test specificity ought
to precede truth-value in conflict resolution; that is, the
truth-value seive should be placed in location (e) above.

The differing approaches taken to conflict resolution in
FMUFL and FLOPS means that these two languages are
suitable for different classes of application. The simulta-
neous firing of several instantiations in the parallel version
of FLOPS gives this version of the language some of the
flavour of the production systems described in the fuzzy
reasoning literature [Whalen and Schott, 1983]. This ver-
sion of the language may be appropriate for fuzzy process
control applications but para.llel ﬁting of instantiations pre-
vents the bYT)é of execution flow requlreu for task-oriented
programming.

The rationale underlying the choice of conflict resolu-
tion strategy for serial FLOPS is not clear from publica-
tions on the language. However, since the parallel version
of FLOPS (which is the newer version) is presented as a
more efficient version of the language, this would indicate
that serial FLOPS is also intended for problems which have
much in common with fuzzy control applications. How-
ever, it is clear that the conflict resolution strategy selected
means that this version of the language also cannot be used
to write programs based on the task-oriented methodology.
In FMUFL, however, the conflict resolution strategy was
designed expressly to ensure that a task-oriented program-
ming methodology could be supported.

4 Conclusions

Forward-chaining production languages are very powerful
programming tools, as evidenced by their widespread us-
age. The expressive power of this class of language can
be enhanced by enabling them to handle lexical impreci-
sion. A method for doing this, based on fuzzy sets, was
presented in this paper. This was followed by an ana.lysxs,

based on the need to sunnort tack.ariantad nrogrammine
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of how to handle instantiation truth-values during conflict
resolution. A conflict resolution strategy for fuzzy forward-
chaining production system languages was developed and
contrasted with conflict resolution in the only other fuzzy
forward-chaining production language known.
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